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We study a model for equilibrium polymerization on an anisotropic Husimi lattice of coor- 
dination number equal'to four, so that an additional energy E is associated with each bond 
of the polymer in a particular direction of the lattice. Two different polymerized phases are 
found in the phase diagram of the model, one of them having all lattice sites visited by the 
polymer. We compare our results with earlier Bethe lattice calculations on the same model. 

I. Introduction and definition of the model 

Self- and mutually-avoiding chains placed on lat- 

tices have been used for quite a long time as models to 

study the properties of polymers[l]. Recently, a model 

for equilibrium polymerization[21 on an anisotropic lat- 

tice was solved on the Bethe lattice13]. In this model, 

an additional energy E is associated with each poly- 

mer bond which is in a particular direction on the lat- 

tice. As an example, let us consider a square lattice. 

Each polymer bond may be oriented either in the hor- 

izontal or vertical direction, since it connects nearest- 

neighbors on the lattice. Horizontal bonds contribute 

with a factor x to  the partition function (bond activ- 

ity), whereas vertical bonds contribute with a factor 

x w ,  where w = exp(-e/kBT), T being the temperature 

and kB the Boltzmann constant. In the limit w - O 

the one dimensional equilibrium polymerization model 

is reco~ered[~I,  since only horizontal bonds are allowed. 

The solution of this model on the Bethe lattice of co- 

ordination number q equal to four leads to a quite sur- 

prising result, two different polymerized phases being 

present in the phase diagram. One of the polymerized 

phases corresponds to  a saturated phase, since a11 sites 

of the lattice are incorporated into the polymer. For 

q > 4 only one polymerized phase is found in the phase 

diagram of the Bethe lattice solution. 

One may wonder if the result obtained on the Bethe 

lattice might be due to  the type of lattice, or if simi- 

lar phase diagrams will be obtained on regular lattices. 

It is therefore of some interest to  study the solution of 

the model in better approximations in order to find out 

if similar phase diagrams are obtained. So, we solved 

the model on the Husimi lattice (the core of a Husimi 

t ~ e e ) [ ~ ] ,  where the results are expected to be closer to 

the ones on the corresponding regular lattice than the 

Bethe lattice results. 

We consider a model of equilibrium 

polymerization[2] on a lattice with directional 

anisotropy. Let us cal1 y the activity of a monomer 

located at the end of a chain and x the activity of an 

interna1 monomer of a chain. Each bond of a chain ori- 

ented in a particular direction on the lattice contributes 

with a factor w = exp(-€/kBT) to  the partition func- 

tion. Thus, the semi-grand partition function may be 

written 
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where Np stands for the number of polymers in the 

configuration, Nb for the number of bonds, N1 for the 

number of one-site polymers, and N, for the number 

of bonds in the excited direction. The factor ( ~ 1 2 ) ~ '  

ensures that one-site polymers are properly ~ouri ted[~] .  

For w = 1 we expect this model to exhibit a con- 

t inuou~ phase transition between a non-polymerized 

phase and a polymerized phase in the limit y -+ O 

for some critica1 activity x,. In the solution of the 

model on the Bethe lattice, the critica1 activity is given 

by x, = l/(q - I), where q is the coordination num- 

ber of the latticeL6]. The extension of this solution to 

O 5 w 5 1 leads to  the existence of an additional poly- 

merized phase in the phase diagram, which is stable for 

x > 1 and low values of w. 

The remainder of this paper is organized as follows: 

In section I1 we define the Husimi lattice and indicate 

how the model may be solved on this lattice in the form 

of recursion relations whose stable fixed points corre- 

spond to stable thermodynamic phases. In section I11 

we obtain the fixed points of the recursion relations and 

through the study of their stability build the phase di- 

agram of the model. Conclusions and final comments 

are found in section IV. 

11. Definition of the la t t i ce  and de te rmina t ion  of 

t l ie  recurs ion  relat ions 

The Husimi tree is a tree built by attaching poly- 

gons to  each other by their vertices17]. So, unlike the 

situation on the Cayley tree, there are closed cycles on 

the Husimi tree, but they are a11 of the same size. It 

should be remarlted that,  similarly to  what occurs on 

the Cayley tree, the ratio between the number of sur- 

face sites and the total number of sites on the Husimi 

tree does not vanish in the thermodynamic limit. This 

anomaly leads us to  expect that the thermodynamic 

behavior of models on this tree should be quite differ- 

ent from the one found on regular lattices, as was veri- 

fied explicitly for the Ising model on the Cayley tree[". 

Therefore, if we want the solution to be an approxi- 

mation to the thermodynamic behavior of the model 

on regular lattices, we should look at the core of the 

Husimi tree. Following the nomenclature of our earlier 

~ o r l t [ ~ ] ,  we cal1 this solution the solution of the model 

on the Husimi lattice. 

Since we want our solution t o  be an approximation 

to the behavior of the model on the square lattice, we 

consider a Husimi tree built with squares. In Fig. l a  a 

Husimi tree with two generations of squares is depicted. 

In order to obtain recursion relations for the partition 

function of the model, we define rooted Husimi sub- 

trees, as may be seen in Fig. l b ,  so that the whole tree 

may be built connecting two of those subtrees to  a cen- 

tral site. We define the x and y directions as indicated 

in Fig. 1. 

FooasiQ 
@I 

Figure 1: (a) Husimi tree with two generations of squares. 
Bonds with fugacity x are represented by thick lines. (b) 
Husimi subtree with root site. 

We define gi(x, w) to be the partia1 partition func- 

tion of the model on a subtree, where the index i stands 

for the configuration of the root site of the subtree. 

There are four possible configurations for this site: 1) 
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No bond is incident on the root site from above; 2) A tree with M + 1 generations may be built attaching 

bond in the x direction (energy O) is incident on the three M-generations subtrees to a new root square (see 

root site froni above; 3) A bond in the y direction (en- Fig. 2b). It is straightforward to write down recursion 

ergy E )  is incident on the root site from above; and 4) relations between the M-generations partial partition 

Two bonds are incident on the root site from above. functions g; and the M+1-generations partial partition 

These possibilities are drawn in Fig. 2a. Now a sub- function g:. The results are 

Let us define the variables 

I 
els on treelike l a t t i c ed ,  it is convenient to introduce 

94 
(3) 

ratios between the partial partition functions since they R= - g2 + g3,  and S = -; 
91 g l  may remain finite in the thermodynamic limit. We ob- 

from the recursion relations. As usual in studying mod- tain the following mapping for R and S 

where the denominator D is given by 

D = ( l + ~ ) ~ + x ~ ~ [ ( 1 + w ) ( l + S ) + w x ] .  (5) 

The partition function of the model on the Husimi 

tree may be obtained considering the operation of at- 

taching two subtrees to the central site. The result is 

Y = g l +  2g1g4 + (92 + g3)2, which may be rewritten as 

Y = gS[l + 2 s  + R ~ ] .  (6) 

It  should be stressed that the thermodynamic prop- 

erties of the model which follow from this partition 

function will be very different from the behavior of the 

model on regular lattices, since the surface sites dom- 

inate the thermodynamic behavior of models defined 

on the Husimi tree, in a way similar to what happens 

I 

on the Cayley treerg]. Therefore, since we want our so- 

lution to be an approximation to the behavior of the 

model on regular lattices, we concentrate our attention 

on the densities in the neighborhood of the central site. 

Let us define two more variables to do this 

so that R = T+V,  and the following recursion relations 

may be derived for them 
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@) 
Figure 2: (a) Possible configurations of root site of subtrees 
and the corresponding partia1 partition functions. (b) Con- 
struction of one subtree with three generations of squares 
using three two-generations subtrees. 

The density of bonds in the non-excited direction 

(p)  and the density of bonds in the excited direction 

( p , )  in the close neighborhood of the central site rnay 

then be expressed in terms of the fixed point values of 

the variables R, S, T, and V, giving 

Therefore, the thermodynamic properties of the model 

on the Husimi lattice rnay be obtained since, for given 

values of x  and w ,  we rnay find the stable fixed point 

values of R,  S, T, and V,  which then allow us to cal- 

culate the densities of bonds in the neighborhood of 

the central site. It is now apparent that any density 

of physical interest in this neighborhood rnay be ex- 

pressed as a function of the ratios S, T, and V. The 

physical meaning of the ratio variables is apparent from 

expressions like 9. 

111. Thermodynamic properties of the model 

The recursion relations 4 display three fixed points: 

1)  A non-polymerized fixed point R = O and S = 0, 2)  

A regular polymerized fixed point R + R* and S -* 9, 

with R*, S* # O , and 3 )  A Hamilton walk fixed point 

R --+ co and S -+ S,. The stability of the first two 

fixed points rnay be studied by linearizing the recur- 

sion relations in the neighborhood of the fixed points. 

The same procedure rnay be used for the third fixed 

point, after a change of variable R + 1 / R .  The results 

are the following: 

1 )  For the non-polymerized fixed point the largest 

eigenvalue of the 2  x 2  matrix which defines the lin- 

earized recursion relations is given by A o  = x[(l+ w )  + 
wx(2+x+wx)] .  This phase is stable in the region of the 

phase diagram where Ao < 1  and the limit of stability 

(Ao = 1 )  is located at 

In this phase, we have p = p, = O. The stability 

region of the non-polymerized phase is shown in the 

phase diagram of the model (Fig. 3) .  

2 )  We were not able to solve the fixed point equa- 

tions of the recursion relations 4 analytically for the 

regular polymerized fixed point. Thus, we solved them 

numerically and then found the largest eigenvalue of the 

matrix. The stability region of this phase is depicted in 

the phase diagram (Fig. 3 )  and to  the left the limit of 

stability of this fixed point is coincident with the limit 

of stability of the non-polymerized fixed point . Thus, 

a second order phase transition happens between these 

two phases. 

3 )  When R attains a fixed point a t  infinity, S tends 

to the value 
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The largest eigenvalue of the matrix defining the linearized recursion relations around this fixed point will be given 

2x(1+ w2) 
A, = 

2wx + (1 + w) + J(1+ w ) ~ ( ~ w x ~  + 1) + 4wx( l+  w ) '  

so that the limit of stability of this phase is located at 

The densities in this phase are given by 

1 p = -  w2 

1 + w2, 
and p,  = - 

1 + w 2  (13) 

Since p+ p, = 1 in this phase, a11 sites of the lattice are 

incorporated into the polymer, therefore we may cal1 

this phase a saturated polymerized phase. Also, we 

notice that the stability limit of the regular polymer- 

ized phase to  the right is coincident with the stability 

limit of the saturated polymerized phase, thus indicat- 

ing a second order phase transition between those two 

phases. 

A11 features presented above may be found in the 

phase diagram depicted in Fig. 3.  At x -+ co, the 

transition between both polymerized phases occurs at 

w = 0.3372030, which should be compared with the 

corresponding result on the Bethe lattice w = 0.25[3]. 

So, we notice that the region occupied by the satu- 

rated polymerized phase in the phase diagram is larger 

in the Husimi lattice solution than in the Bethe lat- 

tice solution, as may also be seen in Fig. 3.  Since we 

expect that the Husimi lattice solution should be a bet- 

ter approximation to the behavior of the model on the 

square lattice than the Bethe lattice solution, this may 

be viewed as an indication that the saturated polymer- 

ized phase should be present in the phase diagram of 

the model Òn the square lattice, being not a result of 

the approximations we used to study the model. 

Y 

Figure 3: Phase diagram of the model on the Husimi lattice 
(full lines). The phase boundaries represented by broken 
lines are Bethe lattice res~l ts[~l .  The lines w = 0.1 and 
w = 0.6 are indicated in the diagram, and the densities 
along these lines are shown in Fig. 4. 

In Fig. 4, we show the densities p and p, as func- 

tions of the activity x for two values of the variable 

w. I t  may be noticed that,  for w # 0, the density p, 

does not vanish in the saturated polymerized phase, as 

happens in the Bethe lattice solution of the m ~ d e l [ ~ ] .  

IV. Conclusion 

In this paper we solve a model for equilibrium poly- 

merization on the Husimi lattice built with squares 

and whose coordination number is equal to  four and 

with direction-dependent fugacities. The activity of 

polymer bonds in one direction is equal to  x, while 
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Figure 4: Total density of bonds ( p )  and density of bonds in the excited direction (p, )  as functions of the fugacity z for fixed 
values of w.  For w = 0.1 both phase transitions are apparent, whereas for w = 0.6 only one transition occurs. 

a polymer bond in the other direction of the lattice 

has an activity equal to w x .  The problem is reduced 

to recursion relations whose stable fixed points are as- 

sociated with thermodynamic phases. Besides a non- 

polymerized phase, we find two polymerized phases in 

the phase diagram of the model. One of the polymer- 

ized phases has a11 sites of the lattice visited by the 

polymer, therefore this phase was called a saturated 

polymerized phase. In the case where w = O the model 

reduces to the one-dimensional equilibrium polymeriza- 

tion model, and our solution is equivalent to Lhe ex- 

act solution of this m ~ d e l [ ~ ] .  The phase transitions be- 

tween the non-polymerized phase and the regular poly- 

merized phase and between both polymerized phases 

are of second order, with the exception of the case 

w = 0, where we have a first-order transition between 

the non-polymerized phase and the saturated polymer- 

ized phase. In the saturated polymerized phase, for 

w # 0, the densities of bonds in both directions are 

nonvanishing. It  should be remarked that the same 

phase in the Bethe Iattice solution of the model has a 

vanishing density of bonds in the excited dire~tion[~]. 

The presence of the saturated polymerized phase in the 

solution of the equilibrium polymerization model on the 

Bethe an Husimi lattices leads us to the question if a 

similar phase will occur in the phase diagram of the 

model on regular lattices, such as the square lattice. 

This is still an open question. It  would be interest- 

ing if this matter could be discussed through entropy- 

energy arguments similar to the Peierls argument[lO], 

but this may not be easy since the equilibrium poly- 

merization model does not exhibit reflection positivity 

on the square lattice[ll]. It may be mentioned that 

preliminar finite size scaling results for the model on 
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the anisotropic square lattice indicate the existence of 

a saturated polymerized phase[12]. 
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