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V k  investigate t,he brealting of chiral syminetry in the Nambu-Jona-Lasinio model using the 
linear 6-expansion. It is shown t.hat. wit,hin this approach quantities like the quark condensate 
aild the pion decay const.ant, calculated to lowest order, depena only on the scale of chiral 
sjrmmetry breaking. Fl'e cofnpare different ways of evaluating a physical quantit,y with the 
6- expansion. 

The possi')ility tlia,t tlie symmetry brealtdown of 

the standard model be a dynanical mechanism in- 

volving the t,op quark[l], has led to a reviml of the 

Nainl,u-Jona-1,asiiiio model (I\T.JL)[~]. This model was 

proposed in tlie early sixties and introduced the idea 

of dynamical symmetry breaking. I t  reproduces chi- 

ral phenomenclogy with a minimal number of pararne- 

ters and is thercfore of great iriterest in the study of 

hadron properties a t  low energies, where it can be  

thought as an cffective model for QCD. At low energies 

(around 1 Gek'), QCD has a non-perturbative cliarac- 

ter, and the s t  ldy of the NJL, model requires the use 

of non-perturb.ttive techniques. Conventionally it has 

been treated in  a large-,7', approximation['~3] or in the 

Kartree-Fock (li-F) approximat~ion[4]. In this paper we 

investigate the NJL model using an alternative artifi- 

cial (non-perturbative) rnethod known a.s the 5 expan- 

sion. Since the model is non-renormalizable it will be 

regarded here :ls a "toy" model, illustrative of chiral 

symmetry breal..ing but which does not have tso be nec- 

essarily trusted in quantitative det,ail. The F expansion 

was first in t rod~ced  by Bender e t  a1.i51 who chose.to 

rewrite the interaction term of the 44 theory as 

where p is an arbitrary parameter introduced in order 

to balance the dimensions and A is the coupling con- 

stant.  This way of interpolating the Lagrangian, with 

6 as an exponent that modifies the interaction, became 

known as the logarithmic 6-expansion. There is also a 

variant of the 5-expansion in which 5 enters linearly in 

the action 

Sa = SS + (1 - 6)So , (2 )  

where S is the original action and So is a free action 

(quadratic in the fields) that contains the arbitrary 

mass parameter p.  This new way of interpolating the 

action, known as the linear 6 expansion, was proposed 

by Duncan and ~ o s h e [ ~ l  in the context of the Gross- 

Neveu model. For example, a 44 interaction is then 

replaced by 

It is clear from (1) and (3) that  a t  5 = O the interac- 

tion term is a mass shift (the theory is free) and that 

a t  6 = 1 we recover the original interaction term, In 

both cases the theory is expanded as a power series in 

6 up to  some finite order, and a physical quantity (P) 
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calculated in tliis way will clepend in 6 and p because 

the Feynman rules gcnerated by SS: are 6 anct p de- 

pendent. We tlien set 6 = 1> the value a.t. ~rliich we 

retrieve our original theory: brit P reniains a funct,ion 

of p (t,his would not be tlie case if wc were perfoi.ming 

a calculation t,o a11 orders in 6, because t*lie emct  result 

is p independent). In the origina.1 cal~ulat~ions of Ref. 

[5] p ~ v a s s e t  to  unity, and the iniproveinent resulting 

from the expansion in O was purely o11 tlie hnsis of new 

terms introdueed by writing a"('+6). E-Iowevcr, ;r. is ar- 

bitrary a.nd there is no just,ificat,ion for s e t t h g  11 = 1 

a priori. Tlie arbitra.riness of p (wliicli 1ia.s to be coii- 

fronted in both the logarithmic and tlie linear version 

of tlie 6 expaiisioii) could be regarded as a drawback of 

t,lie theory. However, i t  can be turned to  ativant,a.ge by 

choosing p optimally in some way. The inosf: genera,l 

met,hod of fixing p relies on thc Principie of Miriima.1 

Sensitivity (PMS) introcluced by ~teveiisoii['I, t.he phi- 

losophy being that if a.n approxima.nt clepends on uil- 

physical parameters tlien their valiies should be chosen 

so as to minimize the sensitivity of the approximant to  

small variations of these parameters. So, the essence 

of the PMS is to require a quantity i', calculated with 

tlie S expansion, to  be evaluatcd a t  a stationary point 

,ii satisfying 

when S = 1. This procedrire forces t,lie s o l ~ t ~ i o n  to the 

a t  least. locally (at the stationary point) independent of 

p .  The logarithniic S expansioil improved hy trhe PMS 

was first employed by Jones and ~lonoyios[ '~.  Applying 

the niethod to field theories iii zero a.ild one dimension 

space time they 11ave obtained results wliich a,re more 

accurate than tlie ones obtained with fixed p. 

When first introduced in Ref. [6], t,he linear ver- 

sion was not used in conjunctioa with tlie PNIS. In- 

stead, p was fixed to  be the vacuuin expectat.ion vaIue 

of a.n auxiliary field. However, this choice was bascd 

on a previous l<nowledge of thc b expansion for the cf- 

fect,ive potential a.t large-;V. Motivated by the results 

obt,ained by cornbining the 6 expansion with the PMS, 

t,hc aut,hors of Ref. [X] also investigated the breaking of 

cliscret,e chiral symmet,ry in t,he Gross-Neveu model[']. 

The calculation of the effective potential was carried out 

with tlie linear 6 expansion exactly as in Ref. [6], but p 

was fixed via PMS producing encouraging results. Be- 

ing capable of genera.ting a11 sorts of non-perturbative 

f~~rict~ions from what is only a slightly modified pert,ur- 

bation calculation, the PMS then became a very useful 

ingredient in the linear 6 expansion. 

It is iinportant, t,o note t,ha.t the unphysical param- 

et,er can, and shoidd, be d j u s t e d  to  suit the energy 

scale of tlie process in quest.ion. There is no reason 

why it should be assigned a universal value to  be used 

when calculating different processes. Choosing the op- 

timisation point separa.t,ely for each individual physical 

quantity means that might become a diffe~ent function 

of the original paratneters each time the condition (4) 

is imposed. Two recent. w~rks[ '~- ' ' ]  prove the conver- 

gente of the optimized linear expansion (at least in Iow 

dimensions) giving a calculat,ional basis to  a method 

wliich has pliilosopliical appeal apart froin being sim- 

ple, precise and applicable to  any order of perturbation 

theory. 

In the study of the chiral symmetry breakiilg 

(CSB), the linear b-expansion and the PMS condition 

liave been used t,o calculate t.he effect,ive potential of 

tlie Gross-Neveu model (discrete CSB)["'"'~], of the 

Abelian version of the Nambu-Jona-Lasinio model in 

1+1 dimensions and of the rion-Abelian GelI-Mann and 

Lévy a-model (continuous CSB)['~]. 

Here we use the 6-expansion and the PMS to  fix 

the parameters of the model, by using empirical inputs 
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related to  lhe  pion; and to  ca,lculat,e pliysical qua.iiti- 

ties t-hat are direct,ly relat,ed to  the breakiiig of c1iira.l 

symmetry, mniely tlie quark coiiclensat,c a.iid t,he coii- 

st,it.ueiit ~lu.lrli inass. Ai1 advanthge of tlie inetllod is 

tliat it prov des a clear way of fixing tlie parameters anrl 

does not piit any restriction o11 tlie nia.gnitirrie of A\?,! 

i.e., diagrains belonging t o  differeiit. orders in a 1/;jTC 

calculat,ioii ap11ea.r a t  t,lie same order iii S. Tlie fa.ct- 

tliat tlic PMS allows us to  express p as a f~inct,ion of t,lie 

original pa.ra.nietzers can a.lso be rega.rcled a.s a.ii adva.11- 

ta.ge becaus: it can 1ea.d t.o a.n ecoiiomy of tlie ilumber of 

inputs needed for the con~put,at,ioii of certain lhysical 

quantities a t  the leading order. In sect,ioii I1 we review 

the general features of tlie model. TI-ie modified (inter- 

polated) N J L  Lagrangian is preseiited in sectioil 111. Iii 

section IV \ve employ the  6-expansioii t o  calculate t,lie 

relcva.nt pliysical quantities, a.nd to discuss alterila.tive 

ways of performing a ca.lculat,ioii willi t,he inetliod. Tlie 

conclusions are preseiited in sect,ion V. 

II. Tlie model 

The NJI ,  Lagrangia.11 is given by 

L = f ( i P -  in~,)q+G'[(~q)"((yy?q)" (5) 

where the  fi,:lds q(x) represent. iip and do\vn cl~ia.rlis, m, 

is tl-ie curreiit quark massl and (in 3+1 climensions) G 

is a posit,iw coupling constant with (mas)-"Iimen- 

sions indica~ing tliat tliis is a. iioii-renorma.liza.111e t.lie- 

ory whicli rc quires tlie iiitr~cluct~ion of a citt,-off A. Tliis 

cut-off cai1 be regarded as ali effective, iE crude, im- 

plementatioi of the Iinown short dista.iice behaviour of 

QCD witliii; t,he rnodel[l"]. In t,lie c11ira.l limit (m ,  = 0) 

Eq.(5) is iii\ariaiit uiider the cliira.1 t,ransforiiia.tioii 

V- exp(ir57.  a ) q  . (6) 

In the stanclard H-F and large-,V, approaches the cal- 

culated p1iy:;ical quantities involve the  full qua.rli prop- 

wliere LVdyli(lVq) is the dynamical m a s ,  iiiduced by 

~ l u a i i t ~ ~ ~ n ~  Buct,uations, calculated using Eq. (7). The 

coiistituent (physical) mass is 

For 111, = O ,  t,lie leading large-h', result (which is equiv- 

alent t,o t,lie IIartzee approximation) reads 

aiid a. iloil-trivia.1 solution ('V, # 0) corresponds to 

CSB. To see more clearly tlie dependence of lVq on the 

para.meters we rewrite Eq. (9) as 

froin wliich we see tliat for GA2 > a,,;,(- 3.29) the 

qiiark acquires a inass. When t,he breaking of the  syni- 

inetry occurs, tlie pion appears as a collective mode of 

zero inass (Goldstone boson) in the chiral limit. In fact, 

it, cai1 be showii that  in tliis approach the existence of 

a Goldst,one boson leads t o  the  gap Eq. (10)L2]. Con- 

veiitionally tlie paranieters of tlie model (G and A) are 

fixccl iii such a way as to reproduce the  empirical values 

of tlie decay constaiit of the pion (f, = 93MeV) and 

tlie pion imss  away froi1-1 tlie chiral limit (m, = 138 

MeV). as iii Ref. [3], or (as in Ref. [4]) to  reproduce 

tlie einpirica.1 values of f, and < yq >o= -(225 f 25 

M~v)[']. As already nieiitioneci, both the H-F and the 

large-,V, methods utilise the full fermion propagator, 

Eq.(8), in tlie evaluation of these physical quantities, 

which therefore become a fiinction of i&. Then,  either 

G is t,ra.dcd for :Vq via the  gap equation[" i r  &i, has its 
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value restricted by a previous liilowledge of t)lie enipiri- 

cal value of tlie constituent qunrk iiiass[15]. An excellent. 

pedagogical review of t~lie N J L  inodel cal1 11e fouild i11 

Ref. [16]. 

111. Tlie i n t e r p o l a t e d  Lagrang ian  

To apply the 6-expaiision we first rewrite Eq. (5) as 

C* = f ( i P  - m,)q + 6G[(qq)' - ( f i5~q)2 ]  - (1 - 6)pqq . 

(11) 

I t  is clear froni Eq. (11) tha t  a t  S = 1 we regaiii the  

original Lagrangian, Eq. (5). which (for 117, =- O )  is in- 

variant uiider transformatiou (6) and tha t  at  6 = O we 

liave a free massive tlieory ~v11icl-i is not cliirally invari- 

ant  (even wlien m, = 0). 

In the 6-expansion approxiniatioii we deal wit~li a 

bare quarli propagator of the form 

where ,u' = m, + p .  Tlie Lagrangian of Ey.  (11) gen- 

erates a new qiladratic vert,ex of weight. iSp ancl tlie 

original Feynman rules for tlie four-fcrmion vertices of 

Fig. 1 are now multiplied by 6. 

Figure 1: Double dot representation of the foiir-ferinion 
vertice. 

IV. E v a l u a t i o n  of phys ica l  quailtities 

In this sect,ion we will use t.he 6-expansioii t o  calcu- 

late tlie quark condensate, .f, (t,o fix A), t,lie con~ t~ i tuen t  

quarlc mass and tlie quarli-antiquark scatkr ing ampli- 

tude in the pseudoscalar channel ( to fix G). A11 tlie 

loop integrais are regularized by a. covaria.nt cut-off. In 

the case of loops involving two propagators [S(p) and 

S ( p  f q)] we follow tlie procedure of Bernard et. al.[15], 

i~a.mely, we introduce Feynman parameters, perform a 

chaiige of va.riahle on tlie momentum integration so as 

to  get ar1 expressjon depending only on p2 and then cut 

off. Wlien calcula.t,ing q ~ a n t ~ i t i e s  away from the chiral 

liinit, we liave m, as an extra input; its value will be 

fixed with tlie aid of the Gell-Mann-Oakes-Renner re- 

latioii. At lowest order (O(So)) the quark condensate is 

given by the first diagrani of Fig. 2 

Figure 2: The qiiark condensate 

wliich yields 

For & = 3 and upon applying the PMS condition as 

coiitained in Eqs. (4) t o  (14) we get 

So, a t  this order < fq > o  is a function of A only, show- 

ing explicitly tha t  the cut-off is related t o  the scale 

of CSB (h x AcsB). T h e  result of Eq. (16) also il- 

lust,rates what was said in t,he introduction about the 

econoiily in the  number of inputs needed t o  evaluate a 

physical quantity. If the  large-:Vc or H-F had been used 

in the same calculation, < qq >o would be a function 

of A and :Vp (or G).  
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TO fix R ..ve evaluate f ,  using the  Pagels and St,ol<ar Tlie first contribution comes from 

definition[171 

< 0 I ~ ~ ~ l ã ~ ( q )  >= -i.g"f,6,b . (1 7) 

In addition we use t,l-ie Goldberger-Treim~~ii rela.tion ob- 

tained with tl-ie propagator of Ey. ( 12 )  to obta.in 

Then, to  lovest order Eq. ( 1 8 )  is ~ri t~te1-i  as 

In tlie cliiral limit it becomes 

The PMS ccndition 

shows tl-iat,, t t  this order, p. depends linearly A and lias 

the form 
ii - PN- 

1.47 ' 

( 2 3 )  

Then using i,he empirical value *f, = 93 MeV we obtain 

I 

obtained with tlie H-F or the large-IV, n~e t~hods  with- 

out a previous knowleclge of the value of the  constituent 

cluarli m a s .  The insertion of Eq. ( 23 )  into Eq. ( 2 1 )  

allows us t o  plot f ,  as a function of A only, as shown in 

Fig. 3 ,  where the 6-expansion result is contrasted with 

the H-F results of Ref. [4].  

Figiire 3: Tlie 6-expaiision resiilt. (continiious line) for f, 
compareci to t,he H-F resuts of Ref. [4] for Mq = 300 MeV 
(daslied lhe )  and IM, = 200 MeV (dot-dashed line). 

n'e then estimate 

obtained by Manohar and ~ e o r g i [ I ~ I .  I t  sliould be ap- 

preciated tl-iat a result similar to Ecq. ( 24 )  cannot bc In F'ig. 4 we show tlie diniensionless quantity 
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or. in tlie chiral liinit,, we have 

where 

. N P  
Figure 4:  The dimensionless quant,it,y - < (rq >Ai' x~;' 

plotted as a fiinct~ion of A l p .  

whose empirical value lies between 2.68 ancl 2.15 as a 

fiinction of A l p .  I t  is cvident t hat t he PMS variatioiial 

method places us a t  the stationary poiiit il/p N 1.55. 

for wliich tlie ratio is 2.25. 

Next ure calculate tlie cliiark inass, which ai  O(EO) 

is given by 

'14<I = [L' 

At O(&) it becoines 

with iVI+.,,(pl) given by the diagiam of Fig. 5. which 

yields 

Figure .5: The O(6)  diagrams coiitributiiig t,o ,\4ay,,(li.'). 

L\, = 3 and ,Vf = 2. Eq. (30) shows the re1at)ion be- 

tween tlie O(&) :Vq and the O(C1') < qq > O .  For m.c = 0, 

i t .  is clear tha t  the /1 which optmises the quant,ity Mq 

is given by Eq. (15) iiidepeiidently of G. Note tha t  G' 

coiit,a.iiis a.n excliange term of order I/;\', which does 

iiot appear in the 1a.rge-,V, calculat,ion. This i l lu~tra t~es  

tlie fact that  diagrarns wliich contribute to  a given or- 

der in lhe 6-expansion appear a t  different orders in a 

1/*Y, type of ca~lculatioii. 

In order t,o est,imat,e ;\/Iu we need to fix the  param- 

eter G. This cai1 be done by evaluating the propagator 

of t,he clyna.mically geiierat.ed pseudoscalar boundstate 

(pioii) and requiriiig it to liave a pole a t  q2 = rn; = 

(138MeV)" Because t,his ca.lculation is done away from 

t,lie chiral liniit,, we also need to know the value of the 

current qua.rk ma.ss (m,) . Using the Ge11-Mann-Oakes- 

Renner relation 

aiicl our Ey. (26) for < qq > o  we obtain 

1l)ia.grams representing the exchange of pion propaga- 

t,or t,o O(EL) are shown in Fig. 6. where the  bubble 

represents tlie O(6) pion self eiiergy. 

Figure 6: TIie 0 ( b 2 )  diagrarns coiitribiiting to r p ( q 2 ) .  
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Adding tlie diagrams o[ Fig. 6 ,  we get, Aft.er t,a.king the trace a.nd integra.ting the expression 

(36) me can wrhe tlie denominator of Eq. (35) as 
rp(U2) =: -26G[1 + 2EG',Jp(q2) + 0 ( b 2 )  + ...I . (34) 

Usiiig a Padé approximaiit we ca.n w r i k  tliis last equa- 1 - 2 6 G ' ~ ~ ( q ~ )  = 1 - E M,'yn( f")  - 6 ~ - 1 ( ~ ' ,  3 h,  li1) , 
P /  lr2 

tion iii a. form capable of expressiilg t,he poles needed (37) 

for the ideiitification of the pio11 imss  wl-iere 

where 

111 tlie 113, H-F calculations tlie fiist t ~ o  t.erins on 

the  right h a d  side of Ey.(37) cancel i11 the  cliiral lirnit 

due to  tlie gap given by Eq.(O). Away froin tlie cl-iira.1 

liinit tliese two ternis are replaced by in,/;14,,. In oiir 

approach me have either to a.pply the PMS clirectJy to  

r p ( ~ ' )  or t 3  require it t o  have a pole a t  q2  = ln;, iso- 

late G and then apply PMS to  it,. Howevcr, as it st,a.ilds 

Eq. (35) does not lmve an ext,reinuin a.nd t,he PiMS 

condition, Ikl. (4), fails t o  fix p .  LVe ca,ii, Iio~vever, use 

Eq.(26) to  ~vr i te  Eq.(37) as 

Requirii~g tha,t Eq.(35) 1ia.s a pole nt y" in2r = 

( 1 3 S M ~ ' i / ) ~ ,  we ha.ve 

ra.1 liinit the existente of a Goldstone boson (m.: = 0) 

implies tlie gap equation, fixing :Vy = p.  Thus,  in this 

case t.lie Goldstone theorem iinposes a much stronger 

const,raint in t,he determiriat,ion of p t,han the PMS 

itself. But this is iiot tlie case away from the chiral 

liinit. The term which causes Eq.(41) not to have an 

extremiiin is ,Wy(p, nr,)/(,u+m,). This quantity is equal 

to  uiiit,y i11 the chiral limit. However, away from the 

cliiral limit, we will assume a value N 1; we tl-ien have 

3 'M' + (' - "') = r n ~ 6 ~ - l ( n ~ ~ ,  A , ~ ,  rn,) 
(P/  -Í- 1%) ( p /  + A) Ir2 

(42) 

Scttiiig 6 = 1, applying tlie P-VIS condition t o  

lr' 1 
G ' = m , - [ m ~ ( p + m , ) ~ ( r n ~ ~ , ~ , p , m , ) ] -  , (43) 

3 

a.nd using our iiiput,s we get 

I t  cai1 1,e seen from this la.st equation t,l-ia.t. in t,lie clii- 
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a t  = 171.4,WcV. Going back to Eq. (29). setting 

6 = 1 and applying PMS to  the  c~uarlí mass, me obtaiii 

a t  ji I.= 538.37MeV in tlie chiral limit,, and 

a t  ,!i = 529.47MeV awa.jl froin the cliira.1 liinit,. These 

results are close to  tlie accepted empirical va.lue for 

the constituent masses of t,he up a.nd down qimrlts 

(lu, - :M,,/3 313iWeV). Fig. 7 displays as 

a function of p in the  chira.1 liinit for difi'erent val- 

ues of GA2. Curve 1 (coiitiiiuous liile) corresponds to 

GA2 = 10.53, curve 2 (dot-dashed line) was obtaii~ecl 

assuming GAL = 7.27 a.nd curve 3 (dashed line), cor- 

responds to  Gh2 = 4.5. Note tl-iat a11 curves iiltercept. 

the stmight line iVp = p a i  ttwo points. Tlie inter- 

ception point M, = ,u # O is the one a t  wliich we 

recover the conventional gn.p equakion in tlie form of 

Eq.(9). Curve 1 represents t1he firinly brolíeil regime 

(with to the left of tlie intersection); curve 3 repre- 

sents the barely broken regime witli y to the riglit of 

the intersection a.nd in curve 2 the iiit,er'sectioii occurs 

a t  iWq = ,G = 538.37MeV. Note tliat,, for a given value 

of GA2, tlie 6-expansion predict>ioii for tlie qua.rlí mass 

(statioriary points) is always higher than predicted by 

ot,licr metliods (intersection points). 

Up to this point a11 t,he physical quantities have been 

calculated wit,h the  bare propagator of Eq. (12). As we 

iiow liave tlie quark mass (as a function of p )  expanded 

to  O(6) as in Eq. (20) and also an order-6 numerical 

value for the qua.rk mass Eq. (45), i t  would be inter- 

estiiig t o  evaluate a physical quantity employing dif- 

fereilt foriils of the  cluark propagator and to compare 

tlic results. We will do this by calculating the  quark 

coiicleiisate involving O(6) corrections in three different 

ways. First, proceeding as before, we calcula.te ali the 

cljagrams of Fig. 2 with the bare propagator given by 

Eq. (12). This gives 

nf, (MCV) 

I.' (McV) 

Figure 7: M ,  at O(5) plotted as a function of p for different 
valiies of Gh 2,  as described in tlie text. 

where 



Brazilian Journal  of Physics, vol. 24, no. 1; Marcl~:  1994 37 

As usual, Ive set 6 = I ancl npply PNIS to  Eq. (46) 

t o  obtain <: gq  >6= -(220.4:'MeV)~ at p, = 1018MeV. 

Note tha t  i.he 0(6) result depends in both tlie original 

parameters of the theory a.nd t11a.t~ is not a linear fuiic- 

tion of il as it was a.t O(#') .  Fig. 8 show~s the O(óO)! 

the O ( S )  and the H-F result of Ref. [4] for t-he qua.rk 

condensate as a function of A. 

O 500 1000 1500 3000 

A (h!eV) 

Figure 8: Tlie O(hO) (coiitiiiuoiis line), O(F) (dot tetl liiie) 
and H-F (dajhed line) results for < qq > O  as a function of 
A. Tlie H-F result was obtained iii Ref.[4] using d l ,  = 300 
MeV as input. 

In the se8:ond way, we evaluate only tlle first diagrain 

of Fig. 1 but using the full non-optimisecl p r o p g a t o r  

with M q ( p )  expanded to  0(5) as i11 Eq. (29). At 6 = 1 

the result is 

with Mdyn given in by Eq. (47). Applying PMS to  

Eq. (49) yie'ds (qq)0 = -(204.18i'MeV)3 a t  = 538.37 

MeV. 

Finally, v e  evaluate tlie firsl. cllagram of Fig. 1 using 

the full optirnized propagator 

with Mq(f i )  = 343.05MeV to to obtain (qqjo = 

- ( 2 0 4 . l â ~ M e V ) ~ ,  which is exact,ly the  result obtained 

with Ey. (49). In Fig. 9 we compare these three ways 

of ca.lciila.ting (fcl)& Although the final results are fairly 

close in the region 700 MeV < il < 900 MeV we ad- 

vocate t,lie first way as being: more in line with the lin- 

ear 6-expansion and PMS philosophy. More than tha t ,  

it is tlie first way t,hat gives best result for (qq)o a t  

#A = 7%. 7Me V. 

?'lie second way employs the full propagator to  of 

Eq. (43) with the self-energy truncated to O(5);  this 

propagator is equivalent to an  infiiiite sum of reducible 

two-point Green function containing only one-loop con- 

tributions (Fig. 5) to the self-energy. For example, 

the geomelric series expansion of Eq. (48) contains 

a 0 ( ó 2 )  two-point diagram formed by joining two di- 

agrams like the  one of Fig. 5, but  does not include 

an irreclucible two-point cliagram with a two-loop self- 

eneigy tliat would appear at the  same order. This 

corresponds of cloirig a11 approximation (6-expansion) 

within anotlier approximation (one-loop or large -N,). 

Finally, the third way to  calculate ( f q ) ~  employs a p- 

indcpendent propagator, in which the self- energy has 

becn truncated a t  O ( & )  and optimized, corresponding 

to ~vcaker version of PMS. 

O 500 1000 1500 2000 

A (MeV) 

Figure I): Tlie three different results involving O(6) cor- 
iectioiis to < gq >o. The dotted Line represents the re- 
siilt obtained with the bare propagator; the continuous line 
represcnts the results obtained with the fuli non-optimized 
propagator and the dashed line result was obtained with the 
full optiniized propagator. 
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\+'e have applied t.lie 6-expansion a.nd t,lie PhIS 

to  investigate tlie brealiiiig of cliira.1 synimet,ry in the  

Nambu-Jona-Lasinio inodel. The  first interesting result 

occurrecl in the  lowest. order calculatioi~ of tlie yuark 

condei~sake a.nd the pion decay coiistaiit, t,nro quant,it,ies 

directly related to CSB. Usually &se qiiaiit~it.ies turn 

out to be a f~~nct , ion  of A/;+f, ['I. In our approacli, be- 

cause of t,he PMS, tliey becaine a fmct,ion of 11 only, 

eniphazing the role of t,liis paraniet,er a.s t,lie smle of 

CSB. Using t3he e1iipirica.l mlue  of j-, IW liave fixed 

11 = 725.7 MeV, that, is, of tlie order of tlie hadron 

scalc. \Ve facecl a problem when trying to  a.pp1y the 

PMS to the quarlc-antiquark scat,teriiig amplitude, Ecj. 

(35), in order to  fix G: because this quaiitity does iiot 

liave an extrenluni for a. finite value of p.  i% t.lieii as- 

sunied tlmt a quant,ity (dd, ( p :  i i i c ) / ( p  + m,)) ~vhich has 

tlie unity value in the c1iira.l liniit does not 1ia.w it,s value 

chailged significa.ntly ama,y froiii tliis liinit.. This is par- 

t,icularly true for tlie quark niass. S h e  iieed to impose 

this constraiiit in our approacli cai1 be comparerl with 

the iniposilion of furt,licr coiist,raiiit~s in t~lie sa.me t,ype 

of calculat,ion carried out witli otlier rnetliods, wliere 

tlie value of tlie quarlí niass is restricted within certain 

liinits[l". 

Having fixecl G ,  we calculat,ed the  coiist,ituent. yimrlc 

mass to  O(6)  including diagrams which wo~ilcl not. bc 

ta.lien into account in a l/AT, calcula.tion. S h e  fiiia.1 re- 

sult agrees with tlie einpirical data.. Wé tlien ca.lcula.ted 

the quark condensate iiivolviilg oider-E correct,ions in 

three different wa.ys. I t  was sliown t,liat tlie calciilation 

which adheres most rigiclly with tlie 6-expa.ilsiori a.nd 

the PMS gives the  best numerical result,. 
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