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The dynamics of the spin-one model with single-ion anisotropy (the Blume-Cape1 model) 
in the presence of a transverse field is studied by means of the continued fraction of the 
longitudinal relaxation function. Within the approximations used the dynamics of the spin- 
one model is similar to the spin-1/2 model and the single-ion anisotropy enhances the central 
mode behavior. 

I. Introduction 

The dynamics of quantum spin models has been 

an important subject in many-body physics for a long 

time. Among these models two have received consid- 

erable attention: the spin- 1/2 Weisenberg model[1-13] 
and the spin-1/2 transverse Ising model[14-18]. The lin- 

ear chain models[5 ,7,8,11-14,17,19-25]have also attracted 

considerable interest as simple non-trivial interacting 

many-body systems. Although some progress has been 

accomplished over the years, some dynamical properties 

of spin chains are still poorly understood. The objec- 

tive of the present study is to look into some aspects 

that may influence the dynamics which have not been 

fully analyzed before. They are: the influence of the 

spin quantum number and of the anisotropies in the 

dynamics. 

For this purpose we will study the spin-one model, 

with an exchange interaction (J) and a single-ion 

anisotropy (D), in the presence of a transverse field (O), 

in the limit of high temperatures. As far as we know 

this model has not been studied before. A recent publi- 

cation by Bohm and ~ e s c h k e [ ~ ~ ]  has analyzed the high 

temperature dynamics of the isotropic spin-1 Heisen- 

berg chain and the isotropic spin-1 XY chain. They 

conclude that "with increasing S (spin number) the dy- 

namics should converge rapidly to the limit S = oo be- 

havior". Our calculation is based on Mori's continued 

fraction representation of the longitudinal relaxation- 

shape f ~ n c t i o n [ ~ ~ ~ ~ ~ ] .  We use the standard procedure 

to truncate the continued fraction, which is equivalent 

to a short memory approximation, and it is an N-pole 

approximation to a function with an infinite number 

of poles. The truncation will use the relaxation time 

form proposed by de Raedt and de ~aedt["]  which has 

shown to be more consistent than other procedures for 

the isotropic spin-1/2 Heisenberg chain and spin-l/2 

transverse Ising model chain. 

The calculations were performed for the three- and 

four - pole approximations. The longitudinal relaxation 

function QReq!JZ"(q',w) a function of wlO, will be pre- 

sented in two different schemes, both within the three- 

pole approximation: a) for three different values of the 

single ion anisotropy, we show the dependence with the 

exchange interaction J ,  both normalized to the trans- 

verse frequency. b) for three different values of the sin- 

gle ion anisotropy (normalized to  J) we show the de- 

pendente with the transverse frequency a = O/J. As a 

of comparison we present, within the three-pole approx- 

imation, in the same plot the results for the spin-112 

transverse Ising model and the D = O spin-1 model in 

the transverse field. In the following section the model 

and the methodology are described. Results and dis- 

cussions are shown in the final section. 
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11. The model and the method 

J 
N D N N 

H = - - ~ s ~ s ; + , - - ~ ( s : ) ~ - Q ~ s ~  (1) 
i = 1  

2 
The spin-1 model in one-dimension with an ex- i = l  i = 1  

change interaction J ,  a single-ion anisotropy D in the where S: are components of a spin-1 operator at site 

presence of a transverse field Q, is described by the i of an one-dimensional lattice. The spin operators are 

Hamiltonian, explicitly given by 

O 1 0  O -i O 1 0  O 
si - - ( I  O ) , ( O i )  and s : = ( O  O O ) 

0 1 0  O i O  O O -1 

-, 
and Si2 = s(s + 1)1, where s = 1. of the longitudinal relaxation shape function, 

The dynamics of model(1) can be studied by means where 

and /3 = l /kbT. 

The longitudinal relaxation shape function will be 

calculated by means of Mori's m e t h ~ d [ ~ ~ ? ~ " ] .  Mori has 

used the projection operator technique to express the 

Laplace transform of the autocorrelation function in the 

form of a continued fraction. Mori's method shows how 

time scales (fast and slow) arise from hamiltonian sys- 

tems and how transport coefficients are related to the 

interaction energy of the spins. It is an exact method. 

But, it depends on the knowledge of a11 the moments 

of the spectral function. For example, when applied 

to the one-dimensional spin 112 isotropic XY-model or 

to the one-dimensional spin-112 transverse Ising model 

the method gives the exact result for the autocorrela- 

tion function. However, in most cases of physical inter- 

est the moments are not a11 known and one must rely 

on different approaches to terminate the continued frac- 

tion. The Mori continued fraction formalism expresses 

ilrd"(q', w) as a continued fraction 

V" ( I ,  w )  = (iw + 6e fe(iw))-' , ( 4 4  

where 

and the moments are defined as Among severa1 methods used to cut-off the continued 

co fraction we will use the n-pole approximation. It  con- 
(wn) = L /  wnF""(P; u)dw , 

71. -, ( 6 )  sists in approximating the function fl(iw) by 

where 
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where ~ ( q 3  is the relaxation time expressed in terms 

of the moments. We will make use of the theoretical 

calculation proposed by de Raedt and de ~ a e d t [ ~ ~ ]  for 

the relaxation time, which has proved to be more con- 

sistent than other type of calculations. They use up to 

! = 3 the following form for the relaxation time, 

- 1 
72 ( 3  = 61 + 62 (9) 

r3-'(43 = 62 + 63 (10) 

which corresponds to the three- and four- pole approx- 

imations, respectively. It is assumed that a11 poles of 

Qz"(q",w) lie within the corresponding circle of radius 

re1(q3, in order to guarantee a good description of the 

short time processes. Yet, this condition does not en- 

sure that the n-pole approximation will give good re- 

sults. 

The moments defined by (6) can be calculated using 

the relation 

(w;) = (-l)mfl ( [ ~ ~ - ~ - ~ ~ " ( q 3 ,  LmSz(-q3])/R2'(c 0) 

where L is the Liouville oper ator, LS: = [H, S: 1. 

In the high temperature limit the 6; for the Hamiltonian (I), are given by 

We can explicity write down equation (4) in the three- given by: 

and four- pole approximation. They are, respectively, 

where z = iw ,  í-2' and r;' are given by (9) and (10). the relaxation function shows a resonant structure. On 

the other hand for J /Q = 3.0 the spectrum has a cen- 
111. Results and discussions tral peak structure. Therefore as J /R increases the col- 

In Fig. (1.a) we show the longitudinal relaxation lective mode (resonant structure) type dynamics goes 

function RF""(cw) as a function a W/l;2 for three into a central mode (central peak) type dinamics. The 

different values of the exchange interaction J/Q and physical interpretation of this crossover has to do with 

D/O = 0. From the figure we see that for J/R = 1.5 the root-mean-square interna1 field associated with the 
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spin-spin interaction and the value of the trartsverse influence of the spin quantum number S = 1 is to ex- 

frequency. The field due to the coupling in the infinite hibit a behavior similar to the S = 112 model. 

temperature limit is 

The root-mean square goes as 1.4 J ( 0 ) .  Roughly speak- 

ing for large R (or J /R small) the system behaves like 

independent spins precessing about R. The fluctuating 

interna1 field causes damping of the precessing spins 

and gives the relation function its breadth. The reso- 

nant (collective mode) structure disappears when the 

transverse field is less than the root-mean-square in- 

terna1 field (or J /R  large). The effect of the single- 

ion anisotropy shown in Fig. ( l .b)  and Fig. (l.c), for 

D/R = -1 and D/R = -2, respectively, is to enhance 

the central mode dynamics. In Fig. (2), we show a com- 

parison of the 3-pole and 4-pole approximations in the 

dynamics, for D/R = -1, J /R = 1.5 and J /R = 3.0. 

This shows a good qualitative agreement between the 

two approximations, although quantitatively both the 

collective mode frequency and central mode width di- 

minishes in the 4-pole approximation. In Fig. (3.a) we 

plot RFz"({,w) for two different values of the trans- 

verse frequency (field) a = R / J  and D / J  = O. Again, 

one can see from Figs. (3.b) and (3.c) that the effect 

of the single-ion aniSotropy is to destroy the collective 

mode excitation, enhancing the central mode behavior. 

This effect is shown more explicitly in Fig. (4) where 

we present for a given value of a, namely a = 213, 

the relaxation function for D / J  = 0, -1, -2. Fig. 5 

is a comparison of the dynamics of the spin-l/2 trans- 

verse Ising model and the D = O spin-1 model in a 

transverse field. This figure shows how the moclulus of 

the spin affects the dynamics. As can be seen although 

quantitatively different both dynamics are qualitatively 

similar. In order to allow a comparison between these 

two models we used a renormalized exchange coupling 

defined by J, = (3trl/ tr$)ll2 J,  where ,'?o = s(s + 1) 1 

and s is the modulus of the spin. In conclusion, we have 

shown that the influence of a single-ion anisotropy on 

the high-temperature dynamics of spin chains is to en- 

hance the central mode type behavior. Concerning the 

o 1 2 3 4 5 
w / n  

Figure 1: Longitudinal relaxation function 0F2"(q',w) as 
function of the frequency w / R  for J / R  = 1.5(0), J/n = 
2.0(+) and J / R  = 3.0(A), in the three-pole approximation. 
(a) D / R  = O; (b)  D / R  = -1; ( c )  D / R  = -2. 
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Figure 2: Longitudinal relaxation function R F z Z ( c  w )  as Figure 4: Longitudinal relaxation function R F Z z ( g i w )  as 
function of the frequency w / R  for D / Q  = -1. In the three- function of the frequency w / ~  for f l / J  = 213 and D / J  = 
~ o l e  approximation: J / S ~  = 1.5(0),  J / a  = 3.0(+)- In the 0(0), D/ J = -I(+) anr\ D /  J = -2(A), in the three-pole four-pole approximation: J / O  = 1 . 5 ( A ) ,  J / R  = 3.0(2).  

approximation. 

O 0.5 1 &h 2 2.5 3 

Figure 3: Longitudinal relaxation function RFzz(q> w )  as 
function of the frequency w / R  for R / J  = 0.5 and S1/J = 
2/3(+) ,  in the three-pole approximation. (a) D / J  = O; (b) 
D / J  = -1; (c) D / J  = -2. 
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Figure 5: Longitudinal relaxation function R F z z ( &  w )  as 
function of the frequency w / a .  For the spin-1/2 transverse 
Ising model for R/ J = 0.5(0) and R /  J = 1/5(+). For the 
D = O spin-1 model in a transverse field for R /  J = 0 . 5 ( A )  
and O / J  = 1.5(x) .  
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