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A representation for the causal propagator of a relativistic scalar particle by means of a path 
integral ovèr velocities is presented. In this representation we are integrating over velocities 
v with arbitrary initial and final conditions, and the matrices which have to be inverted in 
course of doing Gaussian integrals do not contain any derivatives in time. The integration 
measure contains a 6-function of Svdr ,  which nevertheless, can be easily incorporated in 
the usual Gaussian structure. One can define Gaussian and quasi-Gaussian integrals over 
velocities and rules of handling them. Using such a technique, an explicit expression for the 
propagator is found in a constant homogeneous electromagnetic field and its combination 
with a plane wave field. 

I. Introduction uniqueness of definition of path integrals, with bound- 

ary conditions, and so on[1119-231. 

Propagators of relativistic particles in external fields 

(electromagnetic, non-Abelian or gravitational) con- 

tain important information about quantum behavior 

of these particles. Moreover, if such propagators are 

known in arbitrary external field, one can find ex- 

act one-particle Green's functions in the correspond- 

ing quantum field theory, taking functional integrals 

over the external field. It is known that the prop- 

agators can be presented by means of path integrals 

over classical trajectories. Such representations were 

already discussed in the literature for a long t,ime in 

different context~[ ' -~~].  Over recent years this activ- 

ity got some additional motivation to learn on these 

simple examples how to quantize by means of path in- 

tegral~ more complicated theories, such as string the- 

ory, gravity and so on. Path integral representations 

can be effectively used for calculations of propa.gators, 

for example, for calculations of propagators in exter- 

na1 electromagnetic or gravitational fields. However, in 

contrast with the field theory, where path integration 

rules are enough well defined (at least in the frame of 

perturbation t h e ~ r ~ [ l ~ l ~ ~ ] ) ,  in relativistic and nonrel- 

ativistic quantum mechanics there are problenis with 
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In this paper we present spinless relativistic parti- 

cle propagator by a path integral over velocities. In 

the representation the integration is going over veloci- 
ties with arbitrary initial and final conditions, and the 

matrices which have to be inverted in course of doing 
Gaussian integrals do not contain any derivatives in 

time. The integration measure contains a 6-function of 

S v d ~ ,  which nevertheless, can be easiIy incorporated in 

the usual Gaussian structure. One can define universal 

Gaussian and quasi-Gaussian integrals over velocities 
and rules of handling them. This approach is similar 

the to one used in the field theory (in the frame of 
perturbation theory[l7~l81). We illustrate the approach 

on calculation of the propagator in a constant homoge- 
neous electromagnetic field and its combination with a 

plane wave field. For these cases we get closed expres- 
sion for the propagator. One ought to say that path 

integral methods were often applied for such kind of 

calculations. For example, in the works Refs. 2 and 4 

the causal propagators for scalar and spinning particles 

in external electromagnetic field of a plane wave were 

found by means of path integrations. The same prob- 

lem was solved in Ref. 5 for the crossed electric and 



D. M. Gitrnan, Sh. M. Shvartsman and W. Da Cruz 

magnetic fields. More complicated combination of elec- 
tromagnetic field, consisting of parallel magnetic and 
electric field together with a plane wave, propagating 

along, was considered in Refs. 3 and 12. 

11. Representation of scalar particle propagator 

by means of path integral over velocities 

As known, the propagator of a scalar particle in 

an externa1 electromagnetic field A,(x) is the causal 

Green's function DC(x, y) of the Klein-Gordon equation 
in this field, 

where x = (xp), Minkowski tensor = 
diag(1 - 1 - 1 - I),  and infinitesimal term i€ selects the 
causal solution. 

Consider the Hamiltonian form of the path integral 
representation for DC (x, Y). For certainty we will use 

notations and a definition of the integral by means of 
discretization procedure presented in Ref. 13 

where P, = -p, - gA, (x), and the integration goes Our aim is to transform the integral (2.2) to a form 

over trajectories xp ( r )  , p, ( r ) ,  X ( r )  , T (r) ,  parame- convenient, from our point of view, for calculations. 
terized by some parmeter  r E [O, 11. Boundary condi- First we shift the momenta, 

tions hold only for x(r)  and A(r), 

In (2.2) and in what follows we use the notation 
1 make the replacement e = 2A and fulfil the integration 

/ d T = l  d r .  over x and A , 

x exp {i J d r  [-2 2eo + (P2  - m2) - g k ~ ( x )  , I > 
Then, after the replacement 

taking into account the definition of the integral (2.2) by means of discretization, we get the expression 

""de 
D ' = L  2 0  J -$exP e0 [ - ~ ( e o m 2 + ~ ) ] ~ 0 D ~ / D p  2 eo 
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where the trajectories xp ( r )  obey already zero bound- 

ary conditions, 
J = Det B(r - r ' )  

x  ( O )  = 2 (1 )  = o . (2.6) 

Now we replace the integration over the trajectories 

xp ( r )  by one over velocities vp(r ) ,  

The corresponding Jacobian can be written as 

and regularized, for example, in the frame of discretiza- 

tion procedure. Note that because of (2.6), the trajec- 

tories v  ( r )  must obey the conditions 

We can take it into account, inserting the corresponding 

four-dimensional 6-function in the path integral. Thus, 

One can formally find the Jacobian J, switching off the potential A,(x) in (2.9) and using the expression for the 

free causal Green function 08 , 

So, we get 

J = 2 i (2r12 [ J D .  J D ~  ti4 ( J v ~ T )  exp{i J d r  ( - ; + ; ) } ] - I  

Gathering these results, we may write 

A(eo)  = J ~ v  ti4 ( J  vdr )  exp {i J dr  [-: - g ( f i v  + A X )  

where the new measure V v  has the form 

I 

It is clear that A(eo)  = 1  at  A  = 0. not subjected to any boundary conditions and no time 

Thus, we got a representation for the propagator of derivatives WPear in integrand, so, e.g. the matrices 

a scalar particle by means of a special kind path integral which have to be inverted in course of doing Gaussian 

over velocities, in which the integration over velocities is 
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integrals do not contain any time derivatives. One can 

formulate universal rules of handling such integrals in 

the frame of perturbation theory, what will be done in 

the next section. 

111. Gaussian and quasi-Gaussian p a t h  integrals 

over  velocit ies 

In the previous sections we demonstrated that the 

propagator of spinless particle can be presented by 

means of bosonic path integral over velocities of space- 

time coordinates. This integral have the following 

structure / DV 6' (1 vdr) F [v] , ( 3 4  

where 

= Dv [i Dv 6' (1 vdr) exp {i J d r  (- g) }] 
(3.2) 

with some functional F [v]. 

Ways of doing path integrals of general form are un- 

known at present time, only Gaussian path integrals, 

treated in certain sense, can be taken directly. That is 

also valid with regards to the integrals in question (3.1). 

However, if we restrict ourselves with a limited class of 

functionals F[v], which are called quasi-Gaussian and 

are defined below, then one can formulate some univer- 

sal rules of their calculation and handling them. Similar 

idea has been realized in the field t h e ~ r ~ [ ~ ' ~ ~ " ] .  The re- 

striction with quasi-Gaussian functionals corresponds, 

in fact, to a perturbation theory, with Gaussian path 

integral as a zero order approximation. 

, 
Introduce Gaussian functional FG [v, I], 

where v,(r) ar; the velocities and I,(r) are corresponding sources to them. We cal1 a functional FqG[v, 4 quasi- 
Gaussian if 

FqG[v, I] = F[v]Fc[v, I ]  , (3.4) 

where F[v] is a functional, which can be expanded in the functional series of v, 

In (3.3) the matrix L,, (g , r, r') supposes to have the following form 

Define the path integral over velocities v of the Gaussian functional as 

Det L(g) det l(g) 
Det L(0) det /(O) ] - ' I2 exp {i / d r d r 1 ~ ( r ) ~ ( r ,  r l ) I ( r ~ )  

where 
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The formula (3.7) can be considered as an infinite di- matrix L. 

mensional generalization of the straightforward calcu- To avoid problems with calculations of determinants 
lations result in the frame of the discretization proce- of rnatrices with continuous indices we can use some 
dure, connected with the original definition of path in- convenient representation. Let us differentiate the well 
tegrals for propagators discussed in the previous sec- known formula 
tions. In course of doing of finite dimensional integrals 

it is implied a supplementary definition of arisen im- Det L(g) = exp [Tr ln L(g)] 
proper Gaussian integrals by means of the analytical 

continuation in the matrix elements of the nonsingular with respect to g .  So we get the equation 

d dL(9) 
-Det L(g) = Det L(g)  Tr ~ - ' ( g ) -  = Det L(g) Tr L - ' ( ~ ) M  , 
dg dg 

which can be solved in the form 

Det L(g) 
Det L(0) 

= exp {Lg dglTr L-' ( g ' ) ~ }  . 

Taking into account that det l (0)  = -1, we can ~Sewrite the path integral of the Gaussian functional in the following 

form 

9 

= [- det ~ ( g ) ] - ' l ~  exp {i J drdrlI(r)I<(r,  r l ) I ( r l )  - 1 dglTr L - ~ ( ~ I ) M }  . 

The path integral of the quasi-Gaussian functional we define through one of the Gaussian functional 

9 

( ar) {i / d T d T 1 ~ ( T ) ~ < ( T ,  T ' ) I (T ' )  - L dglTr L- ' (g l )M} . = [- det l(g)]-1'2 F i- exp 

One can formulate rules of handling integrals from quasi-Gaussian functionals, using the formula (3.11). For 

example, such integrals are invariant under shifls of integration variables, 

The validity of this assertion for the Gaussian integral can be verified by a direct calculation. Then the general 

formula (3.12) follows from (3.11). Using the property (3.12), one can derive an useful generalization of the formula 

(3.111, 
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Dv 6' (/ vdr - a) FqO[v, I] 

= [- det 1(g)]-112 F (i;) exp {i 1 d r d r l l ( r ) ~ ( r ,  r1)l(r1) 

2 
-:ai-'(g)a - ial-l(g) 1 Q ( r ) ~ ( T ) d ~  - 

2 
ig dglTr L-' ( 9 1 ) ~ )  , 

where a is a constant vector. The integral of the total 

functional derivative over #(.r) is equal to zero, 

This property may be obtained as a consequence of the 

functional integral invariance under the shift of vari- 

ables, as well as by direct calculations of integral (3.14). 

Using the latter, one can derive formulas of integration 

by parts, which we do not present here. If a quasi- 

Gaussian functional depends on a parameter a , then 

the derivative with respect to this parameter is commu- 

tative with the integral sign, 

Finally, the formula for the change of the variables holds: 

where &(v) is a set of analytical functionals in v , pa- 

rameterized by r . One can prove formulas (3.15, 3.16) 

in the same manner as it was done in Ref. 18 for the 

case of the field theory. 

Thus, in relativistic quantum mechanics, in the 

frame of perturbation theory, one can define quasi- 

Gaussian path integrals over velocities and rules of han- 

dling them. This definition is close to one in field 

theory[l7J"], and the analogy is stressed by the circum- 

stance that, as  in the field theory, the integrals over 

velocities do not contain explicitly any boundary condi- 

tion for trajectories of the integration. After the rules of 

integration are formulated, one can forget about the ori- 

gin of the integrals over velocities and fuIfil integrations, 

using the rules only. In the next section we demonstrate 

this technique on some examples. 

IV. Calculation of propagator in external elec- 

tromagnetic fields 

Here we are going to calculate the propagator of a 

scalar particle in an external electromagnetic field, us- 

ing representation (2.11) and the rules of integrations 

presented in the previous sections. We consider a com- 

bination of a constant homogeneous field and a 

wave field. The potentials for this field may be 

in the form 

1 
A, (2) = --FPwzw + f, (nx) , 

2 

plane 

taken 

( 4 4  

where F,, is the field strength tensor of the constant 

homogeneous field with nonzero invariants 



850 Brazilian Journal of Physics, vol. 24, no. 4, December, 1 994 

(F;, = $cpvap F@, cp,,p is totally antisymmetric are expressed 

tensor), in terms of which its eigenvalues E and 3-1 

F,,nV = -Enp , FPVfiY = Enp , FpVY = iK!, , F,,? = -i'Mè, , 

E =  [ ( F 2 + ç 2 ) + - 3 1 '  ,'H= [ ( F 2 + ç 2 ) i + 3 ) ] i .  

The eigenvectors n ,  5, !, .? are isotropic and obey the conditions 

n 2 = f i 2 = ! 2 = P e ' 2 0 ,  n f i n 2 ,  t j = - 2 ,  nt=fi!=nt?=fiZ=O. (4.3) 

The functions f, (nx) are arbitrary, except for tlie fact that they are subject to  the conditions 

f, (nx) np = f, (nx) fip = O . (4.4) 

The total field strength tensor for the potential (4.1) is 

F,, (x) = Fpy + @,,(nx), @,,(nx) = n,fL(nx) - n,fL(nx) . (4.5) 

Since the invariants F , Ç of the tensor F,, are nonzero, 

there exists a special reference frame where the electric 

and magnetic fields, corresponding to this tensor, are 

collinear with respect to one another and to the spatial 

part n of the four-vector n. In this reference frarne, the 

total field F,,(x) corresponds to a constant homoge- 

neous and collinear electric and magnetic fields together 

with a plane wave propagating along them; E ,'H, be- 

ing equal to  the strengths of a constant homogeneous 

electric and magnetic fields, respectively. In terms of 

the defined eigenvectors the tensor F,, can be written 

as 

and the completeness relation holds 

The latter allows one to express any four-vector u in 

terms of the eigenvectors (4.2), 

In these concrete calculations it is convenient, for us to make a shift of variables in the formula (2.12), to  rewrite 
i t  in the following form 

*(e,) = exp (ig-) / Z>v b4 (1 vdr - s) 
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The calculations will be made in two steps: first in a constant homogeneous field only, and then in the total com- 
bination (4 .1) ,  using some results of the first problem. Thus, on the first step the potentials of the electromagnetic 
field are 

1 
A, ( x )  = - - F,, X" . 

2 

Substituting the externa1 field (4.10) into (4.9), one can find 

n eup {-i J d r d r ' u ( r ) ~  ( 9 ,  r, r') v ( r l )  - i J xi,F udr , 1 

where One can demonstrate that this equation is equivalent 

to a differential one, 
I 9eo L p v ( g ,  r, r') = vPv6(r  - r ) - -FPví(r  - r') . (4.12) 

2 d 
-L-l(g , r, r ' )  - geoF r, r') = #(r  - 7') , 

The path integral (4.11) is the Gaussian one (see 
d r  

(4.13) 
(3.13)).  TO get an answer, one needs to find the in- with initial con&tion 
verse matrix r, r'), which satisfies the equation 1 ~ - ' ( g ,  r", r')drl' = 6 ( r 1 )  . L-'(g, o, r') + -yj- 

/ ~ ( g ,  r, .")L-'(9, r", r')drl' = 6 ( r  - r') . 

Its solution has the form 

9eoF 
L-' ( g ,  r, r') = 6 ( r  - r') + - exp {geo(r - d ) F }  (%)I . (4.14) 2 

Using (4.14), one can find a11 ingredients of the general formula (3.13), taking into account that a = 

-Ax/& , I ( T )  = g.\/eõxinF/2 . 
Thus, 

geoF I ,  r') = 6 ( r  - r') + 2- exp {geo(r  - r l ) F }  

J J tanh geo F / 2  
d r d r l K ( r ,  r') = 0 , d r Q ( r )  = l (g )  , b(g) = 

9eoF/2 ' 

where the symbol "tr" is being taken over four dimensional indices only. Then 

sinh geo F / 2  -'I2 
A ( e O )  = [- det ( g F / 2  )] 

1 
x exp {S [c + g x O u t ~ x i ,  - -Ar  gFcoth - 

e0 2 ("2 ") AX] ) 
Substituting (4.16) into (2.11), we get a final expression for the causal propagator of a scalar particle in a constant 

homogeneous electromagnetic field 
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sinh geo F/2)] -'I2 
DC (xout, xin) = - lrn [- det ( gF/2 2 ( 2 ~ ) ~  

1 
2 geOF)Ax]} . x exp {$  [gxourPxin - eom2 - -AX g~ coth(- 2 

This result was first derived by Schwinger, using his proper time meth~d[ '~] .  

Now we return to the total electromagnetic field (4.1). Let us substitute the potential (4.1) into (4.9), 

x exp {-i J d r d r l v ( r ) ~  (g, r, r') v(rl) - i J 9 z i n ~  vdr 

with L(g, r, r') defined in (4.12). One can take the integral (4.18) as quasi-Gaussian, in accordance with the formula 

(3.13). So, one can write 

6 
B ( I )  I I = O  , 

where 
. Ax2 

B (I) = exp (<%) J DV S4 (J vdT - k)  
Jeõ 

The integral can be found similar to (4.11). As a result we get 

B (I) = exp {$  / drdr l I ( r )K (r ,  r') I ( r l )  - i I ( r )a ( r )dr  J 
where A(eo)l@=o is the expression given by (4.16), K(T, r') is defined in (4.15), and 

Ax 
a(7) = - (1 -4- ~ 0 t h  (geo F/2)) geo F exp (-geo F T)  . 

2 4 - 0  
To obtain the action of the operator involved in (4.19) on the functional B (I) ,  we decompose the sources P ( T )  

in the eigenvectors (4.2), using (4.8) 

1 
IP ( r )  = - (np RI(T) + fip n I ( r )  - P U(T) - jP t I ( r ) )  . 

2 
Then, it is possible to write 

Using this, we get 
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where 

9eof K (r,  r', 1) = &(r - r') + - exp {geo(r  - r ' )£ )  
2 

igeo7í 
I( (r ,  r', i X )  = 5(7 - r') + - g e o x  

2 
exp { igeo(r  - r1 )7 í )  [€(r - r') + i cot (-2)] . 

Now the exponent of the functional B [ I ]  is linear in n I ( r )  , f i I ( r )  , t I ( r )  &(r) .  Thus, one can easyly get the 

result 

1 - exp (ge0E.r) 
nxc1(7) = 12% + n A x  , nxcl(0)  = nxin , n x c l ( l )  = nxout , 

1 - exp ( g e o f )  

where x c l ( r )  is the soluti0n[~~1 of the Lorentz equation in the external electromagnetic field (4.1). Gathering (4.22) 

and (4.16), we get 

A (eo)  = [- det 
s i  ( e  2 - I 2  { i 

ge0F/2 
exP 5 [g~ou t  Fxin 

1 
-- 2 ( A x  + 1(eo, l ) )  gF coth (ge0F/2)  ( A x  + l ( e o , l ) )  + 2@(e0) 

where 

Subst 4.23) into (2.11), we arrive to the final expression for the causal propagator of a scalar particle in t 
external electromagnetic field (4.1): 

x exp {i [ g ~ o u t F ~ i n  - eom2 + A x  gFl (e0 , l )  

1 
- - ( A x  + l ( e 0 , l ) )  gF coth (geo F / 2 )  (Ax + l ( e0 ,1 ) )  + 2@( 

2 - 

I 

This expression coincides with the one obtained in Ref. Acknowledgments 
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