Lattice Dynamics of Boron Phosphide

H. W. Leite Alves

Departamento de Ciências Naturais - FUNREI, Fundação de Ensino Superior de São João del Rei Praça D. Helvécio, 74, 36300-000, São João del Rei, MG, Brasil

> and K. Kunc

Laboratoire de Physique des Solides, associé nu CNRS Université P. et M. Curie 4, pl. Jussieu, Tour 13 75252 Paris-Cedes 05, France

Rcceived July 12, 1993

Using the density-functional theory, norm-conserving pseudopotentials and plane-wave expansions, we have calculated ab initio the equation of state and the principal phonon modes in Boron Phosphide, including their pressure dependence and the amplitude of the eigendisplacements. A goorl agreement with the experiment is obtained, whenever a coinparison is possible: in fact, most of the results are predictions. A 10-parameter Valence Overlap Shell Model is then constructed from the available experimental data, which are completed by tlie data obtained in the first-principle calculations: frozen phonon frequencies and eigenvectors. The previous speculations about the anomalous behavior of the effective charges are discussed in this context of the present results.

I. Introduction

Actually, there has been considerable interest in the developping optoelectronic and microelectronic devices which work under hard conditions such as high temperatures or agressive environment. One of the promising materials for this purpose is Boron Pliosphide since these conditions were satisfied by its physical properties, such as hardness, high melting point and resistance to corrosion^[1,2]. Unfortunately, the amount of theoretical knowledge on this substance is limited to a handful of works^[3-6] and, particularly, the data on phonon spectra and vibrational properties are rather scarce^[7,8].

Under normal conditions, the BP appears in zincblende structure and shows an indirect $\Gamma - X$ gap of 2.4 eV. The calculations in Ref. 3 and Ref. 6 revealed that the calculated charge distribution differs from the usual 111-V picture characterized by a large accumulation of the electronic cliarge around the anion, in BP the strongly attractive B potential causes a nearly symmetrical distribution of the valence charge between the cation and the anion. reminiscent of homopolar bonding; the small heteropolarity is thus consequence of the strong electronegativity of the B atoms. This could explain its hardness. It was also noticed^[4] that at high pressures this homopolarity is enhanced. According to the experiment^[8], the transverse effective charges (e_T^*) associated with the atoms decrease with increasing pressure. Despite the experiment is not capable to precise the sign of e_T^* , Sanjurjo et al^[8] deduced, from BP pseudopotential form factors evaluation, that this sign is negative since the BP polarity is close to zero.

As the electronic and structural properties of BP were already addressed^[3-6] within the Density Functional Theory^[9] in the Local Density Approximation(LDA), we have applied the same approach to calculate the total energy in order to supply the missing experimental information on the vibrational properties of BP in the zinc-blende modification. Norm-conserving pseudopotentials^[10] are used, together with plane-wave expansions, and the Ceperley-

Alder exchange-correlation^[11] is adopted. Following the procedires summarized e.g. in Ref. 12 we start by checking the lattice parameter a_0 , bulk modulus B_0 and its pressure derivative B'_0 as well as the electronic charge distribution $n(\mathbf{r})$ in Section II, and calculate tlie frequencies and eigenvectors of selected phonons in Section [II. A construction of a simple mechanical model(Valeice Overlap Shell Model(VOSM))^[13] is then attempted n Section IV, which accounts, in terms of 10 parameters, for all the calculated frequencies and eigenvectors, as well as for all the available experimental data (such as the elastic constants, and the $TO(\Gamma)$ and $LO(\Gamma)$ frequencies). The question of the sign of the effective charges of i3 and P is raised antl briefly discussed in Sectioii V. Tlie main results are summarized in Section VI.

II. Equilibrium properties

Our first step consists in verifying that our calculational procedure correctly describes the undistorted structure in static equilibrium. We have evaluated the total energy for various values of the lattice constant, at different plane-wave energy cut-offs and numbers of k-points sam pled in the irreducible Brillouin zone. Our results were described in Ref. 6 and is summarised in Table 1, for ut-off energies varying from $E_{pw} = I2$ Ry to 27 Ry.

The results obtained for the lattice constant $(a_0 = 4.52\text{\AA})$, Bulk Modulus $(B_0 = 1.67 \text{ Mbar})$ and its pressure derivative $(B'_0 = 3.3)$ are in good agreement with the available experimental results^[14,15] (0.5% to 3.5% of error), as well as with the previous calculations^[3] in which $a_0 = 4.56\text{\AA}$ and $B_0 = 1.65$ Mbar was obtained. We also verified that our calculated LDA-band structure agrees with that found in Ref. 3: our calculated full valence bandwidth of 1.5.7 eV and direct gap of 3.34 eV, compare well with 15.3 eV and 3.3 eV of Ref. 3. We also obtained an indirect gap of 1.01 eV at

Table 1: Convergence of the calculated static properties of zinc-blende BP with energy cut-offs of the plane-wave expansion and with the number of k-points in the Brillouin zone sampling.

$\overline{E_{pw}(\mathrm{Ry})}$	n ^ọ	$a_0(\mathrm{\AA})$	$B_0(Mbar)$	B'_0
	k-points			
12	2	4.860	0.33	6.11
15	2	4.574	1.80	3.11
18	2	4.549	1.71	3.17
21	2	4.530	1.82	2.74
24	2	4.522	1.65	3.33
27	2	4.514	1.72	3.14
12	10	4.652	1.61	2.94
15	10	4.574	1.82	3.12
18	10	4.543	1.68	3.29
21	10	4.526	1.70	3.22
24	10	4.517	1.67	3.28
			· · · · · · · · · · · · · · · · · · ·	
experiment:		4.538	1.73	Ref.14
			2.67	Ref.15

 $\Delta_{\min} = 2\pi/a_0 (0,0,0.84)$ which is close to 1.2 eV, found in the previous calculations^[3].

The real-space distribution of the electronic charge density $n(\mathbf{r})$ shown in Fig. 1 agrees with the previous calculations^[3] as well: it is immediately apparent from tlie contour plot that the valence charge distribution in BP differs consiclerably from that of typical 111-V semiconductors^[16], viz. by showing a significant bond charge between the atoms, which suggests the idea of ratlier a covalent than ionic bonding.

III. Frozen phonons

The phonon frequencies and the respective eigenvectors of the vibrations at the high symmetry points in the Brillouin zone were calculated by the well known "frozen phonon" method^[12]: the frequency of the phonon is obtained from the difference of the total energies between the undisplaced structure and the structure with atoms displaced in the particular phonon mocle. In this way, we evaluated the eigenfrequencies arid eigenvectors of the TO(Γ), LO(X), LA(X), TO(X), TA(X), LO(L) and LA(L) phonons. For most of the

Figure 1: Pseudo-charge density for zinc-blende BP in static equilibrium calcillatetl in the $(1 \ 1 \ 0)$ plane. The unit of length is the lattice constant a and the contour interval is 2 eletrons/cell. The full circles are the B atoms while the open ones are the P atoms.

zone-boundary phonons one also lias to determine the actual displacement patterns - the procedure were described further $in^{[12,17,20]}$; the results are summarized in Table 2.

The a.b initio calculations have much to offer in this area since very little experimental work exists for this material. The only data which can be compared with our calculations are the phonon frequency ν and the Grüneisen parameter γ for the TO mode at Γ obtained by Raman measurements^[7] which are, respectively, 23.95 THz aiid 1.3, and with ivhicli our calculated values, 24.25 THz and 1.14, agree to within +4% and -12%.

For the longitudinal phonons, the displacement patterns consist in oscillations of either the B or P sublattices alone^[17]. The difference between the masses of B and P is so large that even without the energy calculations we can identify the LO mode with the displacements of the B sublattice (the lighter atoms) and the LA inode with the P atoms oscillations. These displacement patterns were, indeed, confirmed by our calculations in the same way as they were verified earlier

Table 2: Summary of the most important phonon frequencies with their respective Gruneisen parameters γ calculated ab initio. The results given here were obtained with the cut-off energy of 21 Ry in the planewave expansions.

Phonon mode	$\nu(THz)$	γ	n ^o k -points
ΤΟ(Γ)	24.25	1.14	5
LO(X)	24.00	0.90	3
LA(X)	13.81	0.94	3
TO(X)	21.04	1.54	4
TA(X)	9.20	-0.27	4
LO(L)	22.91	1.03	12
LA(L)	15.18	1.00	12
exp.: $TO(\Gamma)$	23.95	1.30	Ref.8

in GaP^[18].

For the transverse phonons at X and for the phonon modes at L we know that we can treat these modes as coupled oscillations of displacement patterns S_1 and S_2 ivhicli correspond to the respective phonon modes in the diamond structure. We proceed, then, as in the previous works^[19,20], and evaluate the right linear combination of these displacement patterns by diagonalizing the 2 × 2 matrices of the coupling coefficients. The convergence of the calculated frequencies of the zone-boundary phonons (LO(X), LA(X), TO(X), TA(X), LO(L) and LA(L)) with the plane-wave energy cut-off is described in Ref. 6, but their frequencies and Grüneisen parameters are summarized here in Table 2.

There are no experimental data for these modes in BP aid our calculations present an attempt to supply tlie missing information. We observe that, as in other 111-V compounds, the TA(X) is a soft mode and its frequency decreases with increasing pressure: the Griineisen parameter γ has a negative value.

When the problem of coupled oscillations (S_1, S_2) is solved^[18,19], the resulting linear combination of the displacement patterns provides us with information about the eigenvectors of each vibrational mode. For eigenvectors of the LO(L) and LA(L) phonon modes, the calculated atomic displacement $|u_1/u_2|$ ratios (1 refers to B aiid 2 to P) approach the values which mean, practically, \propto and 0 - although no symmetry argument requires one sublattice to vibrate and the other to be at rest. We note that similar result was obtained in SiC^[20] as well, and is, probably, due to the large difference in the masses of the two atoms. All calculated values of the eigenvectors are given in the last column of the Ta.ble 4.

IV. Shell model

The most widely used among the different mechanical models of interatomic interaction in semiconductor compounds has been the well known shell model of Dick and Overhauser^[21] and Cochran^[22]. Ill this model, the ions are assumed to be polarizable and mechanically deformable and the atomic vibrations are described as motion of a system of *cores* and massless, charged *shells*, bound to the respective *cores* by harmonic springs; the *cores* are connected with each other, in the most general case, by tensor forces. The vibrations then cause polarization and deformation of the electronic charge distribution in a crystal, which is modelled as relative displacements of the *shells*.

The particular version of the shell model we use is known^[13] as Valence Overlap Shell Model (VOSM): all the generalised forces are assumed to have the form of a. "Valence Force Field". In this work, the 10 model parameters were fitted, by a non-linear least-squares method with constrained parameters and weighting, to all of the available information about phonon frequencies, elastic constants and eigenvectors at X and L. In other words, to the sct of phonon frequencies evaluated by the frozen phonon method in the previous section, we are adding the experimental values of the TO(Γ) and LO(Γ) frequencies and of the elastic constants c_{11} , c_{12} and c_{44} . In addition, we also have included in the minimized sum of squares the data on the eigendisplacements, i.e., the ratio of Lhe amplitudes u_1/u_2 for the

Figure 2: Plionon dispersion curves of zinc-blende BP calculated by VOSM: the dashed h e s correspond to the initial guess and the solid lines were obtained from the final set of parameters(row(b) of Table 3). The asterisks are the experimental and the ab initio results.

transverse modes at X and the longitudinal modes at L, as well as the information on which sublattice moves in the longitudinal modes at X. The fitting process follows closely the procedure developed $in^{[20]}$ in which the same icleas were applied to SiC.

The details of this fitting procedure are described in Ref. 6. III Table **3** we summarize the model parameters obtained by the fitting procedure: the initial set of parameters(row(a)) and the final set(row(b)); the resulting frequencies and displacements are shown in Table 4 and in figure 2. The calculated phonon dispersion (fig. 2) shows the same general features as other 111-V semiconductor compounds^[23].

In Table 4, the phonoii frequencies and eigendisplacements at the high symmetry points calculated by VOSM, are compared with those obtained in the ab initio calculatioiis, as well as with the experimental values, whenever available. The final results show, in general, a good agreement in frequencies (5% of deviation); as for the displacements, we note that, despite their inclusion iii the fitting procedure, the eigenvectors of the TO(X) phonon and LO(L), LA(L) are only imperfectly reproduced. The calculated elastic con-

Table 3: Parameters of the VOSM for BP: (a) the initial guess obtained by mass approximation on the parameters of GaP (Ref. 12); (11) the final set of parameters. All parameters are in e^2/v_a units, with $v_a = a_0^3/4$ and $a_0 = 4.52 \text{\AA}$, except the charges Z_1 , Y_1 and Y_2 which are ill atomic units.

	λ	$k_{ heta}$	k'_{θ}	$k_{r\theta}$	$k'_{r\theta}$	Z_1	Y_1	Y_2	K_1	K_2
(a)	47.5	-1.15	-0.31	4.61	-7.06	2.00	6.03	-1.87	371.2	82.00
(b)	46.2	0.88	-2.07	4.95	-7.50	2.14	5.15	-2.97	296.9	80.81

Table 4: Phonon frequencies and eigendisplacements at high-symmetry points of the Brillouin zone calculated by the VOSM with the parameters listed in Table 3.

	(a)		(b)		LDF. cal		exp.[8]
	$\nu(THz)$	u(B)/u(P)	$\nu(THz)$	u(B)/u(P)	$\nu(THz)$	u(B)/u(P)	$\nu(\mathrm{THz})$
$LO(\Gamma)$	26.00	2.87	25.04	1.24			24.90
$\mathrm{TO}(\Gamma)$	23.76	2.87	24.28	1.24	24.25		23.95
LO(X)	23.94	∞	22.83	∞	24.00	∞	
LA(X)	14.90	0	14.57	0	15.81	0	
TO(X)	16.40	0.92	20.27	1.09	21.04	3.59	
TA(X)	8.53	0.94	9.25	0.81	9.20	0.80	
LO(L)	22.12	109.88	21.81	11.01	22.91	94.51	
LA(L)	14.66	0.03	14.58	0.26	15.18	0.03	
TO(L)	20.27	0.85	22.46	2.58			
TA(L)	6.54	0.83	7.40	0.70			

stants $(c_{11} = 31.33 \times 10^{11}, c_{12} = 10.26 \times 10^{11}$ and $c_{44} = 15.39 \times 10^{11} \text{ dyn/cm}^{-3}$) agree with the experimental ones^[14] to within $\approx 4\%$.

V. Effective charges

As we seen in the previous sections, the electronic charge distribution in BP differs from the usual III-V compounds hecause its density is nearly symmetrically distributed between the cation and the anion. In view of the strong electronegativity of the B atoms. speculations arisecl about the sign of the effective charges in BP, which are determined by Raman spectroscopy or iiifrared absorption, only in absolute value: it was suggested that, contrary to the usual "polarity", the effective charges of B might be negative and those of P positive.

We thus attempted to evaluate the effective charges ab initio, by proceeding exactly as in Ref. 12: we have used a tetragonal cell of BP which was six times the size of the primitive cell (volume: $6a_0^3/4$), and accomplished <u>3</u> self-consistent calculations: one with all the atomis in their equilibrium position and two with only one atomic plane (B or P) displaced by $\vec{u} = 0.005a_0(1,0,0)$. The screened Hartree potential was averaged in the planes perpendicular to the [1 0 0] direction, and from the slope of its vasiation with x we obtained the longitudinal effective charge e_L^* . On the other hand, from the Hellmann-Feynman forces acting on the atoms in the center of the supercell, we calculated the transverse effective charge e_T^* ; the method is discussed in detail on Refs. 12 and 24.

Most of our atteinpts were restricted to calculations with a cutoff energy of 12 Ry and 3 "special k-points" sampling of the Brillouin zone, and we do not consider them sufficiently converged to provide reliable absolute values of e_L^* and e_T^* . Nevertheless, all calculations revealed that the effective charges are weaker and show the same signs as in GaAs, i.e., $e^*(B) > 0$ and $e^*(P) < 0$.

The speculations about the anomalous sign of the effective charges are thus not confirmed. Further calculatioiis are required which would also provide the absolute values of the charges and, particularly, their behavior with pressure.

VI. Conclusions

We have studied the lattice dynamics of BP using the Density Functional Theory, norm-conserving pseudopotentials and plane-wave expansions. This procedure describes correctly the undistorted structure of BP in static equilibrium, and our results for lattice constant and bulk modulus are in good agreement with the available experimental results.

Having a good description of the static equilibrium of BP, we have calculated ab initio its phonon frequencies and eigenvectors at high-symmetry points at the Brillouin zone(BZ). At the Γ point of the BZ, our results agree well will those obtained by Raman scattering^[7]. At X and L points of the BZ, our calculated data are predictions and are meant to supply the missing experimental information.

Finally, we fitted all the available information by a 10-parameter VOSM and obtained the complete phonon dispersion curves in terms of this interpolation scheme. The calculated elastic constants agree with the experimental ones within $\approx 4\%$.

Our attempts at evaluation of the effective charges have shown that the longitudinal effective charges are fairly small, ε nd did not confirm the speculations about the signs: foi both e_L^* and e_T^* we obtained $e^*(B) > 0$ and $e^*(P) < 0$.

References

- O. R. Ciolikova, Pliys. Status Solidi (a)51, 11 (1970).
- 2. Y. Kumashiro, J. Mater. Res. 5, 2933 (1990).
- It. M. Wentzcovitch, K. J. Chang and M. L. Cohen, Phys. Rev. B34, 1071 (1986).
- R. M. Wentzcovitch, M. L. Cohen aiid E. K. Lam, Phys. Rev. B36, 6058 (1987).
- R. Orlando, R. Dovesi, C. Roetti and V. R. Saunders, J. Phys.: Condens. Matter 2, 7769 (1990).

- H. W. Leite Alves and K. Kunc, J. Phys.: Condens. Matter 4, 6603 (1092).
- Landolt-Bornstein: Numerical Data and Functional Relationship in Science and Technology, New Series, ed. O. Madelung (Springer-Verlag, Berlin, 1982) Vol. 17a; ed. O. Madelung (Springer-Verlag, Berlin, 1989) Vol. 22a.
- J. A. Sanjurjo, E. López-Cruz, P. Vogl and M. Cardona, Phys. Rev. **B28**, 4579 (1983).
- I. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964); W. Kohn and L. 3. Sham, Phys. Rev. 140, A1133 (1965); L. J. Sham and W. Kohn, Pliys. Rev. 145, B561 (1966).
- G. B. Bachelet, D. R. Hamann and M. Schluter, Phys. Rev. B26, 2314 (1982).
- D. M. Ceperley and B. I. Alder, Phys. Rev. Lett.
 45, 566 (1980); J. Perdew and A. Zunger, Phys.
 Rev. B23, 5048 (1981).
- See e.g. K. Kunc, *Electronic Structure*, Dynainics and Quantum Structural Properties of Condensed Matter, edited by J. T. Devreese and P. E. van Camp (Plenum Press, New York, 1985) p. 227.
- K. Kunc and H. Bilz, Solid State Commun. 19, 1027 (1976).
- T. Suzuki, T. Yagi and S. Akimoto, J. Appl. Phys. 54, 748 (1983).
- 15. W. Wettling and J. Windscheif, Solid State Commun. 50, 33 (1984).
- M. L. Cohen and J. R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors, edited hy M. Cardona, P. Fulde, K. von Klitzing and H.-J. Queisser (Springer-Verlag, Berlin, 1988).
- K. Kunc and R. M. Martin, Ab-initio Calculation of Phonon Spectra, edited by J. T. Devreese, V. E. van Doren and P. E. van Camp (Plenum Press, New York, 1983) p. 65.
- C. O. Rodriguez and K. Kunc, J. Phys. C: Solid State Phys. 21, 5933 (1988).
- 19. N. Churcher, K. Kunc and V. Heine, J. Phys. C:

Brazilian Journal of Physics, vol. 24, no. 1, March, 1994

Solid State Phys. 19, 4413 (1986).

- C. Cheng, K. Kunc and V. Heine, Phys. Rev. B39. 5892 (1989).
- 21. R. G. Dick and A. W. Overhauser, Phys. Rev. 112,90 (1958).
- W. Cochran, CRC Critical Review in Solid State Sci. 2, 1 (1971) and references there in.
- 23. H. Bilz and W. Kress, Phonon Dispersion Relations in Insulators, edited by M. Cardona, P. Fulde and H.-J. Queisser (Springer-Verlag, Berlin, 1979) p. 101.
- 24. R. M. Martin and K. Kunc, Phys. Rev. **B24**, 2081 (1981).