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We present and analyze some aspects of the physics of dissipative phenomena. Attention is 
called to its connection with the emerging theory of complexity, and its place in the realm 
of nonlinear physics. This nonlinearity has a fundamental role in determining complex 
behavior in open systems far away from equilibrium. In many cases it shall lead to the 
formation of self-organized synergetic behavior at  the macroscopic level, in the form of the 
so called Prigogine's dissipative structures. Dissipation is then not a source of decay but 
has a constructive role, maybe including the emergence of life, natural evolution, and the 
astounding functioning of living systems. Two cases - dealt with within the framework of 
the rising Informational Statistical Thermodynamics - eventually relevant to the functioning 
of biosystems are presented. They illustrate the connection among the four items in the title 
of this paper. 

I. Introduction 

In 1970, in the issue of Wednesday October 6 of 

the daily newspaper Suddeutsche Zeitung, the Nobel 

Prize 'Werner Heisenberg presents an article titled "The 

End of Physics?"[l]. It was motivated as a response to 

the posture of some physicists, according to whom a11 

that is of interest in the realm of the physics would be 

exhausted after a11 the problems posed in the area of 

elementary particles are solved. "For, it might be ar- 

gued, a11 matter and a11 radiation consists of elementary 

particles and, hence, a complete knowledge of the laws 

governing their properties and behavior, in the shape, 

say, of a "world formula", would also be bound to es- 

tablish the basic framework for a11 physical processes. 

So even if extended developments could still be ap- 

pended in applied physics and technology, the questions 

of principie would a11 have been settled, and fundamen- 

tal research in physics would have come to an end". 

Heisenberg - with his geniality and foresight - defends 

in the article an opposing position, answering that "in 

time to come it will often be difficult, perhaps, to de- 

cide whether an advance in knowledge represents a step 

forward in physics, information theory, or philosophy, 

whether physics is expanding into biology or whether 

biology is employing physical methods and approaches 

to an ever greater extent. It would thus be possible to 

speak of a closing off of physics only if we were arbi- 

trarily prepared to define certain methods and concep- 

tua1 patterns as physical ones and to assign other ways 

of putting the problem to other sciences. But this is 

hardly likely to happen; for the characteristic feature 

of the coming development will surely consist of the 

unification of science, the conquest of the boundaries 

that have grown up historically between the different 

individual disciplines". In a sense he predicts a return 

to the Aristotelian concept of a unifying natural philos- 

O P ~ Y .  

Other renowned authors as Freeman ~ ~ s o n [ ~ l ,  

Wladimir ~ i n z b u r ~ [ ~ l ,  and Herbert F'rohli~h[~] have also 

expressed, at  near the same time as Heisenberg, similar 

ideas. In particular they cal1 the attention to the dif- 

ferentiation between microphysics (or the mechanicist 

and reductionist point of view accompanied by deter- 

ministic laws) and macrophysics (the physics of large 

(macroscopic) systems, let them be physical, chemical, 
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biological, technological, etc., to  which should apply 

statistical laws ). The connection of both would be 

given with the introduction of rnacr~-conce~ts[~],  i.e. 

own characteristics of dynamical systems beyond the 

laws.of microphysics, a topic, in a sense to be touched 

upon within the theme to be considered here. 

Less than twenty years after Heisenberg's article, 

some authors consider that we are at the birth of "a 

new physics", whose expanding frontiers rnay be con- 

centrated into three aspects, narne1~[~1 

1. The very small (in large part the age old quest 

for the building blocks of matter and their inter- 

actions) . 
2. The very large (that is mainly astrophysics and its 

connections with cosmology and gravitation). 

3. The very complex (here is the emerging Theory of 

Complexity and its eventual relevance in a global 

understanding of Nature, is the subject of our 

interest here and where the question of macro- 

concepts lies) . 

This last item, the subject of this special section 

of the Braz. J .  Phys., rnay be considered in a sense 

an answer to Heisenberg's premonition of an extended 

natural philosophy that rnay even incorporate the so- 

cial sciences. In fact, Theory of Complexity is acquiring 

popular disclosure, as can be registered with the pub- 

lication of an article in Times Magazine with the sug- 

gestive (albeit somewhat sensationalist) title of "The 

new field of complexity rnay explain mysteries from the 

stock market to  the emergence of ... Life, the Universe, 

and ~ v e r ~ t h i n ~ " [ ~ ] .  

It is difficult to name the "founding fathers" of the 

theory of Complexity. Since it involves the dynamics of 

systems, it rnay be noticed that unifying aspects of the 

question rnay go back to Ludwig von Bertalanffy who 

in the decade of the thirties gave origin to the Theory of 

Dynamical ~ ~ s t e m s [ ~ ] .  His work was followed and ex- 

tended by many authors, among them Robert Wiener, 

Claude Shannon, R. Backminster-Fueller, and others. 

In connection with the area of physico-chemistry, biol- 

ogy, and later on other disciplines, we rnay mention the 

work of the Nobel Prize Ilya Prigogine and the Brus- 

sels' ~choo l [ "~~] ,  and also the discipline of Synergetics 

initiated by Herman ~ a k e n [ ' ~ ~ ~ ~ I .  A main propagan- 

distic "prophet" of Theory of Complexity is the Nobel 

Prize Philip ~ n d e r s o n [ ~ ~ > ~ ~ ] .  In his articles, Anderson 

sides with Heisenberg, in that he challenges the radical 

reductionist theory maintained by a majority of elemen- 

tary particle physicists. His criticisms are not only on 

the philosophical position of the latter, but also on the 

attempt by them to gain political power in the scien- 

tific community and in the state councils. In the article 

"More is ~ i f f e r e n t " [ ~ ~ ]  he argues that the reductionist 

hypothesis does not absolutely imply in a "construc- 

tionist" one: the dexterity to  reduce everything to sim- 

ple fundamental laws does not imply in the ability to 

rebuild the universe on the basis of them, the reduc- 

tionist hypothesis breaks down when confronted with 

the double difficulty of scale and complexity. This ar- 

ticle by Anderson is considered to  be one of the first 

Manifestos concerning the emergent Theory of Com- 

plexity. Moreover, Anderson sustains the point of view 

that each level of description has its own "fundamental" 

(in some sense) laws, and its own ontology, and that the 

challenge is how to conceptualize this novelty. In this he 

is accompanied, among others, by Leo Kadanoff, who 

stated that '( ... [summarizing] the complexity of the 

world in a few simple laws [...I we have chosen to ig- 

nore the wonderful diversity and exquisite complication 

that really characterize our world [...I Physicists have 

begun to realize that complex systems might have their 

own laws, and that these laws might be as simple, as 

fundamental and as beautiful as many other laws of 

 ature"[^^]. Also in this context, Prigogine and the 

Brussels' School Lave called the attention to the ne- 

cessity of a reformulation of the scientific thought al- 

lowing to incorporate the question of organization and 

evolution a t  a holistic level of description of dynamical 

systems, and to look upon the constructive role of the 

irreversible processes: ('The belief in the simplicity of 

the microscopic level now belongs to  the past. Classical 

physics has emphasized stability and permanence. We 

now see that,  at  best, such qualification applies only 

to very limited aspects. Wherever we look, we discover 

evolutionary processes leading to diversification and in- 

creasing complexity" . 
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So far we have been, in a sense, panegyrists of Com- 

plexity Theory, but we have not stated clearly what 

i t  consists on. As some author wrote, the definition 

of complexity is a complex matter, and the object of 

multiple d i sc~ss ions[~~] .  Complexity in a system is not 

to be confused with a system simply being compli- 

cated. Complication refers to a possible intricate char- 

acterization of the system, like, for example, the case 

of biological systems with entangled compositions of 

macromolecules involved in multiple and inter-related 

physical-chemical interactions. Biological systems are 

complicated, but as discussed below, they are also com- 

plex. The reason of its novelty does that a definition 

of complexity is not uniquely established, with different 

authors resorting to their "pet definition", as noticed by 

G. Parisi in his introductory presentation to the con- 

ference Measures of ~ o m ~ l e x i t ~ [ ~ "  (see also Ref. 25). 

We introduce here a characterization principle, quite 

simple and colloquial in nature, namely understanding 

complexity as a behavior of a system which shows large 

diversity and surprising aspects, given rise to an emer- 

gent structure of an unexpected character. Once again 

following ~nderson[ '~]  we cite his sentence that "emer- 

gent is a philosophical term going back to the 19th- cen- 

tury debates about evolution implying properties that 

do not preexist in a system or substrate. Life and con- 

sciousness, in this view, are emergent properties". 

A system may be complicated, like the case of the 

dynamics in a crystal lattice, but to  have a behavior of 

quite simple description, i.e. the normal modes of vibra- 

tion in such example. On the other hand, a system may 

be quite simple, but it can show a very rich behavior of 

a quite unexpected character, e.g. the Lorentz model 

in atmospheric physics, the prototype of the modern 

theory of c h a ~ s [ ~ ~ ] .  Hence, in fact we should refer to a 

complex behavior of a system instead of a complex sys- 

tem, even though this last expression may be accepted 

as a short form. As noted, only recently - say in the 

last two decades - the systems with complex behavior 

have received an ample and systematic study; this is 

mainly a result of the construction of very rapid elec- 

tronic computers, that allow to the scientists to model 

systems with which one cannot deal efficiently (even if 

possible) otherwise. 

We go over next to  the consideration of particular 

cases of complexity. 

11. Dissipat ive s t r u c t u r e s  

Complexity manifests itself in severa1 types of sit- 

uations in dynamical systems. Two are of particular 

relevance. One is the nowadays fashionable chaotic 

behavior in physical and other ~ ~ s t e m s [ ~ ~ ] ,  where the 

idea that a system can be both deterministic yet un- 

predictable is still rather a novelty. As known, the rea- 

son can be traced to the system's extreme sensitivity 

(hypersensitivity) t o  the initial conditions. The other, 

and the one of interest here, is the case of open systems 

driven far away from equilibrium by intense external 

sources, where it is possible to  find the emergence of 

ordered patterns on the macroscopic scale. These are 

the so called (by Prigogine), dissipative s t n l ~ t u r e s [ " ~ ~ ] .  

Dissipative because they occur in non-equilibrium open 

systems, i.e. in their dissipative regime, and structures 

because they involve a coherent behavior - in some 

sense to be explicited later on - a t  the macroscopic 

scale involving a huge number of individual components 

of the system (molecules, atoms, quasi-particles, etc.). 

They are self- organized because an organization - at 

the temporal or other kinds of levels - of these enor- 

mous number of components a t  a macroscopic scale is 

involved, and self because such organization is a result 

of the peculiar characteristics of the laws of evolution of 

the system and are not imposed by any external agent. 

As a consequence, it is said that i t  is one of the universal 

miracles of Nature that huge assemblages of particles 

subject only to the blind forces of Nature are never- 

theless capable of organizing themselves into patterns 

of cooperative activity. Processes such as this, as al- 

ready noted, have been brought to  fame by the work of 

Ilya Prigogine and collaborators, who have developed 

for them a whole science of far-from-equilibrium ther- 

modynamics for them. They have put into evidence 

the creative nature of dissipative processes in open sys- 

tems as opposed to the old idea of decay by dissipation 

in isolated systems accounted for by the second law of 

thermodynamics. 

Certainly biological systems are complex systems 
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by antonomasia, and among them the human brain is 

possibly the more complex system one can conceive. 

The theoretical approach to biological systems is ex- 

tremely difficult, on one hand for they being quite com- 

plicate arrangements of interacting macromoleciiles in- 

volving an enormous amount of physical-chemical pro- 

cesses, and on the other hand for they not being quite 

amenable to experimental testing. Hence, clearly one 

should try an approach in steps of increasing difficulty. 

In a first step, it would be seemingly worth to test ideas, 

concepts and theories in more tractable systems ad- 

mitting an accessible theoretical and experimental ap- 

proach. One case may be that of semiconductors, which 

- for a clear technological interest - are the object of 

very extensive research, and other may be the case of 

simple models of b i o ~ ~ s t e m s [ ~ ~ - ~ ~ ] ,  a couple of cases to 

be described later on in Sections I11 and IV. 

Self-organization appears as a fundamental concept 

in biology, and so the Brussels' school has stated that 

"the spontaneous onset of self-organized states [is a phe- 

nomenon that] have completely changed our view of the 

physical sciences and their relation to the biosphere [...I 
A cell [...I is a highly structured entity with well de- 

fined temporal and spatial organization. The proper 

understanding of its behavior was beyond the reduc- 

tionist methods of molecular biology [...I The concept 

of dissipative structures went in a opposite direction by 

showing that, under appropriate conditions, inert bulk 

matter is no longer simple and may show a great variety 

of complex behavior reminiscent of living states [...I the 

phenomenon of life seems "natural", an inevitable con- 

sequence of the ordinary physical-chemical laws which 

govern the entire universe [...I The bold and audacious 

hypothesis which assumes that life has been created as 

a result of the self-o'rganization of matter is known. At 

present time it seems [a] valid hypothesis which recon- 

ciles matter and life [and] we are entitled to hope that 

sometime in the future it can be proved unambiguously 

that self organized properties of reacting and flowing 

systems constitute the missing link in the evolution of 

molecule to man [...I We are encouraged in such an ex- 

pectation by the existing theoretical models which show 

the feasibility of such endeavo~r"['~l. 

Thus, it appears that the point of view of the Brus- 

sels' school would tend to overcome the old controversy 

of reductionism vs. vitalism in the life sciences. In 

a certain sense we would have a scheme that covers 

both, requiring that besides the deterministic laws of 

physics along with its reductionist focus, one should 

incorporate laws that are characteristic to the macro- 

scopic description of the system, namely the macro- 

concepts to which we previously referred to as suggested 

by ~rohlich[~]. 

Self-Organization in matter, as dissipative struc- 

tures, can present itself under different aspects, namely, 

starting with disorganized states (stochastic thermal 

chaos), it may follow that at a "suEcient distance" from 

equilibrium ( i.e. at a critica1 point depending on each 

case) organized patterns arise displaying: 

i.) spatial order (morphogenesis), 

ii.) temporal order (chemical, biological, and other 

types of "clocks" ) , 
iii.) space and temporal order (chemical, and other 

types of waves), 

iv.) transitions between homogeneous and stationary 

states (particular types of condensations), 

and which are maintained by a flux of energy and even- 

tually matter entering the system and being provided 

by externa1 sources. 

The three usual illustrations often used in the 

literature on the subject are the cases of self- 

organization that refers to the fields of physics, chem- 

istry and biology, namely, respectively, convective cells 

in Bènard's effect141], chemical c l ~ c k s [ ~ ~ ] ,  and slime 

mold aggregation[43]. These are only three of a quite 

large number of additional systems where macroscopic 

self-organization may occur. Let us recall that the 

emergence of order out of randomness and the forma- 

tion of complex structures in non-equilibrium media 

came to the fore at the beginning of the second half 

of this century mainly in connection with problems in 

chemical kinetics and biology. But self-organization is 

a greatly ubiquitous and remarkably interesting subject 

that appears in a large class of systems, encompassing, 

among others, 



Brazilian Journal of Physics, vol. 24, no. 4, Decernber, 1994 879 

a) hydrodynamic in~ tab i l i t i e s [~~r~~] ,  to a balance between inner dissipative losses and in- 

b) autocatalytic chemical and biological ner processes, while receiving the energy and eventually 

rea~t ions[ l~J"~~] .  mass provided by externa1 sources. 

c) cellular differptiation and r n ~ r ~ h o ~ e n e s i s [ ~ ~ - ~ ~ ,  

d) neural networks and the brain's cognitive 

f u n c t i ~ n s [ ~ ~ ] ,  

e) population dynamics and 

f) planet a t m ~ s ~ h e r e [ ~ l ] ,  

g) functioning of semiconductor d e v i ~ e s [ ~ ~ ] ,  

h) nonequilibrium phase transit ion~[~~I,  etc. 

A11 these different systems present under appropriate 

conditions (namely, as already noted, when sufficiently 

far from equilibrium) a marked coherent behavior ex- 

tending over a macroscopi,~ scale. Clearly, these ordered 

states can only occur in non-equilibriurn open systems 

since the second law of thermodynamics precludes low 

entropy (i.e. ordered) structures. Furthermore, this 

macroscopic order may be visible in quite clear sym- 

metries that arise out of thermal disorder (pictures are 

not presented here, but we refer the reader to those 

available in, for example, Refs. 8 to 21, 41 to 44, 46 

to 48, and 51: these are "visual" manifestations of 

self-organization). It may be noticed that a rigorous 

definition of self-organization has not been given. In 

fact this is not easy, as it was already noted in con- 

nection with complexity in general (see Ref. 53). We 

have given an intuitive outlook, which we summarize 

as: self-organization is the establishment in a dissipa- 

tive nonequilibrium open system of some kind of or- 

dered structure (either stationary or with cyclical time 

variations) determined by the inner properties of the 

medium itself. This structure should be independent or 

weakly dependent on the characteristics of the source 

leading the system away from equilibrium, as well as on 

But one important point arises here. buch inner 

processes that are activated by the pumping of energy 

are to be of a nonlinear character (namely, implying in 

positive feedback and autocatalysis). This is a conse- 

quence of the fact that in the linear regime (sometimes 

referred to as the Onsager's regime) ordered structures 

are excluded due to the validity of Prigogine's theorem 

of minimum entropy production[15~16~54~55]. According 

to it there exists a tendency of the natural systems (in 

this linear regime) towards an atractor, which consists 

in a state of minimum entropy production and regres- 

sion of fluctuations. 

Thus, self-organization belongs to the realm of non- 

linear physics. It is certainly a truism to say that the 

physics of nonlinear phenomena is receiving a great deal 

of attention nowadays (it is worth noticing that again 

Werner Heisenberg also foresought this development, 

see Ref. 56). Nonlinearity is difficult to define in an un- 

ambiguous way, aside, of course, by the character of the 

modellingequations. It has been noticed that, in partic- 

ular, Schroedinger equation is linear, but has as a limit 

the Hamilton-Jacobi equation of Classical Mechanics 

which is nonlinear even for the free particle. The ques- 

tion is that in many cases, and here the word complexity 

comes in, nonlinearity is a way of description that deals 

with phenomena that admits large qualitative changes 

- sometimes of a "catastrophic character" - when mod- 

ifications are imposed on the constraints applied on the 

system. Chaos, today a high fashion in physics after a 

long period of hibernation, is said to be considered a 

"symptom" of nonlinearity, so is also self-organization. 

the initial state of the medium, and, in some cases, of Nonlinear phenomena have been very important in 

the boundary conditions. It is thus a principle for self- technology, particularly in modern electrical engineer- 

organization to arise that the system loose any mem- ing, and a typical case is the laser. Even in the case 

ory of the initial conditions, .and that there be a di- of the physics of condensed matter nonlinear phenom- 

rect link between the parameters of the structure and ena are not new, suffice it to mention the theory of 

the properties of the dissipative medium. In brief, self- the plastic flow of dislocations, or the case that har- 

organization is a result of the development of instabil- monic vibrations of the lattice cannot explain thermal 

ities in a disorganized (thermally chaotic) system with expansion, which requires the introduction of nonlinear 

the stabilization of long-range coherent structures due forces, viz. the anarmonic interactions. 
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Nonlinearity is very ubiquitous, and it is certainly 

in action in our daily life, and in a11 disciplines that 

deal with dynamical systems, e.g. in physics, chemistry, 

biology, engineering , ecology, economy, sociology, etc. 

But the renewed interest set forward by the physicists 

is of a basic character, in the direction to  looking for 

the fundamental principles that are behind nonlinear 

phenomena. Rolf Landauer has stated [in the Confer- 

ente on Nonlinearity in Condensed Matter, Los Alamos 

National Laboratory, May 19681 that: "What was miss- 

ing until about a decade ago, was not the sensibility to  

nonlinear phenomena, but only an appreciation for the 

remarkable diversity of behavior available in nonlinear 

systems: what is new is the desire to celebrate nonlin- 

earity". 

Notwithstanding these comments, it must be said 

that linear physics, which received ample attention for 

a long time, is certainly not exhausted. During decades, 

condensed matter physicists, to give an example, ltept 

worrying about the implications of Quantum Mechanics 

- the major theory of our century - with a high degree 

of attention. Schroedinger, Heisenberg, Born, Dirac, 

and many others taught us how to deal with the com- 

plicated dynamical play of arrays of atoms. Nowadays, 

besides existing theoretical applications, there exists an 

live and growing interest in the nature of quantum the- 

ory of measurement and its ~ o n s e ~ u e n c e s [ ~ ~ ] .  

It is worth mentioning that very recently James 

Krumhansl has considered the question "Nonlinear Sci- 

ence: towards the next f ron t i e r~" [~~I .  In his words, non- 

linear science has erupted in many directions over re- 

cent years, with many successes. Two main themes 

have been found in many different settings, like chaos 

and solitary wave phenomena [and we must add self- 

organization]. While these thems have been found ini- 

tially in simple models useful for establishing math- 

ematical methods and the behavior of exact limiting 

cases, their robust features give us assurance thaf, they 

are generic. The next frontier is not so much in for- 

malism, but in' how to achieve a realistic, eventually 

utilitarian, representation of actual physical, chemical 

or biological materials, that connects the experimen- 

tally significant behavior with its nonlinear properties. 

At the same time Krumhansl points to  the danger that 

"exaggerated perhaps is that more and more nonlinear 

research is becoming either marginal or irrelevant, aided 

and abetted by the wide availability of larger comput- 

ers, and the ease of formulating variations on a basic 

mathematical theme and doing one more case. Indeed, 

many of these incremental explorations yield fascinat- 

ing special features. However, the important questions 

are: first, do they extend our general understanding; 

or, alternatively, do the special features really provide 

new, quantitative insight to  some particular experimen- 

tal observation ? It is not clear in many instances of 

published research today whether the answer to  either is 

affirmative [...I Assuming that the objective is to  have 

nonlinear dynamics describing reality, [it is proposed] 

the following check list for developing models: (1) Iden- 

tify the phenomenon to  be studied i...]; (2) Use phys- 

ically realistic variables [.. .I; (3) Check frequently in 

the carrying out of the simulations whether it is better 

to reconsider the modeling of the science or to  increase 

the detail (i.e. size) of simulation as the simulation goes 

forward." 

Returning to the main point, we restate that non- 

linearity in the evolution of processes is a fundamental 

characteristic for complex behavior to arise. This al- 

lows an improved characterization of complexity and, 

consequently, self-organization. In the linear regime of 

evolution is verified the principie of superposi t ion (e.g. 

the lattice dynamics described by the superposition of 

normal modes), and no anomalous behavior is to be 

expected (as ensured by Prigoginels theorem of mini- 

mum entropy production). Complexity then can only 

be expected in conditions such that the superposition 

principle is not satisfied, and such is the case of nonlin- 

ear equations of evolution. 

The so called Brussels' school has largely developed 

the thermodynamics theory of open systems, mainly for 

the study of auto-catalytic chemical reactions (see, e.g., 

Refs. 8 to  21). The thermodynamic (originally called 

universal) criterion for evolution and the criterion for 

(in)stability of systems arbitrarily away from equilib- 

rium, contained in such theory, are capable to  encom- 

pass a large variety of situations in open systems. Sev- 
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eral authors, mainly Prigogine and collaborators, have, 

on the basis of these results, advanced the idea that self- 

organization in open nonlinear systems may constitute 

a natural and compelling possibility of a mechanism for 

the emergence of life and for the puzzling problem of 

functional order in biological systems. Turing pioneered 

theoretical work on stationary spatial organization in a 

model chemical ~ ~ s t e m [ ~ ~ I ,  a predecessor of Prigogine's 

"Brusselator" (e.g. see Ref. 15) and Noyes' "Orego- 

nator" ( e.g. see Ref. 42). In these models critica1 

points, a t  which the normal spatial homogeneous state 

becomes unstable are present. The nonlinear chemical 

reaction evolves beyond the critica1 point in such a way 

as to promote a stationary state in which the concen- 

trations of the intermediate products vary sinusoidally 

in space. These authors suggest this phenomenon as a 

model for the physical-chemical basis of morphogene- 

sis, and they draw analogies with biological examples 

of spatial chemical organization and prebiological evo- 

lution. Related to this point, Prigogine and co-workers 

stated that "if the system is able to evolve through suc- 

cessive instabilities, a mechanism must be developed 

whereby each new transition favors further evolution 

by increasing the nonlinearity and the distance from 

ber (associated to the intensity of the externa1 source 

which is manifested through the value of the temper- 

ature gradient) - exceeds a critica1 value. In chemi- 

cal reactions, nonlinearity is related to the concentra- 

tion of reactants, and the critica1 condition depends 

on the chemical affinities, and in the case when in- 

homogenities are present, also on the diffusion coef- 

ficients. In physical devices, nonlinearity is expected 

in the distribution functions of the elementary com- 

ponents (molecules, atoms, electrons, quasi-particles, 

etc.), and the critica1 condition depends on the inten- 

sity of applied fields. As already noted, in a11 the cases 

when (and if) self-organization follows it is, a result of 

the fact that the pumped energy instead of being totally 

expended in useless thermal agitation may be partially 

redirected to the production of collective motion, and 

therefore to an increase of the degree of order because 

of the coherent character of the latter. 

So far, we have given a overview and made sev- 

eral considerations over self-organized dissipative struc- 

tures. Clearly, the next step is to attempt a more rigor- 

ous theoretical approach. In this direction we can enun- 

ciate two main questions that need to be addressed, 

namely, 
equilibrium."[21] Hence, formalisms and approaches to 

1. Which is the microscopic origin of these transi- 
the subject may represent very useful tools for theoret- 

tions ? 
ical biology and sources for ideas and new concepts in 

2. How can we deal theoretically, and be able to 
the area, as shall be discussed later on. Certainlv the 

provide a rigorous analysis of them ? 
extremely complicated heterogeneous spatial structure 

and functioning (temporal evolution) of the living or- 

ganisms, already beginning with the elemental cell, set 

down quite difficult problems in Biology for the physi- 

cist and the chemist. Nevertheless, the fact that the 

scientific inquiring is at a very elementary and initial 

stage, and well away from an appropriate understand- 

ing of the processes of the organisms with life, it appears 

to be arising, as already commented, a starting point in 

the direction to shorten the gap that separates physics 

and biology. 

In fluid dynamics nonlinearity comes primarily from 

convection terms involving the form ü(T, t )  . V, where ü 

is the field of drift velocity, and the instabilities appear 

when a certain control parameter - the Reynolds num- 

The description of macroscopic dissipative pro- 

cesses in matter has been tackled by means of dif- 

ferent approaches. We have already noticed that 

phenomenological foundations are to be found in 

Generalized Irreversible ~ h e r m o d ~ n a m i c s [ ~ ~ ~ ~ ~ ~ ~ ~ ] ,  

and, of course, its improvements like Extended 

Irreversible ~ h e r m o d ~ n a m i c s [ ~ ~ - ~ ~ ]  and Rational 

~ h e r m o d ~ n a m i c s [ ~ ~ ] .  Powerful stochastic theories are 

also a~a i l ab l e [~~I .  Finally, in our view, a best approach 

for answering the questions above should be looked for 

in Nonequilibrium Statistical Mechanics, which, how- 

ever, is not yet a fully developed discipline. It is our 

proposal that, in spite of yet unresolved basic concep- 

tua1 problems, a first good approach on the microscopic 

leve1 for the evidencing and description of the self- 
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organization can be obtained for the case of interacting 

many-body systems governed by Hamiltonian mechan- 

ics, resorting to  mechano-statistical formalisms. One 

seemingly quite powerful and practical is the Nonequi- 

librium Statistical Operator Method (NSOM), which 

can be considered as implying in a far reaching gen- 

eralization of Gibbs and Boltzmann ideas. Also, it 

seemingly appears as to  be encompassed within the 

context of Jaynes' Predictive Statistical ~ e c h a n i c s [ ~ ~ ] .  

The NSOM has been extensively reviewed by ~ s [ ~ ~ 1 ~ ~ 1 ,  

inclusive in articles in this ~ o u r n a l [ ~ " ~ ~ ~ ] .  However, to 

be more precise, self-organized dissipative structures 

are to  be encompassed within the framework of the 

so called Informational Statistical Thermodynamics 

(IST), which is a microscopic (mechano-statistical) ap- 

proach to thermodynamics based on the NSOM (see 

Refs. 70 to  72, and also 68 and 69). Leaving aside 

the description of the method, which can be consulted 

in the cited references, we illustrate its application in 

two examples where the systems we consider display 

complex behavior and self-organization as shown in 

Sections I11 and IV. 

111. Complex behavior in biopolymers 

Quite interesting and illustrative examples of non- 

linearity a t  work, producing what can be relevant bi- 

ological effects, are Frohlich's e~$ect[~~] and Davydov's 

s o ~ i t o n s [ ~ ~ ] .  Frohlich's effect consists in that, under ap- 

propriate conditions, a phenomenon resembling a Bose 

condensation may occur in substances that possess po- 

lar vibrational modes. If energy is pumped into those 

modes and thence transferred to  other degrees of free- 

dom (a thermal bath), then a stationary state will be 

reached in which the energy content of the vibrational 

modes is larger than in thermal equilibrium. This ex- 

cess of energy is found to be channeled into the rnodes 

lowest in frequency - similarly to  the case of Bose con- 

densation - provided the energy supply exceeds a criti- 

cal value. Under these circumstances, a random supply 

of energy is thus not completely thermalized but partly 

used in maintaining a coherent behavior in the sub- 

stance. On the other hand, A. S. Davydov showed that 

due to  nonlinear interactions, of the same type as those 

responsible for Frohlich's effect, i t  is expected to arise 

a nove1 mechanism for the localization and transport of 

vibrational energy in proteins, namely the propagation 

of a solitary-like wave. 

Davydov's theory has received plenty of attention, 

and a long list of results published up to the first half of 

1992 are discussed in the excellent review of A. ~ c o t t [ ~ ~ ] .  

As pointed out in that review, one question concern- 

ing Davydov's soliton is that of its stability in normal 

physiological conditions, that is, the ability of the exci- 

tation to  transport energy (and so information) at long 

distances in the living organisms, in spite of the relax- 

ation mechanisms that are expected t o  damp it  out at 

very short (micrometer) distances. 

We address these phenomena within the formalism 

of I S T [ ~ ~ - ~ ~ I .  Consider a system where modes of po- 

lar vibration are excited by a continuous supply of 

metabolic energy. These polar modes are in interac- 

tion with a bath of acoustic-like vibrations through a 

nonlinear dynamics. The kinetic equations of evolution 

for the population of the vibrational modes are derived 

resorting to the NSOM. After a short transient time a 

steady state arises, where, after a certain critica1 thresh- 

old of the pumping intensity is achieved, there follows 

Frohlich condensation. In continuation, it is considered 

the propagation of oscillations in this polar system. The 

equation of evolution for their NSOM-averaged ampli- 

tude results from the Davydov's soliton type, but ac- 

companied of thermal damping. The lifetime of the 

excitation in normal conditions is very short, but i t  can 

be shown that it increases enormously for the cases of 

propagation in Frohlich's condensate. 

The systems' Hamiltonian is composed of the 

Hamiltonians of the free polar vibrations and the ther- 

mal bath. The former is assumed to have a frequency 

dispersion relation wq ,  and the latter Oq, with q running 

over the reciproca1 space Brillouin zone. The other con- 

tributions to  the Hamiltonian are the one coupling the 

polar modes with an externa1 source, and the anhar- 

monic interactions involving a11 possible three- quasi- 

particle (phonons associated to  the two types of vibra- 

tions) collisions. Once in possession of the systems' 

Hamiltonian, the equation of evolution for the popula- 

tion of the polar modes, vq(t), is calculated resorting to 
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the nonlinear quantum generalized transport equations 

that the NSOM provides, but in the approximation we d 
-vo(t) = Io-~;l[vo(t)-I/OO]-glrleP"vo(t)+ 

called second order approximation in relaxation theory dt 

(SOART for s h ~ r t ) [ ~ ~ ] .  SOART is an instantaneous in + g l v l ( t )  - g l m v o ( t )  ( 3 4  
d 

time (memoryless) approximation, exact up to the sec- p ( t )  = I1 - ~ ~ ~ [ v l ( t ) - v ~ ] - g o ~ v i ( t ) +  

ond order in the interaction strengths. The final result + gor]ePhAvo(t) - govo(t)vi(t) , (3b) 

takes the form 
where, 

8 
-q( t )  = I{ - T;l [V&) - V:] $ Jf(t) . (1) A = WO-W1, 
a t  ( 4 4  

r ]  = [exp{PtiA) - 11-I , 
In this, I< accounts for the creation of excitations 

(4b) 

4(1) = [ex~{Pfw~(l ) )  - 11-l , 
as a result of the action of the externa1 pump. The 

( 4 ~ )  

second term, where v0 is the population in equilibrium 

at  the temperature of the thermal bath, is a term of 

relaxation - at  the rate - to the thermal bath. The 

final term, 3, contains the nonlinear contribution that 

is to be responsible for Fr6hlich9s effect: The relevant 

terms in 3 are proportional to 

~ d t ) ~ g ? ( t ) P  - e 
P ~ A ,  and v~t)vT(t)[eP":~i' - 1) 

(2) 
where = l/ksT and A; = wf - wg?. 

Therefore, for wg > w$ these terms lead to an in- 

crease in the population of the mode q at  the expense 

of a11 the other modes higher in frequency, and conse- 

and go and gl are a measure of the intensity of 

the coupling between the two sets of modes, involv- 

ing the strength of the interaction and the extension of 

the energy-momentum space available for the scatter- 

ing events, determined by the conservation of energy 

and momentum. 

Let us next consider the stationary state by setting 

bo and ul, equal to zero (the upper dot stands for time 

derivative). Using Eq. (3) in this case we find that: 

quently, those with the lowest frequencies are the most where the bar over the populations stands for 

favored by the process. stationary-state values, and 

In Eq. (I), q and q' run over the enormous number -1 o 1 O Ao = Io+T,, vo; A 1 = I ~ + r ; v l ;  (6a) - - - - 

of values they take in the Brillouin zone, and so we have 
Bo = + gi(1+ 7); B1 = + goq ; (6b) 

a complicated and quite large set of integro-differential 

equations coupling all those modes. We contour this co = Si% c1 = 91 + (1 + rl) (64  

difficulty resorting to a simplified model. Taking into 

account the above established fact that high frequency 

modes transfer energy to the low frequency ones, we in- 

troduce a crude model in which we consider the energy 

transferring modes as represented by a set of modes 

with a unique frequency wo and contained in a region 

R. of the Brillouin zone, and another set of represen- 

tative modes receiving such energy, having a unique 

frequency wl(wl < wo) and contained in a region Ri of 

the Brillouin zone. 

In that way we are left with only two coupled equa- 

tions for these representative sets of modes. They are: 

We look next for a numerical solution of the coupled 

pair of algebric equations (5). First, we multiply coef- 

ficients A, B ,  and C ,  as well as go and gl by a scaling 

factor T with dimensions of time to be determined later 

on. For illustrative purposes we take g o ~  w g l r  w 10-5; 

wo = 1013sec-l; T w 10ps; A w 2 x 1012 sec-'; and 

identical intensities Ior = 5 S. 

Inspection of Fig. 1 clearly shows the onset of 

Frohlich's effect at an intensity thereshold S, 500 

(roughly given by the value of S where v1 steeply in- 

creases). The pumping modes, represented by vo, ac- 

quire a near constant value. Hence, it is undoubtedly 
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evidenced the condensation of excitations in the modes 

with the lowest frequency. 

Moreover, it is worth mentioning that according to 

the NSOM, the phonon population uq(t) takes the form 

uq(t> = [exp{Fq(t>) - 11-I , (7) 

where F,-(t) is the NSOM Lagrange multiplier (intensive 

nonequilibrium thermodynamics variable in IST) con- 

jugated to  the basic variable uq(t). Making the choice 

F&) = P ( h q  - Pq? , (8) 

Eq. (7) takes ,a form reminiscent of a Bose-Einstein dis- 

tribution with temperature T, but a different chemical 

potential pq(t) for each mode. Using Eqs. (7) and (8) 

we can write 

In our model, according to the results of Fig. 1, 

with increasing vi for the low frequency modes after 

the critica1 threshold has been achieved, p1 approaches 

hl; this is clearly seen in Fig. 2. This leads then to  

a kind of near Bose-Einstein condensation, here not in 

equilibrium, but in nonequilibrium conditions. 

Let us briefly consider the energetic implications of 

the result in the case of biosystems (which have typ- 

ical values of the parameters as those already used). 

Considering an intensity S = 1000 (beyond the criti- 

cal point), using TO % TI i 10 picoseconds, and, we 

recall, wo i 1013 sec-I; this requires a pumping power 

of roughly 6.4 x 10-' watts per mode. Assuming that 

this power is provided by the hydrolysis of ATP, which 

produces 7.3 kcal/mol, in the event of an almost total 

absorption of this energy in the process, to sustain a 

stationary Frohlich condensate would require 2 x 10-l3 

moles of ATP per mole per second. Consider a near 

one-dimensional system (e.g . an a-helix protein) : the 

Brillouin zone length is 107 cm-l, and if we consider 

a sample, say, 10 cm long, the number of modes is 

- 3 x 107. For a propagation of a signal in this con- 

densate, a question to be considered below, taking, say, 

10-5 sec for riding the distance of 10 cm (implying in a 

group velocity of roughly 106 cm/sec), for the process 

to  be completed in the Frohlich condensate it would 

require N 10-l0 moles of ATP, a seemingly accessible 

value. 

I N T E N S I T Y  S 

Figure 1: Population of the representative modes of high 
frequency, üo, and that of low frequency, vi,  as a function 
of the source intensity (after Ref. 36). 

100 200 300 400 500 600 
I NTENSITY S 

Figure 2: The quasi-chemical potential dependence on the 
source intensity for the representative modes of low fre- 
quency. 
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Another important consideration is the one related let us consider next the dynamical aspects associated to 
to the transient time that must elapse between the the propagation of signals in these systems. For that 

switch on of the pumping source and the emergence of propose, let us add in the description of the system in 

the stationary-state Frohlich condensate. Solution, in terms of the NSOM, the variables for the amplitude of 

the given model, of the equations of evolution [Eq.(3)] vibrations, namely, < a, / t  >, that is, the average over 

allows us to estimate this time as being in the picosec- the nonequilibrium ensemble of the dynamical quan- 

ond range, that is, Frohlich's effect follows very rapidly tity a,. Resorting once 

after the vibrationa1 modes begin to receive the energy some algebra we arrive 

from the externa1 source. the amplitude, namely 

Having dealt with the stationary-state of the model, 

again the NSOM-SOART, after 

to the equation of evolution for 

and, for the sake of simplicity, we omit to write down proximated form 

the expressions for the quantities r and R. 
Consider now a one-dimensional chain in a contin- 

uum approach. Introducing the average field quantities 

where wo and a are constants, and after neglecting the 
$(r ,  t)  = ~ ( a , l t ) e " J X  (I1) terms that couple with the conjugated equations, we 

and taking for the frequency dispersion relation the ap- obtain that 
I 

In this equation, G and R are appropriate trans- 

forms of I' and R in Eq.(lO). Eq.(13) has the form of a 

Schroedinger equation with damping[771. R(x1, x") = KS(x - xt)S(z - x") (14a) 

Ç(x - x') = y6(x - x') , 
Introducing a local in space approximation, that is, 

(14b) 

neglecting space correlations, by writing Eq. 13 becomes 

which is of the form of the equation derived by Davydov showing the damping effects associated with the term 

in an alternative way, but, in the present case, clearly with coefficient 7. In conditions of equilibrium with a 
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thermal bath at the physiological temperature of 300 

li', the damping constants can be evaluated in the case 

of the simplified model in terms of the two representa- 

tive sets of modes previously described. In that case, 

we have that 

for gor = g 1 ~  E 10-5. Since r. and ri can be 

obtained from the line widths of scattering bandsL7", 

we can estimate the scaling time r. Since the lifetimes 

are of the order of a few tens of picoseconds, a pulse 

signal impinged on the system would be carried a few 

micrometers, since the group velocity is expected to be 

in the order of 105 to 106 cm/sec. 

However the situation is "dramatically" modified if 

the excitation propagates in a nonequilibriurn back- 

ground, namely the one provided by the stationary 

Frohlich condensate previously described. This is a re- 

sult of the fact that the damping constants depend on 

the actual state of the system, being affected by the 

nonlinear anharmonic interactions, that are responsi- 

ble, we stress, on one hand for Frohlich's effect, and on 

the other for Davydov's mechanism for soliton-like ex- 

citation propagation. Without going into details, in the 

case of the model we have been considering we can ob- 

tain the two characteristic damping constants, ro and 

r i ,  in terms of the intensity of the pumping source, 

what is shown in Fig. 3. 

Inspection of Fig. 3 clearly shows that while the 

lifetime of the high frequency modes decreases (that is, 

its inverse I'o increases in the figure), after the critica1 

point for the onset of the Frohlich's effect the lifetime 

of the low frequency modes in the Frohlich-Bose con- 

densate increases enormously ( that is, its inverse r1 
decreases to  near zero). Consequently, we can expect a 

extremely rapid damping of the amplitudes < ap/t > 
for values of q in the region Ro of the Brillouin zone, 

while those amplitudes for values of q in region R1 

(the modes low in frequency) are practically undamped. 

Consequently, those amplitudes with small lifet,ime de- 

cay rapidly, while those corresponding to modes in the 

Frohlich condensate (with I' practically null) survive 

for long times. Hence, in the expression for the average 

field amplitude of Eq. (ll), after a very short transient 

time (expected to  be in the subpicosecond range), the 

summation in Eq. (11) can be restricted to  the modes q 

in Ri in reciproca1 space. Then in Eq. (15) the damp- 

ing term disappears (y = 0) and we obtain an equation 

formally identical to  that for the undamped Davydov's 

200 400 600 800 1000 
INTENSITY S 

Figure 3: Reciproca1 lifetime, r = rr of the representative 
high frequency modes, f o ,  and that of the Iow frequency 
ones, as a function of the source intensity (After Ref. 
36). 

Summarizing, we have considered a model for cer- 

tain biological systems (e.g. the a-helix protein ) of the 

type proposed by Frohlich and Davydov. Polar vibra- 

tional modes that are pumped by a source of energy, 

are in nonlinear anharmonic interaction with a thermal 

bath which remains at constant temperature and which 

is modelled as a system of acoustic-type vibrations. The 

vibrational polar modes are then an open system in (ar- 

b i t r a r ~ )  nonequilibrium conditions. For the study of 
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its thermodynamic state we resorted to the seemingly 

powerful, concise and elegant NSOM, which, as noted, 

provides the foundations for Informational Statistical 

Thermodynamics, to which belongs such kind of prob- 

lems. 

We stress that two main results were described: on 

one hand, we have been able to demonstrate that such 

systems display a complex behavior, namely, that at 

a certain distance from equilibrium, namely, after a 

threshold value of the pumping source intensity has 

been achieved, there follows a steep increase in the pop- 

ulation of the modes with low frequencies, in a way rem- 

iniscent of a Bose-Einstein condensation. This was pre- 

dicted by Frohlich, and then we have called it F'rohlich's 

effect. There is a kind of self-organization in the system, 

governed by nonlinear effects in the equations of evolu- 

tion, and thus, this phenomenon may be considered as 

the ernergence of a dissipative structure in Prigogine's 

sense. We aIso addressed the question of long-range 

propagations in the system we considered; this is an 

important open problem in bioenergetics. As noted, 

A. S. Davydov proposed that this is possibly accom- 

plished through propagation of solitary waves in this 

nonlinear media. However, it was pointed out, and our 

calculations at  the thermodynamic leve1 showed, that 

in realistic physiological conditions it should occur a 

strong damping of the wave. But our calculations al- 

iowed us to show that this damping is dependent on 

the microscopic state of the system, and influenced by 

the nonlinearities responsible for both, Frohlich's effect 

and Davydov's soliton. As a consequence, after Frohlich 

condensation sets in, the lifetimes in the vibrations low 

in frequency (i.e. those modes in the Frohlich-Bose 

condensate), increase enormously. Therefore, a coher- 

ent excitation composed in terms of the low-lying in 

frequency excited states form a Davydov's soliton-like 

wave which travels umdamped in Frohlich condensa.te. 

After the presentation of this example of complex 

behavior in sufficiently far-from-equilibrium nonlinear 

system, of eventually interesting biophysical applica- 

tions, we briefly describe a possible case of a morpho- 

logical transition, also of eventual biological interest. 

IV. From self-organization to turbulent &aos 

Spatial pattern formation is a subject of increasing 

interest in fields like chemical-physics, hydrodynamics 

and biology, e.g. the area of embryology. Recent exten- 

sive review articles are due to ~ e i n h a r d t [ ~ ? ]  and Cross 

and ~ o h e n b e r ~ [ ~ " .  In these cases one is dealing with 

open systems in far-from-equilibrium conditions, and, 

as already discussed, susceptible to develop sponta- 

neous symmetry-breaking and self-organization in dis- 

sipative structures. We are interested in this section in 

the case of morphological transitions of such type. In a 

pioneering paper, T ~ r i n ~ [ ~ ~ ]  showed that the develop- 

ment of structure in biology (morphogenesis) may find 

a physical basis in the instability of certain reacting 

systems with respect to symmetry-breaking perturba- 

tions. These need to be open systems under the action 

externa1 sources pumping energy on them, for example, 

the case of photoexcitation through illumination with 

electromagnetic radiation of different wave lengths. Mi- 

crowaves, in particular, are strongly absorbed in water, 

which represents a most important component of bio- 

logical systems. Coupling of photo processes with elec- 

tronic excitations may allow for the possible ernergence 

of dissipative spatial structures maintained by ambi- 

ent illumination, and thus to have an important role in 

biomorphogenesis. 

We address a question of this kind[3a-40]. Let us 

consider a large array of atoms forming a long chain 

of macromolecules in, say, a biopolymer. The elec- 

tronic states consists of localized bonding states in a 

fully or partially (p-type material) occupied narrow 

band, which we describe approximately by a parabolic 

band of free carriers with a very large effective mass. 

The higher-energy anti-bonding states consist in a non- 

occupied large band, also described by a parabolic band 

of itinerant electrons with small effective mass. The sys- 

tem is under illumination by radiation with a large spec- 

trum of frequencies. As a result, in photon absorption 

processes, electrons are transferred from the bonding to 

the anti- bonding band states, thus creating electron- 

hole pairs. The photoinjected excess energy received by 

these carriers is dissipated in recombination processes 

and relaxation to the vibrational modes of the system. 
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Under continuous illumination, after a transient 

time has elapsed, a steady-state sets in, in which it is 

present a concentration n of photoinjected pairs. The 

system is taken to be in thermal contact with a reser- 

voir a t  temperature T which is assumed to be kept con- 

stant by means of effective homeostatic processes, and 

we further assume that the carrier system is in near 

thermal equilibrium with it. Hence, in this way, the 

carrier system is brought to a stationary and homoge- 

nous state (for an example in semiconductor physics see 

Ref. 79). This is the so called thermodynamic branch 

of solutions, which, according to Prigogine's minimum 

entropy production theorem, is a stable one in the lin- 

ear regime around equilibrium. We consider next the 

situation when the carrier system is driven far from 

equilibrium, and we perform linear stability analysis 

(see for example Ref. 15) encompassing inhomogenous 

situations. This is done considering the case of a space 

dependent fluctuation in the carrier density. We re- 

sort to the case of the NSOM in SOART to derive the 

corresponding equations of evolution. For the descrip- 

tion of the macroscopic state of the system, and for the 

particular problem in hands, we choose as a basic set 

of macrovariables the carrier concentration and carrier 

energy (the first is fixed by the intensity of the source of 

radiation and the second by the concentration and the 

temperature T),  and to introduce spatial inhomogenity 

to the problem, we include the non-diagonal elements 

of the single-particle distribution matrix, namely 

where cf(c) and hf (h) are creation (annihilation) oper- 

ators of electrons (e) and of holes ( h )  respectively, and 

p is the auxiliary NSO corresponding to this case. The 

Q wavevector Fourier amplitude of the charge density, 

in units of the electronic charge, is given by 

The Hamiltonian of the system is composed of the 

energy operator for the carriers which will be treated in 

Landau's quasi-particle approach with Coulomb inter- 

action dealt with in the random phase approximation, 

and the contributions due to the interactions of the 

carriers with the externa1 radiation and recombination 

fields of photons. The interaction of the carriers with 

the phonons is neglected, since it is only relevant to the 

exchanges of energy that have already led the electron 

system quasi-temperature to near coincide with that of 

the reservoir and, thus, the vibrationals degrees of free- 

dom do not play any relevant role part in the analysis 

that interest us here. 

We consider next the equations of evolution for 

the basic macrovariables, which are derived in SOART 

approximation in the NSOM. As noticed, the quasi- 

temperature of the carriers is fixed by that in the reser- 

voir, and their concentration is determined by the sta- 

tionary condition and reflects the balance between the 

number of carriers produced by illumination and the 

number that disappears in luminescent recombination. 

The equations of evolution for the variables of Eq. (17) 

are 
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with being the electron (hole) band energy (to be 

taken in the effective mass approximation), V(&) is the 

Fourier Q-component of Coulomb interaction, €0 is the 

static dielectric constant, and V is the volume of the sys- 

tem. Furthermore, fl(h) are the carrier populations in 

band states, are nonlinear (bilinear in fact) terms 

in the variables of Eq. (17) that are coupled through the 

Coulomb interaction and the interaction with the radi- 

ation fields (we omit to  write down their cumbersome 

expressions, since they are not going to have relevance 

in what follows). Nonlinearities in the basic variables 

are also present in the distributions f$h) and, through 

these, in the coefficients B which are given by 

e(h) E-.  = ALÇ(w~)  + AR(€; + EG) fi(h) + 
k Q  

sarne term with i +-+ i+ Q, (21) 

where 

AL = (27r2tie2 E~/€,(E, -i- E ~ ) ~ ~ , C ) I ~ ,  (%a) 

AR = e 2 ~ ~ / ~ , F i c 3 m ,  . P b )  

We have introduced a source of radiation (lamp) 

characterized by a frequency spectrum 

I(w) = IoG(w) , (23) 

where I. is an intensity amplitude and Ç(w)  a normal- 

ized spectral distribution function. Moreover, in Eq. 

(21), tiwL = EG + E? as a result of energy conservation 

in the absorption process, and E; = fi2k2/2mx, with 

m l l  = me1 + m i l  being the excitonic mass, E, is the 

high frequency dielectric constant. 

A steady-state solution (the so called fix point or 

singular point) of Eq. (19) corresponds to na$) = 0, 

i.e. the homogenous state, which, as noted, is stable 

in the linear regime around equilibrium (limit of weak 

illumination). To look for its possible instability in 

far-from-equilibrium conditions, we analyzed the eigen- 

value spectrum of the set of linearized equations (19), 

that is, taking in them /\/ = O and for distributions f 

their values in the homogenous state (i.e. we perform 

linear stability analysis; see for example Ref. 15). In 

particular we consider the case of nu11 eigenvalue corre- 

sponding t o  the onset of an instability against a static 

inhomogenity. 

For this case of nu11 eigenvalue, the linearized Eq. 

(19) has the solution 

where 

Adding up both expressions in Eq. (24) - namely 

the e- and h- contributions - we find that 

which besides n(Q) = 0, the thermodynamic branch of 

solutions (homogenous state), admits a nonvanishing 

value for n(Q) (inhomogenous solution) if the expres- 

sion within the square brackets is null. It is worth notic- 

ing that the expression contained between the square 

brackets is the wavevector-dependent static dielectric 

function of the nonequilibrium carrier system and, ac- 

cordingly, we indicate it by E(&). Since it is a complex 

quantity, to  set it equal to  zero requires that both the 

real and the imaginary part be null. The imaginary 

part vanishes identically, as it should because it is the 

zero frequency value of the imaginary part of the dy- 

namic dielectric function which is for a11 systems an odd 

function of the frequency["]. We look then for the zero 

in the real part taking the limit of small Q,  meaning 

Q2 < J2 ,  where the last term is the average of the car- 

riers squared quasi-momentum. Furthermore, at  room 

temperature and not too high densities of photoinjected 

carriers, the distribution function of the latter can be 

approximated by Maxwell-Boltzmann distributions de- 

pending on temperature T and concentrations n, and 

nh of electrons and holes respectively. 



890 R. Luzzi and A. R. Vasconcellos 

Let us now consider the quantities B of Eq. (21): 

they are composed of two parts, one resulting from il- 

lumination [the first on the r.h.s. of Eq. (21)] which 

we call BL, and the other associated to recombination 

effects, which we call BR. Let us consider two limiting 

cases that lead ,to simple and immediate results. First, 

take the case when BL gives a much smaller contri- 

bution than BR, for example illumination with a lamp 

with a very short spectral distribution (a laser would be 

the extreme case of monochromatic radiation). Then 

R,€(&) 1 + ( ~ / A D H Q ) ~  P7)  

where ADH is Debye-Huckel screening length 

It must be stressed that our treatment implies that 

no is high enough so as to produce a fluid of itinerant 

holes in the bonding band, meaning that it is required 

a concentration of carriers enough to produce screen- 

ing effects capable to allow for the presence of mobile 

holes. This seems to be the case in proteins["l, where 

the concentration no is of the order of 1018 cmW3. 

Summarizing, for given no (the density of holes in 

the p type  material) there exists a critica1 intensity I: 

of the pumping source (which fixes the critica1 concen- 

tration n*, of Eq. (31), of photoinjected carriers) which 

determines a branching point of solutions (bifurcation 

point) of the equations for the density of carriers with 

the emergence of a steady state with spatial ordering. 

This result suggests then the possibility of a morpho- 

logical transition from the homogenous spatial distri- 
and clearly no zero of Eq. (27) is possible and Lhe ho- 

bution of carriers to a patterned structure, consisting 
mogenous state is always stable. 

of a superposition of steady-state charge density waves On the other hand, if BL predominates over BR, 
of electrons and holes, clamped together through the 

as expected for the case of intense illumination with a 
effect of Coulomb interaction. Such superposition is 

large spectrum of frequencies and for small values of 
the one consisting of a11 the Fourier amplitudes n(Q) 

EG and fk [cf. Eq. (22)], we find that 
for the values of Q that for any 10 > I: (10 being the 

with p = l /kBT. If ne = nh = n,  i.e. an intrinsic- 

type material with the presence of only photoinjected 

electron-hole pairs, we recover the result of Eq. (27). 

But, since mh > me, a zero of Eq.(29) can be obtained 

if nh > n,, i.e. in the case of an extrinsic-type p 

doped material. Hence, in this case, for given Q and 

m,nh > mhn,, a zero of equation (29) follows for 

If we write nh = no + n and n, = n,  where no is 

the extrinsic concentration of holes, the critica1 concen- 

tration, n*, of photoinjected carriers at which it follows 

the instability of the homogenous state against the for- 

mation of an inhomogenous state is given by 

where Ao = ( r  - l)Ai, Ai = c o k ~ ~ / 8 ~ e ' n o ,  and 

r = mh/me. 

critica1 intensity for the primary bifurcation to appear) 

are allowed by Eq. (30) and (31). Interna1 symmetries 

and boundary conditions impose limitations fixing per- 

mitted values for Q. First, if L is the length of the 

polymer chain then we should have Q = 1(27r/L), where 

1 = 1,2,  ..., and second there is a limiting value of I ,  say 

IM, such that &(IM) = lM(2T/L) 5 QB, where QB is 

the half-extension of the Brillouin zone, therefore 

with lM =integer part of [QBL/2r]. However, there is 

an alternative cut-off condition arising out of the fact 

that, of course, the expression on the right of Eq. (31) 

must be positive, and so, 

lM = integer part of [ ~ / 2 n h ~ d m ] ,  (32b) 

and IM is the smaller of both limiting values. 

In continuation, 'once the instability of the homoge- 

nous state has been ascertained, let us analyze the 
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emerging dissipative structure. For that purpose we 

consider now a description of the system in IST-NSOM 

including as a basic variable the carrier density n(Q), 

and in Eq. (19) we desconsider the coupling between 

the different Fourier amplitudes, i.e. we neglect N, and 

the limit of weak density amplitude is taken, meaning 

that n(Q) « n for a11 Q. We consider the contributions, 

in lowest order, of the emerging density amplitudes to 

the distribution functions, which take the form 

where F(Q) is the NSOM Lagrange multiplier associ- 

ated to the basic variable n(Q), i.e. 

Eq.(37) resembles the behavior of the order param- 

eter in the case of phase transition theory in a Landau 

approach, with the critica1 exponent being one half. On 

the other hand, the IST-entropy can be calculated to 

obtain 

clearly showing that the informational entropy in the 

ordered state is smaller than the entropy so in the "dis- 

ordered" homogenous state. Finally, an order parame- 

ter can be defined, namely 

So far, we have considered the immediate neighbor- 

hood of the primary bifurcation. Let us go beyond that 
Here is the IST-NSOM entropy in this case, and 

- ~ o i n t .  First. it should be noticed that the ~ r i m a r v  bi- 
f is the distribution in the homogenous state. After 

furcation, once given no, follows for a critical intensity 
some algebra (we omit here details of the calculations 

- .- I,* and eives rise to a sinele Fourier contribution with 
to be reported e l s e ~ h e r e ~ ~ ~ * ~ ~ )  we find that 

where E' is the dielectric function calculated in the ho- 

mogenous state and n* + An is the concentration of 

photoinjected carriers with n* being the corresponding 

to the first bifurcation and An a smail increase beyond 

this value (i.e. it corresponds to an intensity lo slightly 

larger than I;), and 

-. ' 87re2 m,mh 
A(&; n* + An) = - 

EOV mh - me P x ( f $  - f i )2  . (36) 

Since the concentration of the photoinjected carriers 

and the intensity of the radiating source are related by 

the balance condition in the stationary state, we can 

find that[39>40] in the immediate neighborhood of the 

primary bifurcation 

where 

e = IO/I; ( 3 8 4  

y = 1/2 (384 

v " " 

Q* = 1 ~ ( 2 r / L ) ,  and corresponds to a critical concen- 

tration of photoinjected carriers given by 

Consider L - 10 cm, r - 10, QB - 3.8 x 106 cm-l, and 

Ao - 3.8 x l O V 7  cm (no - l ~ l % m - ~  and T - 300K), 

then Z M  2 1 . 3 7 ~  106 and n*(lM) - 8x 1011 ~ r n - ~ .  With 

increasing intensities additional bifurcation points arise 

implying in the ernergence of additional Fourier contri- 

butions to the carrier charge density, ending up in the 

final possible value 1 = 1 [cf. Eq (31)l. Using the same 

parameters as above, we find that n* (I = 1) - 4.4 x 1017 

~ m - ~ .  

Consequently, with increasing intensity of the 

pumping source more and more waves of increasing 

wavelengths (L/2rl) contribute to the formation of the 

charge density wave. Therefore, at a sufficiently intense 

value of the excitation it has arised an overextended 

leve1 of organization such that it resembles a chaotic be- 

havior, usually referred to as durbulend chaos. We have 

then, in this case of population inversion of electrons, 

the ernergence of a situation that appears to be akin to 
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Landau's proposal for turbulence in ffuidsI"1. Hence, it 

follows a particular route to chaos (resulting as a con- 

sequence of the discrete increase of wave lengths from 

to L/27r), to be labelled Landau-Prigogine's 

route to chaos, implying in going from thermal stochas- 

tic chaos (the thermodynamic branch corresponding to 

the homogenous state), to order (emergence of the or- 

dered dissipative structure: the morphological transi- 

tion), to further order, to an excess of order resembling 

deterministic chaos (large number of modes contribut- 

ing to the carrier charge density wave). We can draw 

a linear stability diagram. For this we introduce the 

quantity 

y(1) = n*(l)/no = a - b12 , (42) 

where [cf. Eq.(31)] 

which is depicted in Fig. 4. For the permitted region of 

values of Q it is indicated the regions of instability of 

the different Fourier components in the carrier charge 

density wave. 

Moreover, it can be noticed that defining the series 

of numbers 

we obtain a number independent of the characteristic 

parameters of the system, indicating a certain kind of 

universality. This quantity L(1) varies between the val- 

ues 3/5 for 1 = 1 to near 1 for 1 = lM, in a sequence 

shown in the stair-like diagram in Fig. 5. 

In conclusion of this section we may say that, order 

and functioning in biosystems is a problem with a long 

history of interest attached to it and being a puzzling 

question in physical-chemistry. We have considered in 

this section one particular aspect of it, in the case of a 

quite simplified model of an open biophysical system. 

We have shown that in the case of a pdoped sample, 

as it seems to be the case of certain proteins, a bifurca- 

tion point follows at  a certain threshold of intensity of 

the source of radiation, when the homogenous steady- 

state becomes unstable against the formation of a sta- 

tionary charge density wave. This biological pattern 

formation may follows as a result of nonlinear kinetic 

effects that describe production and decay rates involv- 

ing autocatalytic effects. We are in the presence of an 

example of the emerging theory of complexity, referred 

to in the first section, when nonlinear terms involving 

strong positive feedback processes lead to unexpected 

and, in a sense, counter-intuitive phenomena. 

STABLE 
0.12 

UNSTABLE 

100 10' 102 to3 104 10-o6 
INDEX INTEGER NUMBER 4 

Figure 4: The marginal stability curve (after Ref. 39). 

We have emphasized here the possible influence of 

electrons in certain type of biological systems. In this 

context, our results seem to be related to A. Szent- Gy- 

orgyi's view that hole mobility in the extended ground 

states of protein molecules may lead to the building 

of higher structures and to control a11 differentiation, 

namely that electronic properties may be responsible 

for the activity and the subtletly of many biological 

functionsIw. We have seen that p type  doping was 

essential to the emergence of the dissipative struc- 

ture. So, in this respect, it is worth to cite Szent- 

~ ~ o r ~ ~ i [ " l :  "What nature does is to induce mobility 
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into the electrons of the protein by incorporating an 

electron-acceptor into the molecule. A closely analo- 

gous process is widely used in semiconductor industry 

in the construction of radio, television or computers. It 

is so called doping. It is the most basic process of that 

industry. Nature discovered it billions of years before 

man did." 

1 .ooOooO 

0.999995 

O. 999990 

0.999985 

CF.999980 L 
0.00 0.02 0.04 0.06 0.08 0.10 

INTENSITY YC= n/no 

Figure 5: The caracteristic numbers defined in Eq. (44) as a 

function of the pair density. The lower inset illustrates the 
stair-like behavior of this series of characteristic numbers 
(after Ref. 39). 

As a final word, we stress that we,have explicitly 

used photoexcitation of electrons from the bonding to 

the anti-bonding energy levels, but the final result is 

depending only on the existence of the resulting pop- 

ulation inversion, and, therefore, the phenomenon may 

also be expected for any other type of excitation process 

capable of producing such population inversion. 

V. Coneluding remãrks 

We have mainly devoted the preceding sections 

of this paper to considerations on the aspects of the' 

physics of dissipative phenomena. Attention was called 

to its connection with the emerging theory of complex- 

ity, and attached nonlinearity of the kinetic laws gov- 

erning the behavior of natural systems. This nonlinear- 

ity plays a relevant role in the behavior of open systems 

in sufficiently far-from-equilibrium conditions, which 

may lead to the formation of self-organizing macroscop- 

ically ordered dissipative structures (after Prigogine's 

terminology). The thermodynamics of irreversible pro- 

cesses far from equilibrium have led to the discov- 

ery that the fluxes passing through certain physical- 

chemical systems and shifting them away from equilib- 

rium can give rise to phenomena of spontaneous self- 

organization, symmetry breaking and a growing ten- 

dency towards complexity and diversity, with a11 the un- 

derlying possibilities that such behavior may provide in, 

besides physical-chemical, a11 dynamical systems, like 

biological and social as we11[~~]. Dissipation, contrary 

to  what was early thought, is not a source of decay but, 

i t  must be emphasized, has a constructive role, maybe 

including the emergence of life, natural evolution, and 

the astounding functioning of living ~ ~ s t e m s [ " ~ ~ ] .  

For that reason, it was stated that "...our vision of 

Nature is undergoing a radical change toward the mul- 

tiple, the temporal and the complex. Curiously, the ex- 

pected complexity that has been discovered in Nature 

has not led to a slowdown in the progress of science, but 

on the contrary, to  the emergence of new conceptual 

structures that now appear as essential t o  our under- 

standing of the physical world - the world that include 

us [...I Indeed, today we are beginning to go beyond 

[..I the world of quantity into the world of qualities 

and thus of becoming [...I we believe it is precisely this 

transition to a new description that makes this moment 

in the history of science so exciting. Perhaps it is not 

an exaggeration to  say that i t  is a period [...I in which 

a new view of Nature was being born"[ll]. 

The aspect of coherence in dissipative structures 

is amazing. The system behaves as a whole: i t  is 

structured as though each component were "informed" 

about the overall state of the system. The general 

mechanism capable of producing a symmetry break 

(a new structure) is connected with transport and/or 
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chemical reactions. A new concept of complex organi- 

zation is required to connect the various levels of de- 

scription and account for the relationships between the 

whole and the behavior of the parts[131. It is interest- 

ing to note that structures in complex systems arising 

at  bifurcation points (where fluctuation plays a funda- 

mental role), seems to have been predicted by James 

Clark Maxwell, more than a century ago, who pointed 

that "Every existence above a certain rank has its sin- 

gular points. At these points, influences whose physi- 

cal magnitude is too small to be taken into account of 

by a finite being may produce results of the greatest 

importance"[84J. 

Also, in connection with the synergetic behavior 

of dissipative structures it is interesting to mention 

Volkenstein's assertion that "Darwin developed the 

principles of synergetics in the case of living nature a 

long time before its general formulation [...] For the 

first time in the history of natural sciences the mecha- 

nism for the formation of an ordered, directed process 

- the biological evolution - in a system with randomly 

properties was establi~hed"[~~I. 

In the previous sections we have considered this 

question of self-organization. In them we noticed that 

the so called thermodynamic branch of solutions of the 

equations of evolution of an open macroscopic system - 

namely the one that develops continually from equilib- 

rium with increasing values of the externa1 constraints 

- is stable, according to Prigogine's theorem of mini- 

mum entropy production, until eventually the system is 

shifted to a certain distance from equilibrium. At a crit- 

ica] point, it occurs a branching point of solutions, and 

the thermodynamic branch becomes unstable against 

the formation of an ordered - in some sense- structure. 

At the branching point a particular fluctuation (the one 

associated with the degree of order to follow), which re- 

gresses while the thermodynamic branch is stable, now 

increases leading to the ordering of the system on the 

macroscopic scale. Consequently, chance and necessity 

have a delicate interplay in self-organization: near a bi- 

furcation, ff uctuations (a random element, viz. chance) 

would play such role, while between bifurcations the 

deterministic aspects of the equation (necessity) would 

become dominant. From a point of view of biological 

systems this appears to establish a sharp contrast be- 

tween the arguments of ~onod["]  and ~ r i ~ o ~ i n e [ ~ - ~ l ] .  

For Monod, there is no theory o€ organization, with 

the living beings merely carrying out a program that 

has already been written and on whose origins it is 

not possible to formulate hypothesis that are subject 

to scientific theorization. In Prigogine's perspective, 

the living system does not appear as a rigidly conserva- 

tive mechanism, but rather as a system that itself con- 

tains the potentiality and ihe stimuli for evolving, and 

indeed, in a certain sense, cannot help evolving to sub- 

sist. Maybe it can be said that Prigogine's approach 

conciliates the warring parties in the reductionist vs. 

vitalist controversy in biological sciences, providing a 

generalized broad scheme, as already commented in an 

earlier section. 

In Section 11, we mentioned the necessity to pro- 

vide a theory for an as rigorous as possible description 

of these dissipative structures, including in the case of 

natural systems a microscopic background plus the con- 

nection with the relevant macroscopic aspect within the 

context of a dynamic system theory. We have called the 

attention to the fact of a possible framework provided 

by statistical mechanics, which can be formulated in 

terms of a scientific logic for inference as the one syn- 

thetized by ~effre~s["] and ~ a ~ n e s [ ~ ~ ] .  The nonequilib- 

rium statistical operator m e t h ~ d @ ~ - ~ ~ I ,  as derived in 

the context of Jaynes' Predictive Statistical Mechan- 

ics, appears as an extremely powerful formulation to 

deal with Hamiltonian dynamical systems when arbi- 

trarily away from equilibrium. As already mentioned, 

the NSOM provides a nonlinear quantum generalized 

transport theory of large s ~ o ~ e [ ~ ~ ] .  This theory allows 

to derive the equations that rule the evolution of the 

macroscopic state of the system. The stability of the 

solutions (that characterize the macroscopic state of the 

system) of these equations can be analyzed by the usual 

mathematical methods (while a physical interpretation 

is found in the Glansdorff-Prigogine's thermodynamic 

criterion for (in)stability[l61) and eventual bifurcation 

points are determined. 

When a bifurcation arises at  a critica1 point of so- 
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lutions, the next step is its careful analysis in the 

neighborhood of the critica1 point, where the deter- 

ministic treatment (ruled by the equations of evolu- 

tion) is to be complemented with an statistical study of 

fluctuati~ns[~". As already noticed, these fluctuations 

are relevant for the kinetic of the transition between 

structures through the critica1 point: the self-organized 

state arises as a result that nonlinear effects (positive 

feedback, autocatalysis) promote an amplification of 

the fluctuation associated to the new kind of order on 

the macroscopic scale, leading to the emergence of the 

ordered dissipative structure, which now becomes sta- 

bilized. Below the critica1 point the thermodynamic 

branch is stable and this fluctuation (the one to gen- 

erate the new structure) simply regresses, that is, it 

"dies" without achieving the objective to give "life" to 

the new structure. 

We have just referred to the possible instability 

of the thermodynamic branch (the thermal stochastic 

chaotic regime) against the emergence, in a bifurcating 

point of solutions, of a self-organized dissipative struc- 

ture. However, the existence of chains of bifurcations 

cannot be excluded: the emerging structure at the first 

bifurcation out of the thermodynamic branch (primary 

bifurcation) can, when the system is driven further and 

further away from equilibrium, become unstable against 

the emergence of a new dissipative structure, and so 

on, in - in certain sense - a process of constant evolu- 

tion (the system becomes "more and more organized"). 

It  rnay follow a case of bifurcations leading to a state 

which is apparently disorganized, arising what can be 

considered a kind of deterministic chaos (or "turbulent" 

chaos) as a result of a surcharge (or "hyperinflation") 

of organization. 

In Sections I1 and IV, we have given examples of the 

emergence of complex behavior associated to dissipative 

processes, dealt with in the framework of Informational 

Statistical Thermodynamics based on the NSOM. 

In Section 111, we have considered a simplified model 

of a biopolymer, and we analyzed the nonequilibrium 

stationary state of its polar vibrations. These polar 

modes are excited by means of a coupling with an ex- 

terna1 source of metabolic energy, and they are in an- 

harmonic interaction with an elastic continuous media. 

Groups of polar modes are coupled in the equations 

of evolution through nonlinear terms. This nonlinear- 

ity becomes responsible for a new and unexpected phe- 

nomenon characterizing complex behavior in this sys- 

tem: after a certain leve1 of intensity of the excitation is 

achieved, the polar modes with the lowest frequencies 

enormously increase their population in what is remi- 

niscent of a Bose-Einstein condensation (the so called 

Frohlich's e f f e ~ t ) [ ~ ~ ] .  Such phenomenon is regarded to 

be of relevance for the development of biological pro- 

cesses. The formation of this "Frohlich condensate" 

rnay be followed by the establishment of a metastable 

electret state and accompanying long range electrical 

forces that rnay influence basic properties of biolog- 

ical Moreover, as shown, it rnay bear 

upon the question of propagation of signals in biosys- 

tems. The point is that the solitary waves proposed 

by ~ a v ~ d o v [ ~ ~ ]  as the mean of propagation of biologi- 

cal signals, which are strongly damped in normal phys- 

iological conditions, may, instead, display long range 

propagation without appreciable decay, when traveling 

in Frohlich condensate. This is a question of relevance 

in bioenergetics. 

In Section IV, we considered a question related to 

morphological ordering. In the case of a simple model 

representing long chains of protein macromolecules p 

type doped, our results seem to point to the possible ex- 

istence of an instability of the homogenous state against 

the formation of spatial order in the electron density, 

once a population inversion of carriers has been estab- 

lished. It rnay be noticed that in the treatment of the 

problem we described, we kept fixed the positive back- 

ground of ionic charges. It is quite plausible that the 

attractive interaction of the latter with the carriers will 

tend to allow the ions to follow the electronic charge 

density wave, thus producing an overall ordered pat- 

tern in the system (a so called conformational-like tran- 

sition). As shown, after the first critica1 point (primary 

bifurcation) is surpassed, there follows a cascade of bi- 

furcations (along with the increase of the intensity of 

the pumping source), corresponding to a multiplication 

in the wave lengths of the Fourier amplitudes that con- 
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tribute to the composition of the charge density wave. 

In this way, the system is led to a route going from 

thermal stochastic chaos, to order, to turbulent deter- 

ministic chaos. As noted this may be of pertinence in 

biomorphogenesis, and provides a theoretical calcula- 

tion showing the eventual relevance of the charge carri- 

ers in the evolution and functioning of life, as suggested 

by A. ~ z e n t - ~ ~ o r ~ ~ [ " ] .  

As final words, we would like to, once again, enipha- 

size the possible large relevance of dissipative processes 

in self-organization. A fundamental one is, of course, 

the question of life on Earth. Citing expressions of the 

Brussel's School, "Such phenomena [self-organization] 

have completely changed our view of the physical sci- 

ences and their relation to the biosphere. Bulk matter is 

no longer an inert object that can only change if acted 

upon. On the contrary, it can have its own will and 

versatility and ability for interna1 organization. Such 

findings have considerably narrowed the wide gap ex- 

isting between matter and life. We now have enough 

elements in hand to allow us to hope for a distant day 

when matter can be made to  become alive through the 

action of ordinary physico- chemical laws. Such a per- 

spective is a revolution in science." 

In conclusion, we have tried in this paper to give a 

brief overview on the fundamental aspects of physics, 

or more generally of the natural sciences, implied in 

the title, namely, complexity, dissipation, order out of 

chaos, and chaos out of order. 
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