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Ve investigate the breaking of chiral symmetry in the Nambu-Jona-Lasinio model using the
linear 6-expansion. It isshown that within this approach quantitieslike the quark condensate
and the pion decay constant, calculated to lowest order, depend only on the scale of chiral
symmetry breaking. We compare different ways of evaluating a physical quantity with the

é-expansion.

I. Introduction

The possinility that the symmetry brealtdown of
the standard model be a dynamical mechanism in-
volving the top quarkl!), has led to a revival of the
Nambu-Jona-lasinio model (NJL)?). This model was
proposed in tlie early sixties and introduced the idea
of dynamical symmetry breaking. It reproduces chi-
ral phenomenclogy with a minimal number of pararne-
ters and is therefore Of great iriterest in the study of
hadron properties at low energies, where it can be
thought as an effective model for QCD. At low energies
(around 1 GeV), QCD has a non-perturbative charac-
ter, and the stidy of the NJL, model requires the use
of non-perturbative techniques. Conventionally it has
been treated in alarge-N, approximation*® or in the
Hartree-Fock (H-F) approximationt4. In this paper we
investigate the NJL model using an alternative artifi-
cid (non-perturbative) rnethod known asthe 5 expan-
sion. Since the model is non-renormalizable it will be
regarded here as a "toy" model, illustrative of chiral
symmetry breaking but which does not have to be nec-
essarily trusted in quantitative detail. The é expansion

was first introdiced by Bender et all®) who chose “to

rewrite the interaction term of the ¢* theory as

s A
IJ'l &:ﬂ‘d)2(1+6) 3 (1)

where 4 is an arbitrary parameter introduced in order
to balance the dimensions and A is the coupling con-
stant. This way of interpolating the Lagrangian, with
6 as an exponent that modifies the interaction, became
known as the logarithmic 6-expansion. There is also a
variant of the 5-expansion in which é enters linearly in
the action

Ss=6S+ (1-6)Su (2)

where Sis the original action and 5; is a free action
(quadratic in the fields) that contains the arbitrary
mass parameter g. This new way of interpolating the
action, known as the linear 6 expansion, was proposed
by Duncan and Moshel® in the context of the Gross-
Neveu model. For example, a ¢* interaction is then
replaced by
A

I
650% = (1-6)54°. 3)

It is clear from (1) and (3) that at § = 0 the interac-
tion term is a mass shift (the theory is free) and that
at 6 = 1 we recover the origina interaction term, In
both cases the theory is expanded as a power series in

6 up to some finite order, and a physical quantity (P)
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calculated in this way will depend in 6 and p because
the Feynman rules generated by Ss are 6 and y de-
pendent. We then set 6 = 1, the value at which we
retrieve our original theory, but P remains a function
of u (this would not be tlie case if we were performing
a calculation to all orders in 6, because the exact result
is u independent). In the original calculations of Ref.
[5] p was set to unity, and the improvement resulting
from the expansion in 0 was purely on tlie basis of new
terms introdueed by writing 62! +4). However, y is ar-
bitrary and there is no justification for setting ¢ = 1
a priori. The arbitrariness of x4 (which has to be con-
fronted in both the logarithmic and tlie linear version
of tlie 6 expansion) could be regarded as a drawback of
the theory. However, it can be turned to advantage by
choosing ¢ optimally in some way. The most general
method of fixing p relies on the Principle of Minimal
Sensitivity (PMS) introduced by Stevenson(™, the phi-
losophy being that if an approximant depends on un-
physical parameters tlien their values should be chosen
SO as to minimize the sensitivity of the approximant to
small variations of these parameters. So, the essence
of the PMS is to require a quantity P, calculated with
tlie 6 expansion, to be evaluated at a stationary point

i satisfying
9P (p)
Op

le =0, (4)

when § = 1. This procedure forces the solution to the
at least. locally (at the stationary point) independent of
u. The logarithmic S expansion improved by the PMS
was first employed by Jones and Monoyios!®. Applying
the niethod to field theories in zero and one dimension
space time they have obtained results which are more
accurate than tlie ones obtained with fixed .

When first introduced in Ref. [6], the linear ver-
sion was not used in conjunction with tlie PMS. In-

stead, ¢ was fixed to be the vacuum expectation value
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of an auxiliary field. However, this choice was based
on a previous knowledge of the § expansion for the ef-
fective potential at large-N. Motivated by the results
obtained by combining the 6 expansion with the PM S,
the authors of Ref. [8] also investigated the breaking of
discrete chiral symmetry in the Gross-Neveu modell%].
The calculation of the effectivepotential was carried out
with tlie linear § expansion exactly asin Ref. [6], but p
was fixed via PM'S producing encouraging results. Be-
ing capable of generating all sorts of non-perturbative
functions from what is only a slightly modified pertur-
bation calculation, the PMS then became a very useful

ingredient in the linear 6 expansion.

It is important to note that the unphysical param-
eter can, and should, be adjusted to suit the energy
scale of tlie process in question. There is no reason
why it should be assigned a universal value to be used
when calculating different processes. Choosing the op-
timisation point separately for each individual physical
quantity means that might become a different function
of the original parameters each time the condition (4)
is imposed. Two recent works(!®1] prove the conver-
gente of the optimized linear expansion (at least in low
dimensions) giving a calculational basis to a method
which has philosophical appeal apart froin being sim-
ple, precise and applicable to any order of perturbation

theory.

In the study of the chiral symmetry breaking
(CSB), the linear 6-expansion and the PM S condition
have been used to calculate the effective potential of
tlie Gross-Neveu model (discrete CSB):1213] of the
Abelian version of the Nambu-Jona-Lasinio model in
1+1 dimensions and of the non-Abelian Gell-Mann and

Lévy o-model (continuous CSB)I'4.

Here we use the 6-expansion and the PMS to fix

the parameters of the model, by using empirical inputs
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related to the pion; and to calculate pliysical quanti-
ties that are directly related to the breaking of chiral
symmetry, namely tlie quark condensate and the con-
stituent quark mass. An advantage of tlie method is
tliat it prov des a clear way of fixing tlie parameters and
does not put any restriction on tlie magnitude of .V,
i.e., diagrains belonging to different orders in a 1/N,
calculation appear at the same order in S. Tlie fact
tliat tlic PMS allows usto express p as afunction of the
original parameters can also be regarded asan advan-
tage becaus: it can lead to an economy of tlie number of
inputs needed for the computation of certain physical
quantities at the leading order. In section Il we review
the general features of tlie model. The modified (inter-
polated) NJL Lagrangian is presented in section I1I. In
section 1V we employ the é-expansion to calculate the
relevant physical quantities, and to discuss alternative
ways Of performing a calculation with the method. Tlie

conclusions are preseiited in section V.

Il. Tlie model

The NJIL. Lagrangian is given by
()

where thefields ¢(=) represent up and down quarks, m.

L= —m)q+Gl(qq)® — (qvs70)*]

is the curreiit quark mass' and (in 3+1 dimensions) G
is a positive coupling constant with (mass)~? dimen-
sions indica:ing that this is a non-renormalizable the-
ory which re quires tlie introduction of a cut-off A. This
cut-off can be regarded as an effective, il crude, im-
plementatioa of the known short distance behaviour of
QCD within the modell*®). In the chiral limit (m, = 0)
Eq.(5) is invariant under the chiral transformation

(6)

g—exp(ivs7 - &)q .

In the standard H-F and large-N, approaches the cal-

culated physical quantities involve the full quark prop-

!We consider an unbroken flavour group SU(2) p with m¥ = m¢,

d
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agator

iS_l(p) =y-m,— fwdyn(iwq) ; (7)

where Mgy, (M,) is the dynamical mass, induced by
quantum fluctuations, calculated using Eq. (7). The

constituent (physical) mass is

JMq =m. -+ Mdyn(Mq) . (8)

For m. = 0, the leading large- N, result (which is equiv-

alent to the Hartree approximation) reads

3 2 e A?
My =G My | = Min 1+ )| (9)

q

and a non-trivial solution (M, # 0) corresponds to
CSB. To see more clearly the dependence of M, on the

parameters we rewrite Eq. (9) as

(10)

o M?
Az =1- Ag In (l +

A2

)
from which we see tliat for GA? > a4, (~ 3.29) the
quark acquires a inass. When the breaking of the sym-
inetry occurs, the pion appears as a collective mode of
zeroinass (Goldstone boson) in the chiral limit. In fact,
it can be shown that in this approach the existence of
a Goldstone boson leads to the gap Eq. (10)2. Con-
ventionally tlie parameters of tlie model (G and A) are
fixed in such a way as to reproduce the empirical values
of the decay constant of the pion (fr = 93MeV) and
tlie pion mass away from the chiral limit (m, = 138
MeV), as in Ref. [3], or (asin Ref. [4]) to reproduce
tlie empirical values of f; and < gg >o= —(225 £ 25
MeV)PPl. As already mentioned, both the H-F and the
large-.N, methods utilise the full fermion propagator,
Eq.(8), in the evaluation of these physical quantities,
which therefore become a fiinction of M,. Then, either

G is traded for M, viathe gap equationl] or M, has its
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value restricted by a previous knowledge of the empiri-
cal value of tlie constituent quark mass(!5l. An excellent
pedagogical review of the NJL model can be found in

Ref. [16].

II1. The interpolated Lagrangian

To apply the §-expansion we first rewrite Eq. (5) as

(1-&)pgq .
(11)

It is clear from Eq. (11) that at § = 1 we regain the

Ls=q(i - m)g T 6G[(70)? — (Fvs79)*] -

original Lagrangian, Eq. (5). which (for m, = 0) is in-
variant under transformation (6) and that at 6 = 0 we
have a free massive tlieory which is not chirally invari-
ant (even when m, =0).

In the 6-expansion approximation we deal with a

bare quark propagator of the form
) =y- 4 (12)

where i/ = m, t p. Tlie Lagrangian of Eq. (11) gen-
erates a new quadratic vertex of weight 6y and tlie
original Feynman rules for tlie four-fermion vertices of

Fig. 1 are now multiplied by 6.

R

Figure 1: Double dot representation o the four-fermion
vertice.

IV. Evaluation of physical quantities

In this section we will use the 6-expansioii to calcu-
late tlie quark condensate, fr (to fix A), the constituent
quark mass and tlie quark-antiquark scattering ampli-
tude in the pseudoscalar channel (to fix G). All tlie

loop integrals are regularized by a covariant cut-off. In
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the case of loops involving two propagators [S(p) and
S(p = ¢)] we follow tlie procedure of Bernard et al.['3],
namely, we introduce Feynman parameters, perform a
change of variable on tlie momentum integration so as
to get an expression depending only on p? and then cut
off. When calculating quantities away from the chiral
limit, we have m, as an extra input; its value will be
fixed with tlie aid of the Gell-Mann-Oakes-Renner re-
lation. At lowest order (O(6°)) the quark condensate is

given by the first diagram of Fig. 2

<z>+<:>+<?>

Figure 2. The quark condensate to O(§)

< qq >o—tr/ #'p —r

which yields

¥ +ie ﬂ+ze

No [, A2
< qq >o= — yp 2/1[A — uiln (l+ >ji . (14)

For &, = 3 and upon applying the PMS condition as

coiitained in Egs. (4) to (14) we get

_ A
ST (15)
and
- < {q >0 =0.28042 x A . (16)

So, at this order < g¢ >¢ isafunction of A only, show-
ing explicitly that the cut-off is related to the scale
of CSB (h= Acsp). The result of Eq. (16) also il-
lustrates what was said in the introduction about the
economy in the number of inputs needed to evaluate a
physical quantity. If thelarge-N, or H-F had been used
in the same calculation, < gq > would be a function
of A and M, (or G).
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Tofix R -ve evaluate fr using the Pagels and Stokar
definition*]

(17)

<07 [7%(g) >= —iq" fabas .

_iqyfﬂ'éab =

. v ~ an o 1 N
—iq" frbab :tr/ d4pb(l7+‘])(g7rq')/57' )S(P) <§7‘b7 75) .
A

In addition we use the Goldberger-Treiman relation ob-

tained with the propagator of Eq. (12) to obtain

ng = ?W—IZO_) : (19)
Then, to lowest order Eq. (18)is written as
! 1
Fuld) = ~il24 gy /A d4p/o T (- W~ 7P
(20)

In tlie chiral limit it becomes

FA0) = Z;‘—z [ln (1 + %j) - (1 + %;)? . (21

The PMS ccndition

Ofx

B n =0

/,l,

shows that, at this order, it depends linearly A and lias
the form

A
iR — . 23
M 147 (23)

Then using the empirical value fr = 93 MeV we obtain

A=T8x fr =725.TMeV | (24)
to be compered to
Ax Acsp &= 12.56 x fr = 1GeV (25)

obtained by Manohar and Georgil*8l. It should be ap-

preciated that a result similar to Eq. (24) cannot be
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The first contribution comes from

(18)

{

obtained with tlie H-F or the large- N, methods with-
out aprevious knowledge of the value of the constituent
quark mass. The insertion of Eq. (23) into Eq. (21)
allows usto plot f~ asafunction of A only, asshown in
Fig. 3, where the é-expansion result is contrasted with

the H-F results of Ref. [4].

f= (MeV)
250

200

200¢
A (MeV)

¢ 500 1000 1500

Fignre 3. Tlie 6-expaiision result (continiious line) for fx
compared to the H-F resuts o Ref. [4] for M, = 300 MeV
(dashed line) and M, = 200 MeV (dot-dashed line).

We then estimate

< qq >o= —(210MeV)? . (26)

In Fig. 4 we show tlie dimensionless quantity
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_(§q>(l),3/ft

0 2 4 6 8 10
Alu

Figure 4. The dimensionless quantity — < gq >(l)/" x5
plotted as a function of A/p.

C<qg >y
[z ’
whose empirical value lies between 2.68 and 2.15 as a
function of A/y. It is evident that the PMS variational
method places us at the stationary point A/ &~ 1.55.
for which tlie ratio is 2.25.
Next we calculate tlie quark inass, which at O(8°)
is given by
My =y (27)

At O(é) it becoines
‘Wq = :u/ - 6/1' + é‘wciyn(ﬂ,) s (28)

with Mayn(#’) given by the diagram of Fig. 5. which

yields

Figure 5: The O(8) diagrams contributing to Mgy, (pt').

G'N:N¢ 9 ‘" A?
My =y —bp +6—2/_‘_T'u/ [A? — ¢ ?In <1 + F)J ,
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or. in tlie chiral limit, we have
My =p—6p—28G'"N; < gg>o (30)

where

1
o=
<1+4‘,\,C) ; (31)

N. =3 and Ny = 2. Eq. (30) shows the relation be-
tween tlie O(¢) M, and the 08"y < gq >y. For m, =0,
it is clear that the g which optmises the quantity M,
is given by Eqg. (15) independently of G. Note that G’
contains an excliange term of order 1/N, which does
not appear in the large-N, calculation. This illustrates
tlie fact that diagrams wliich contribute to a given or-
der in the 6-expansion appear at different ordersin a
1/N, type of calculation.

In order to estimate M, we need to fix the param-
eter G. This can be done by evaluating the propagator
of the dynamically generated pseudoscalar boundstate
(pion) and requiring it to have a pole at ¢2 = m2 =
(138 M eV)?. Because this calculation is done away from
the chiral limit, we also need to know the value of the
current quark mass (m,). Using the Gell-Mann-Oakes-
Renner relation

m3 [ (32)

me = — ;
‘ 2<q9 >0

and our Eq. (26) for < g¢ >¢ we obtain
m, = 8.9MeV . (33)

Diagrams representing the exchange of pion propaga-
tor to O(6%) are shown in Fig. 6. where the bubble

represents tlie O(6) pion self energy.

O

Figure 6: The O(8?) diagrarns contributing to I p(¢?).
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Adding the diagrams of Fig. 6, we get

Tp(g®) = ~26G11 + 26GTp(¢") T OM) T ). (34)

Using a Padé approximant we can write this last equa-
tion 1n a form capable of expressing the poles needed
for the identification of the pion mass

-26G

2 = —— 'S I
O =T T%am ) (35)

I'p(

where

Tp(q%) =t7’/ id*pysS(p)vsSp—q) - (36)
A

In tlie 1/N,. H-F calculations tlie fiist two terms on
the right hand side of £q.(37) cancel i the chiral limit
duc to tlie gap given by Eq.(9). Away from tlie chiral
liinit tliese two terms are replaced by m./M,. In our
approach me have either to apply the PMS directly to
I'p(¢?) or t3require it to have apole at ¢ = m2, iso-
late G and then apply PMS toit. However, asit stands
Eq. (35) does not have an extremum and the PMS
condition, Eq. (4), fails to fix g. We can, however, use
Eq.(28) to write Eq.(37) as

M, (¢ m,
—2sa () = 1 - M) ]:
H 4

»%gﬁ——_—@ - q26G%I(q2,;\,u,7nc) . (40)

!

Requiring that Eq.(35) has a pole at ¢ = m?r =

(138M¢cV)?, we have

Lo M) me (= )
- ’ i [
7 7 7
—m,zréG%I(er,A,u, me)=0. (41)

It can be seen from this last equation that in the chi-

35

After taking the trace and integrating the expression

(36) me can write tlie denominator of Eq. (35) as

I
1-26Gp(¢") = 1= MU0 s 3102 a0y

(37)
where
JW( ! 5 \2
e N (E-
and
, 1/2 " —1/2
4# 2 / 4[! 2 /
— -1 arctan 3 -1
q2 q
( -1/2
4 A?
arctan [ :;2 (] + ft—,;) - 1] (39)

ral liinit the existence of a Goldstone boson (m2 = 0)
implies tlie gap equation, fixing M, = p. Thus, in this
case the Goldstone theorem imposes a much stronger
constraint in the determination of p than the PMS
itself. But this is not tlie case away from the chiral
liinit. The term which causes Eq.(41) not to have an
extremum is My{p, me)/(p-+m.). This quantity is equal
to unity in the chiral limit. However, away from the

chiral Jimit, we will assume a value ~ 1; we then have

Mo 4 (p—bu)

3
= m?ré(}'-—ﬁl(mfr JAL )
T

Wam) )
(42)
Setting § = 1, applying tlie PMS condition to
=t 71'2 2 2 -1
G = 7nc—3~[m,,(/1.+mc)l(m,,,A,,u,mc)] ’ (43)
and using our inputs we get
G =8545x 107 MeV 2 (44)
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at ¢ = 171.4McV. Going back to Eq. (29). setting
6 =1 and applying PMS to the quark mass, me obtain

M, =343.06MeV | (45a)
at = 538.37MeV in tlie chiral limit, and
M, = 351.95MeV | (45b)

at i = 529.47MeV away from the chiral limit. These
results are close to tlie accepted empirical value for
the constituent masses of the up and down quarks
(M, ~ M,/3 ~ 313MeV). Fig. 7 displays M, as
a function of g in the chiral limit for different val-
ues of GA?. Curve 1 (continuous line) corresponds to
G'A? = 10.53, curve 2 (dot-dashed ling) was obtained
assuming GA? = 7.27 and curve 3 (dashed line), cor-
responds to GA? = 4.5. Note that all curves intercept
the straight line M, = p at two points. The inter-
ception point M, = u # 0 is the one at which we
recover the conventional gap equation in tlie form of
Eq.(9).
(with fi to the left of tlie intersection); curve 3 repre-

Curve 1 represents the firinly broken regime

sents the barely broken regime with 7 to the right of
the intersection and in curve 2 the intersection occurs
at M, = i =538.37McV. Note that, for a given value

of GA?, tlie §-expansion prediction for tlie quark mass

where
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(stationary points) is always higher than predicted by
other methods (intersection points).

Up tothis point all the physical quantities have been
calculated with the bare propagator of Eq. (12). Aswe
now have tlie quark mass (as a function of 1) expanded
to 0(68) asin Eq. (20) and also an order-é numerical
value for the quark mass Eq. (45), it would be inter-
esting to evaluate a physical quantity employing dif-
ferent forms of the quark propagator and to compare
the results. We will do this by calculating the quark
condensate involving 0(4) correctionsin three different
ways. Firsl, proceeding as before, we calculate ali the
diagrams of Fig. 2 with the bare propagator given by

Eq. (12). Thisgives

M, (MeV)

1000

800

0 200 700 600 800 100¢
# (MeV)

Figure 7. M, at O(4) plotted as a function of x for different
values o Gh?, as described in tlie text.

. 2
A ) —3u%In (1 + %)] (1 - ——Mdy“) , (46)
u u

13 . A2
Myyn = :1-7;2—[16' [A —p“In (1 + F)} . (47)
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As usual, ‘ve set 6 = | and apply PMS to Eq. (46)
toobtain < g >,= —(220.4MeV)3 at i = 1018MeV.
Note that the 0(é) result depends in both tlie original
parameters of the theory and that  is not alinear func-
tion of A as it was at 0(6°). Fig. 8 shows the 0(69),
the 0(8) and the H-F result of Ref. [4] for the quark

condensate as a function of A.

0

—(@g))” (MeV)

500
400
300
200

100

0

0 500 1000 1500 30(;0
A (Mcev)

Figure 8 Tlie O(8°) (continuous ling), O(&) (dotted line)
and H-F (dashed line) results for < gg >, as a function of
A. Tlie H-F result was obtained in Ref.[4] using 3, = 300
MeV asinput.

In theserond way, weevaluate only the first diagram

of Fig. 1 but using the full non-optimisecl propagator

iS5~ (p) = — M, (1), (48)

with M, () expanded to 0(¢) asin Eq. (29). At6=1

the result is

(d0)0 = —= M [AZ—MZ {14
qq 0 — 47_['2‘ dyn | ““dyn 1\45‘“] 3

(49)
with Mgyn given in by Eq. (47). Applying PMS to
Eq. (49) yie ds (Gq)o = —(204.18 MeV)? at 1 = 538.37
MeV.

Finally, ve evaluate tlie first dlagram of Fig. 1 using

the full optirnized propagator

iS5 (p) =/~ My (p) | (50)
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with M,(z) = 343.06MeV to to obtain {(gg)e =
—(204.18MeV)3, which is exactly the result obtained
with Eq. (49). In Fig. 9 we compare these three ways
of calculating {7g)o. Although the final resultsarefairly
close in the region 700 MeV < A < 900 MeV we ad-
vocate the first way as being more in line with the lin-
ear 6-expansion and PM S philosophy. More than that,
it is the first way that gives best result for (gq)o at

A=T725.TMeV.

The second way employs the full propagator to of
Eq. (43) with the self-energy truncated to O(é); this
propagator isequivalent to an infinite sum of reducible
two-point Green function containing only one-loop con-
tributions (Fig. 5) to the self-energy. For example,
the geometric series expansion of Eq. (48) contains
a O(6?) two-point diagram formed by joining two di-
agrams like the one of Fig. 5, but does not include
an irreducible two-point diagram with a two-loop self-
energy that would appear at the same order. This
corresponds of doing an approximation (6-expansion)
within another approximation (one-loop or large —N,).
Finally, the third way to calculate {(q)o employs a p-
independent propagator, in which the self- energy has
been truncated at O(8) and optimized, corresponding

to weaker version of PMS.

~(agh,” (MeV)

500

400

300

200

1000 1500 2000

A (MeV)
Figure Y: The three different results involving O($) cor-
rections t0 < §g >o. The dotted line represents the re-
sult obtained with the bare propagator; the continuous line
represcnts the results obtained with the full non-optimized
propagator and the dashed line result was obtained with the
full optimized propagator.

o} 500



33

V. Conclusions

We have applied the é-expansion and the PMS
to investigate the breaking of chiral symmetry in the
Nambu-Jona-Lasinio model. The first interesting result
occurrecl in the lowest order calculation of tlie quark
condensate and the pion decay constant, two quantities
directly related to CSB. Usually these quantities turn
out to be a function of A/M, M. In our approach, be-
cause of the PMS, they became a function of 1l only,
emphazing the role of this parameter as the scale of
CSB. Using the empirical value of f; we have fixed
A = 7257 MeV, that is, of tlie order of the hadron
scalc. We faced a problem when trying to apply the
PMS to the quark-antiquark scattering amplitude, Eq.
(35), in order to fix GG, because this quantity does not
have an extremum for a finite value of x. We then as-
sumed that a quantity (M, (g, me)/(ntm,)) which has
tlie unity valuein the chiral limit does not have its value
changed significantly away from this limit. Thisis par-
ticularly true for tlie quark mass. The need to impose
this constraint in our approach can be compared with
the imposition of further constraints in the same type
of calculation carried out with otlier methods, where
the value of the quarli mass is restricted within certain
limits5].

Having fixecl GG, we calculated the constituent quark
mass t0 J(8) including diagrams which would not be
taken into account in a 1/N, calculation. The final re-
sult agrees with tlie einpirical data. We then calculated
the quark condensate involving order-é corrections in
three different ways. It was shown that tlie calculation
which adheres most rigidly with tlie é-expansion and

the PM S gives the best numerical result.
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