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The formation of two-dimensional patterns during oxidation on Pt(100) is investigated by 
numerical integration of a system of four reaction-diffusion equations. The results show the 
presence of the experimentally observed travelling waves of target type for the inhomoge- 
neous surface. Depending on the value of the diffusion coefficients, the homogeneous surface 
may exhibit uniform oscillating or static Turing patterns. 

I. Introduction 

The identification of dissipative structure~[~I in open 

systems as their steady states when driving forces bring 

them far from thermodynamical equilibrium is certainly 

a milestone in the investigation of complex ~ ~ s t e m s [ ~ ] .  

The emergence of long-range patterns (temporal, spa- 

tia1 or spatiotemporal) appears as a cooperative phe- 

nomenon resulting from the short-range local interac- 

tion among the very large number of components of 

such systems. Chemical systems have played a decisive 

role in this development, since the early discussions by 

T ~ r i n ~ [ ~ ] ,  the experimental observation of the Belousov- 

Zhabotinski reac t i~n[~I  and the theoretical works of Pri- 

gogine and co-worker~[~]. 

In those investigations it was soon recognized that 

the presence of a catalytic step in the reaction chain 

was a necessary condition for emergence of dissipative 

structures in homogeneous systems. Lat ter on, dissipa- 

tive structures were also observed in a very large num- 

ber of reaction systems which include the presence of 

heterogeneous catalysts. Among them, the C 0  oxi- 

dation on P t  catalysts (monocrystals or dispersed P t  

on inert supports) is certainly the most studied system 

which displays such complex behavi~r[~-']. The ma- 

jor reason underlying this particular interest lies in the 

simplicity of the system, as regards both the catalyst 

structure and reaction products. For P t  monocrystals 

operating in ultra-high vacuum conditions, it has been 

possible to identify that a dynamical coupling between 

the crystalline structure of the surface and the chemi- 

cal kinetics is the driving mechanism for the formation 

of temporal and spatial s t r u c t ~ r e s [ ~ - ~ ~ ] .  This identifi- 

cation has been confirmed by the analysis of the outlet 

records and by the use of the most advanced techniques 

in the analysis of surfaces, as standard LEED and work 

function[lO], scanning LEED['], scanning photoemission 

microscopy (sPM)[~~],  and photoemission electron mi- 

croscopy ( P E E M ) [ ~ ~ > ~ ~ ] .  They show a clear correlation 

between the reaction product outlets and the changes 

in surface structure. Moreover they also show the for- 

mation of travelling waves on the catalyst's s~ r f ace [~ ] ,  

whose peaks and valleys indicate different surface prop- 

erties (crystalline structure, catalytic activity and so 

on) . 

The purpose of this work is to further proceed with 

our theoretical investigations on the occurence of com- 

plex behavior during the C 0  oxidation on Pt(100) 
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monocrystals[15-1~. We present a discussion on the 

formation of two-dimensional dissipative structures in 

the very low presence regime (Pco ,  Po - 10-' - 10-3 

Torr). Our study is based on a system of foiir cou- 

pled reaction-diffusion equations which has been intro- 

duced to analyze both the homogeneous and the one- 

dimensional space dependent situations. In our pre- 

vious works we have shown that this model is able 

to reproduce the major features of the C 0  oxidation 

on Pt(100) which have been experimentally observed: 

the presence of an oscillatory region in the (Pco x P o  

partia1 pressures diagram, which quantitatively agrees 

with experimental data[1°>16]; the presence of trigger 

waves when the surface itself is not h ~ m o ~ e n e o u s [ ~ ~ ~ ~ ~ ] .  

Finally the formation of static Turing structures has 

been predicted, provided one of its diffusion coefficients 

could be larger than its typical actual ~ a l u e [ ~ l ] .  The 

analysis of the two-dimensional surface is motivsted 

by the need for a description of the actual situation 

on the catalyst surface and by the richness of differ- 

ent patterns (static or dynamical) which can occur in 

two-dimensional ~ ~ s t e m s [ ~ ~ ] .  

The rest of the paper is so organized as: in Sec. 

I1 we present the model and discuss its major features 

in the context of experimental observations. Also, we 

comment on the stability diagram, which is the same 

obtained for the one-dimensional study. In Sec. I11 we 

discuss the integration of the system when the surface 

is homogeneous, in particular the ernergence of static 

Turing structures. In Sec. IV we consider the situation 

where the surface is inhomogeneous. It is well known 

from the analysis of other similar systems that inho- 

mogeneities may give rise to  the formation of trigger 

and spiral waves, and we discuss their presence in our 

model. Finally, Sec. V closes the paper with concluding 

remarks and suggestions. 

11. The model 

The Pt(100) surface may exist with two different 

crystalline structures: hexagonal (hex) and 1 x 1, where 

the surface atoms have the same symmetry as in the 

bulk[lO]. The I x 1 arrangement constitutes the cat- 

alytic active phase, where both C 0  and O2 adsorb and 

react, while only C 0  adsorbs in the (catalytic inert) 

hex phase. The clean 1 x 1 phase is unstable, thus the 

surface changes into the hex phase if it is free from ad- 

sorbed species. This situation can be reversed if C 0  

molecules adsorb on this phase. This switching back 

and forth between catalytic and inert surface phases, 

due to  the dynamical interaction among gas molecules 

and the surface itself, is actually the driving mechanism 

for the observed complex behavior of the system. This 

link has been experimentally verified by direct observa- 

tion of the surface and measurements of the oulet re- 

action products[lO]. The reaction proceeds in the 1 x 1 

phase according to the Langmuir-Hinshelwood mech- 

anism. The 0 2  molecules adsorb dissociatively, with 

very large adsorption heat, being bounded to a fixed 

surface site. Thus it suffers the influente of the pre- 

adsorbed species. On the other hand, the C 0  molecules 

are loosely physisorbed and may diffuse (in a macro- 

scopic sense) along the surface. Moreover, their bind- 

ing energy to a hex site is smaller than that t o  a 1 x 1 

site. So a trapping mechanism is of relevance, where a 

C 0  adsorbed on a hex site migrates (in a microscopic 

sense) to a neighboring empty 1 x 1 site[lg]. A11 these 

facts are taken into account by the following system of 

reaction-diffusion equations: 

and 
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at 
q2a - %a2 - 774a3] + JC9v2a 

a 

The space- and time- dependent variables ua, ub, v, 

and a describe, respectively, the fraction of 1 x 1 and 

hex sites occupied by adsorbed CO,  the fraction of 1 x 1 

sites occupied by O atoms, and the fraction of a11 sur- 

face sites which are in the 1 x 1 phase. kl,  k2, k6 and k7 

are the rate coefficients for adsorption and desorption, 

while k3 and k4 are the trapping and reaction coeffi- 

cients. r and s describe the inhibition in the adsorp- 

tion of O2 due to  presence of pre-adsorbed C 0  and 0. 

Enhancement on 0 2  adsorption comes from the pres- 

ente of surface defects, and this effect is included in the 

model through the parameter a. While the first three 

equations were entirely derived from the observed ki- 

netics, Eq.(4) has been derived from a site interaction 

model, as 

where p indicates the density of active sides on the sur- 

face and ~ G L  indicates the Ginzburg-Landau potential, 

which approximates the free energy of the surface: 

We omit here a discussion on the details of the site 

model and of the derivation of (6) (see [16] and [17]), 

but we recall that the f j i ,  in (4) are closely related, 

through derivatives, t o  the coefficients of ~ G L .  We 

also remark the presence of 773 in (6), which is character- 

istic for the description of first order phase transitions, 

as actually occurs with the hex t, 1 x 1 transition 

under consideration. 

A11 rate coefficients for the chemical steps of the 

model are quite well known from experiment. On the 

other hand, the coefficients of ~ G L  were obtained from 

the parameters which are present in the site interaction 

model. Their values were derived through comparison 

with the measured adsorption heat and by tuning two 

free parameters to  quantitatively reproduce a typical 

histeresis loop in the C 0  adsorption and desorption 

on ~ t ( 1 0 0 ) [ ~ ~ ] .  Table 1 shows the values of a11 coef- 

ficients in equations (1)-(4) (system SI). We observe 

in Table 1 that JC4 N 105 and JC3 = 50. These two 

coefficients are related to the eigenvalues of the linear 

stability analysis of the fixed points of the model as 

AI  N -k4, A2 N -(alc3 + k6) M -10'. This indicates 

I 

that the dynamics of the model along the direction of 

the corresponding eigenvectors is of the fast relaxing 

type. So we may make an adiabatic elimination of the 

fast relaxing modes to  reduce the original model to  a 

system of two equations[16]: 

Table 1 

Constants Value in this work 
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and 

where w = u, - v, + aqub/(l  + aq), q = k3/k6 and @(w) 

indicates the Heaviside function. The system (7)-(8) 

(system S2) is very useful since it reproduces almost 

the same dynamics as SI ,  with the advantage of reduc- 

ing the computing times by about half. We also note 

a large difference between the two diffusion coefficients 

k5 N 10-5 - 1 0 - ~ c r n ~ s - l  and kg N 10-~~crn ' .s-~.  As 

we have already mentioned, the value of k5 has been 

experimentally measured, while that of k9 is obtained 

from the site interaction model. Its very small value 

may explain the lack of any experimental result which 

would require its presence, and perhaps it may actually 

be neglected in the description of real samples. Nev- 

ertheless, its presence enlarges the possibility of nove1 

solutions (as the presence of Turing structures which 

we discuss in the next section) if we vary its value to 

explore other regions in the parameter space. While 

it is true that no such structures have been detected 

in connection with Pt(100), it is worthwhile rnention- 

ing that they have been observed in the C 0  oxidation 

on ~ t ( l l ~ ) [ ' ~ I ,  so that the understanding of the re- 

lation between this mechanism and the emergence of 

Turing structures in Pt(100) may help the theoretical 

investigation of P t ( l l0 ) .  Finally, we stress that the lin- 

ear stability analysis for the one- and two-dimensional 

surfaces are the same. Indeed, as shown in [17], the 

eigenvalues of the stability matrix depend only on the 

value of K' = lZI2, where R is the wave vector of the 

perturbation superimposed to the fixed point solution. 

While we may thus skip this investigation (see [17] for 

details), we show a typical stability diagram in Fig. 

1, where p c  = 2rklPco and p o  = 2rk,Po,. It con- 

tains the diagram for space-independent (k5 = k9 = 0) 

as well as for space-dependent situation. We observe 

that the space-dependent diagram was obtained with 

non-realistic value of kg(kg > k5). If we use its typi- 

cal value, the diagram is coincident with that for the 

space-independent case. 

Figure 1: Stability diagram in the partial-pressure plane, 
with indication of the homogeneous (dashed) (solid-line) 
and space-dependent (Ls = 0.001, k9 = 0.1) boundaries. 
The cross indicates the location of the parameters used f o ~  
the solutions shown in Figs. 2-4. 

111. The homogeneous surface 

The results discussed in this section refer to  the situ- 

ation where the properties of each site on the surface are 
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the same. Thus the space and time modulation result- 

ing from the integration of the systems S1 and S2 are 

solely due to intrinsic instability of the corresponding 

static and homogeneous branch solution. The systems 

S1 and S2 were numerically integrated using a finite 

difference method where the Laplacian is usually ap- 

proximated by a first order scheme. The sample was 

divided into a maximal number of 40 cells in each di- 

rection. The time dependence has been treated by a 

fourth-order Runge-Kutta routine and also by the mod- 

ified Euler method. Both methods are rather stable and 

give rise to the same Solution. We gave preference to  

the modified Euler method since it is somewhat faster 

(- 30% - 40%) than the Runge-Kutta. The integra- 

tion was performed on an IBM3090 with vector facility 

and also on a IBM Risc6000 station. The initial con- 

ditions were chosen to be constant values for a11 cells 

superimposed to either periodic perturbation or ran- 

dom fluctuations, with no flux through the boundaries 

of the (finite) sample. 

While the actual experimental values of the rate 

constants are given in Table 1, in the integrations of 

the systems S1 we have taken a much smaller value for 

k4(102), otherwise the time step for the integration be- 

comes very small. This change brings no qualitative 

changes into the solution, while we avoid a large in- 

crease in the CPU time required for the integration. 

For the same reason we have also used much larger val- 

ues of the diffusion coefficients. As we have discussed 

before[17], the qualitatively different behavior predicted 

by the model depends only upon the ratio of the two dif- 

fusion coefficients. By increasing their values simulta- 

neously, i t  is possible to  follow the emergence of space- 

dependent patterns in a much shorter time scale. 

In the first part of our investigation we have con- 

sidered kg = 1 0 - ~  and Ieg = 10-4, so that the solutions 

are qualitatively the same as those obtained with the 

realistic values of the diffusion coefficients. Our present 

results confirm those obtained both from the linear sta- 

bility analysis and from the numerical integration of the 

one-dimensional situation: the only stable pattern we 

found was the in-phase oscillation of the whole surface. 

This contrasts with the results from cellular automata 

i n v e ~ t i ~ a t i o n s [ ~ ~ ]  which indicate the presence of trav- 

elling waves even in the homogeneous surface. In our 

model such patterns emerge only when we assume that 

there exist inhomogeneities on the surface structure, as 

will be explored in the next section. 

The second diffusion coefficient introduced in our 

model enables the theoretical investigation of other pos- 

sible classes of solution. So, if we consider 1 0 - ~  = 

k5 < kg = 10-l, we reach a region of the parameter 

space where the typical solutions are Turing structures, 

which are qualitatively distinct from those obtained for 

the actual values of the diffusion coefficients. This is 

illustrated in Figs. 2-4, where we show snapshots for 

the variable u,. The time evolution of the other vari- 

ables follow this one, with a phase shift which can be 

positive or negative. The values chosen for pc and po  

correspond to three typical and distinct situations. In 

Fig. 2 we have (pc,po) = (2,3.1) whose position in 

the diagram is indicated in Fig. 1. The snapshots show 

clearly that the system assymptotically approaches sta- 

ble, static, space modulated Turing structure. The next 

figure shows what happens when we move inward in 

the stability diagram. For (pc,po) = (2,4.1) we have 

already reached the region where the Turing mode be- 

comes unstable, and the sole stable solution is a uniform 

oscillating surface which corresponds to  a limit cycle in 

the phase space. We observe that the spatial structure 

seen in Fig. 3.a remains from the spatially modulated 

initial conditions, but it is continuosly damped as time 

passes by Fig. 4 refers to the point (pc ,po)  = (2,4.0). 

In this situation we have an interplay of the Turing 

and uniform oscillating Hopf modes. While it is dif- 

ficult to give a quantitative analysis of the situation, 

we can qualitatively understand that the Turing mode 

is about to become unstable, while the Hopf cycle is 

about to  become stable if it has not already[171261. The 

resulting picture is that of a periodic cycle which carries 

along a surface modulated structure. 

A comparison of the above results with those ob- 

tained for the one-dimensional surface indicates that 

they are alike. Both follow the same path upon in- 

creasing the value of po , homogeneous state -+Turing 

-+ Turing + Hopf -+ Hopf -+ nir ing -+ homogeneous 
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Figure 3: Three snapshots during the evolution of a initially 
Figure 2: Three snapshots during the formation of a stable space moduhted pattern towards a uniform oscillating sur- 
Turing structure, taken at t = 0.5s, 8.5s and 20s. face, at t = 4s,10s and 19s. 
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Figure 4: Three snaphots showing the mixed Turing-Hopt 
mode a t  t = 10s, 18s and 19s. I t  is characterized by a in- 
phase oscillation of a space modulated structure and differs 
from the typical travelling waves. 

state. The last Turing structure we obtain before reach- 

ing the instability region has indeed been obtained, al- 

though we do not show it here. A competition between 

Hopf and Turing structures for large values of po could 

not be identified yet, but this may be due to the fact 

that this region is very small. Severa1 different Tur- 

ing patterns were also obtained by adequately tuning 

the initial conditions, e.g. space modulation in only 

one dimension, or phase shift between x and y direc- 

tions. As in other problems which also allow for Tur- 

ing structures, this system must also give rise t o  other 

cell structures (hexagonal, circular, etc) if the adequate 

sample geometry and initial conditions are conveniently 

~ h o s e n [ ~ ~ ] .  

IV. The inhomogeneous surface 

The homogeneous surface assumption we considered 

in the last section can hardly describe the actual experi- 

mental situation, even for the very low pressure regimes 

and the well characterized monocrystal surface experi- 

ments we aim to investigate. Indeed, the formation of 

steps is almost impossible to  be inhibited. Also, the 

process of fixing the sample in the reactor gives rise 

to an increased formation of defects. While our model 

already allows for the presence of surface defects, it is 

natural to  ask whether there exist regions on the surface 

with higher defect rates, and what kind of new effects 

they bring into the model. This assumption has already 

been considered in the analysis of the one-dimensional 

case, where we have shown that the travelling waves 

can be originated on the sites with higher deffect rates. 

Our purpose in this section is to  investigate the differ- 

ent kinds of wave patterns which can be generated on 

the two-dimensional surface. 

Figure 5: Stability diagrams (as in Fig.1) for different val- 
ues of k5 and o. Note the strong dependence on the value 
of o!. 
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Figure 6: Three snapshots of a target circular wave emerg- 
ing from a ceii with higher defect rate placed in tlle center 
of the sample, at t = 16s) 17s and 21s. 

In what follows we introduce the assumption of sur- 

face inhomogeneity, by assigning a higher value of the 

defect rate parameter a to  some isolated sites on the 

surface. Now we have cells with two different stability 

properties. As shown in Fig. 5, the stability diagram 

depends on the value of a .  We may have unstable and 

stable cells, depending on the different vaIues of a which 

are assigned to them. It  can also happen that both of 

them are unstable, and in this case they will oscillate 

with different f req~enc ies [~~>~"] .  The coupling of neigh- 

boring cells with different dynamic properties through 

the diffusion coefficients is the generating mechanism 

of the travelling waves. It  is most effective when both 

cr values lie in the instability region. In this situation 

the higher defect rate cell has a higher frequency and 

acts as pacemaker for the neighboring cells. Their own 

eigenfrequency will be enhanced by the presence of a 

higher frequency cell, but there appears a phase shift 

between the cells which gives rise to  the propagating 

waves. Damped waves may also occur if the low defect 

rate cells are stable. In this case the influence of the 

unstable cells can be restricted to a small region around 

it. However, this deperids very strongly on the values 

of the diffusion coefficients and of how stable the other 

cells are. 

The typical results we obtained are shown in Figs. 

6a-c, where we have placed the cell with the higher 

defect rate on the middle of the sample. Since we 

aim to model the actual physical situation we consider 

ks = 10-3 and k9 = 10-4. The three snapshots show 

very clearly how, starting from a seemingly homoge- 

neous situation, the center cell triggers a symmetrical 

circular wave which propagates in a11 directions of the 

sample. A larger sample may entail a larger number 

of wave fronts, a11 of them generated at  the same cell. 

The presence or two or more cells with higher value of a 

gives rise to a competition between the different pace- 

makers. This becomes very clear if they are oscillating 

out of phase. 

Spiral waves are a second class of propagating 

wave pattern which occurs in severa1 reaction diffu- 

sion ~ ~ s t e m s [ ~ ~ ] .  They have not been reported in ex- 

periments with Pt(100), but the PEEM analysis shows 

their presence very clearly in the C 0  oxidation on 
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~t (110) [ '~ ] .  Also, a recent analysis of the C0  oxidation 

on Pt(100) through cellular automata has reported that 

such patterns can be generated within the proposed au- 

tomata rules. Therefore we have also investigated the 

possible existence of such patterns as solutions of our 

model. It is well known that the emergence of such pat- 

terns depends strongly on the initial conditions, which 

should display a topological discontinuity along a curve 

within the surface. Despite the fact that carefully pre- 

pared initial conditions have been used, we could not 

find any stable spiral waves in our model. After an ini- 

tia1 interval, where the anisotropic wave front was due 

to  the influence of the initial conditions, the pattern al- 

ways returned to the symmetrical target wave pattern. 

Also, the choice of different diffusion coefficients along 

the a: and y directions along the surface does not cause 

any change in the.picture above described, the only ex- 

ception being that the target fronts become ellipses. 

Though the failure in finding spiral waves does not 

contradict experiment, it certainly uncovers a second 

difference between the results predicted by the cellular 

automata method and the integration of the reaction- 

diffusion equations. This indicates the need for a 

close comparison between the methods and the different 

physical assumptions which have been used to model 

the same situation. 

V. Conclusion 

In this work we have investigated the emergence of 

two-dimensional dissipative structures during the C 0  

oxidation on Pt(100), by integrating a system of four 

coupled partia1 differential reaction-diffusion equations. 

The model considered has been previously used with 

success in the analysis of both the space-independent 

and the one-dimensional space dependent situations. 

Our major purpose was to explore the richness of al- 

' lowed patterns in two-dimensional situations and to 

compare our results with experiments and theoreti- 

cal investigations using cellular automata. The re- 

sults of our investigation corroborate the overall as- 

pects which have been detected in the analysis of the 

one-dimensional situation, which are rather close to the 

experimental results. Indeed, we only found travel- 

ling wave patterns with the assumption that the sur- 

face properties were space dependent, which is actu- 

ally very close to the experimental situation. The in- 

phase oscillations observed for the homogeneous sur- 

face are very distinct from the observed experimental 

patterns and should therefore be rejected. The travel- 

ling wave patterns we found were of the target types, 

with circular or elliptic shape depending on the sym- 

metry assumption for the diffusion coefficients. They 

are the two-dimensional counterpart of the travelling 

waves reported before. Spiral waves could not be found, 

though we have made a careful attempt in this direc- 

tion. This result agrees with experiment, which until 

now has failed to find such pattern, and contrast with 

recent results obtained cellular automata. Cellular au- 

tomata have also indicated the presence of travelling 

waves in the homogeneous surface. A closer compari- 

son between the actual physical situation described by 

the two models is therefore necessary to conclude about 

the reason of such different results. We stress that the 

fact that the experimental waves start a t  the sample 

edges, where the defect rate is known to be greater, 

favours our results. 

Finally, we also explored the emergence of two- 

dimensional Turing structures, though it does not cor- 

respond to a physically possible situation for Pt(100). 

Our results corroborate those obtained for the one- 

dimensional surface, though with a richer set of possible 

patterns. The emergence of one pattern or the other is 

dictated by initial and boundary conditions, the latter 

being connected with the sample geometry. Also here 

we have found the mixed Turing-Hopf mode when we 

move further into the instability region after crossing 

its (Turing) border line. 

Thus, this work has shown that this model based 

on reaction-diffusion equations actually reproduces the 

experimental results, and is a useful to01 for the in- 

vestigation of further aspects of this and other similar 

situations. As a concluding remark, we point out that 

the introduction of a second diffusion coefficient in the 

analysis of the C 0  oxidation on Pt ( l l0 )  may be useful 

for the description of the reported Turing structures. 
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