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The  Schrodinger equation is nunierically solved for the one-dilllensional potential V(x) = 
i9x"yz"(p = 4 , 6 , 8 )  usiilg successive assuming a variat,ionally scaled hasis set of harmonic 
oscillator eigenstates and usiilg successive approximations in the framework of the Rayleigh- 
Ititz variational niethod. For ea.ch ca.se st,udied ( 3  = O ;  1 and y=0.001; 1.0; 10.0; 1000.0; 
40000.0) the first 21 eigeilvalues are oht,ained with 30 significant figures and the accuracy of 
lhe corresponding wave funct,ions is verified by a cross comparisori of the transit,ion moments 
computed from two different expressions. The results are conipared to  t,he ones oht,ained 
hy other numerical niet,hods a.nd froiil t.he ca.lculation of tlie transition monients it is shown 
that  the eigenfunctions are also determincd with liigh prccision. 

The  Simple Harmonic Oscillat,or (SIIO) is a very 

useful inode' in classical and cluantum ineclia.nics antl 

has been appliecl t o  the st,udy of different syst>ems in 

physics. In quantum mechanics its usefulness and t,hct- 

oretical importante is mainly diie t.o thc  fact t11a.t i t  

presents an  cixact solution to  t.he Schrodinger eyuatioil 

and it is limiting case tha t  describes t.he beliaviour of 

many physicd systems in thri so called small oscilla,t,ion 

regime. However, in ot.l-ier regiiri<:s, most of t,he pliys- 

ical systems are moclelled I>y a.iiharmonic pot.entials[']. 

which do not exhihit exact solutioris t,o t,he wave equa- 

tion. Iii molecular physics, for instante, onc ca.n find 

many examples of molecular vihtations tliat are de- 

scribed by a lharmonic pote~~t ia ls [2] .  Also anha.rmonic 

ternzs contri3ute to  douhle syiiimet,ric a.nd asymrrit:t.- 

ric potential wells, very comnionly found in niolecu- 

lar physics[3] and solid state physics["], as, for inst,ance, 

in the description of some magnetic and ferroelect.ric 

t r an~ i t ions [~] .  Therefore, it is not surprising that since 

the early days of quant~um mecha.nics t,lieoret,iciaiis have 

given speciai attention to  this class of prohlems and spe- 

cially to t,l.ie study of t.he quartic anliarmonic oscillator, 

wliose IIamiltonian is given by 

~ i l i i e [ " ]  performed the first numerical calculation on 

t,he purct qiiartic pot.ential (,3 = 0.0 and y = 1.0) oh- 

tai~iing the energy of the  ground s ta te  and the first ex- 

cit.ecl st.;tte with a precision of 4 figures. The  eigenvalues 

antl rigt~nfunctions of this system have also been stud- 

ictl hy McWeeny antl ~ o u l s o n [ ~ ]  by using a variational 

t,ecilhique! whrre the  trial wave function expansion con- 

taiils, at  niost,, eight SHO stat,es. Besides the energy 

levt,ls, t hey have also coniputed the transition proha- 

bilit,ies. Sirice then, niany a ~ t . h o r s [ + ~ "  have studied 

anharrnoriic systerns using different methods. 

The IIamiltonian drscrihed in Eq.( l )  was one of the 

first ri~odels st.udied hy perturhation theory. For tha t  

niodel Render and i ~ u [ ' ~ ]  have shown that  the st,an- 

dard Itayleigh-Schrodingrr perturbation serirs diverges 

for any 7 > O. Frrrthermore, ~ e n d e r l ~ ~ ]  has extended 

this rosull I>y proviiig tliat tlie series also diverge for 
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any finite anliarmonic even power . Some a~~tliors[~"-] 

liave overcome this clifficulty by considering a. renormal- 

ized series expansion which converges for a.ny strengtli 

of the anliarmonic perturbat,ion. Cohen ancl Kais["] 

have used low-order varia.tiona1 pertiirl~at~ioii theory to 

study yuaxtic, sextic a.nd octic aiiha~rinoiiic potentia,ls. 

They have computed the ground &te energy for these 

potentials and the first, second and tliird excited states 

for the quartic potential. These resiilts have been ob- 

tained for 0.15 < y _< 100 and nritli ali accuracy of G 

significanl figures. The  ground state energy for these 

anharmonic potentials has a.lso been recently obtained 

by Weniger et  11y performing tlie summa.tion of 

the ordinary and renormalizecl perturbation series, a.nd 

by using a nonlinear sequence of transformations. They 

obtained the ground sta.te energy of tlie qua.rt,ic poten- 

tia.1 with 62 figures, and tlie ground sta.te of the sextic 

and octic potentials with 33 and 21 digits respectively. 

Another method that  has been usecl t o  study 

anliarmonic potentials is tlie Hill's deterininant 

approach[10~1g~23]. Oiie of the inost successful cal- 

cula.tion using this method has been peiformed by 

Banerjeer"] and Ba.nerjee et  a.l.[311. By scaling the ba- 

sis set used in their ca1cula.tion they mcre able to  ob- 

tain tlie energies of a 1a.rge number of excited sta.tes, for 

0.00001 ( y _< 40000, with an  accuracy of 15 figures. 

For tlie quartic anharrnonic potential the transition mo- 

inents between tlie lower states were also calculated. 

Tasili aiid ~ e m i r a l ~ [ ~ ~ ]  have applied algebraic meth- 

ods t o  calculate the energies of the  yuartic and sextic 

potentials. The  ground ancl the first five eveil excited 

states of the  quartic potential were computed with an  

accuracy of 30 figures, and also, the grouncl stat,e and 

the first three even excited states of the sextic potential. 

Despite a11 data  available oii these a.iiliarmoiiic po- 

tentials, there are very few results for properties other 

than energy. I t  is well ltnown that  acceptable values 

of energy do not always iinply correct wave functions. 

Clearly there is a lack of information mainly related to 

the wave functions. In view of these facts, calculations 

that  can furnish other properties than energy are highly 

desirable. 

In t,liis contribution results are reported of the ap- 

plica.tion of tlie Rayleigh-R,itz variational method, in 

successive approximations, for the systems described by 

the Hamiltonian 

Tlie eigensolutions have been obtained by considering 

their expansioii in a finite number of variationally scaled 

eigensta.t,es of the SHO. Up to 350 basis functions ha.ve 

been included in the  expansion ior the  study of the pure 

anliarmonic oscillators ( a  = 1; /3 = O ;  y = 0.001, 1.0, 

10.0> 1000.0 aiid 40000.0 for p = 4 ,6 ;  8) and the SHO 

perturbed 11y anharmonic terrns ( a  = 1;,8 = 1) for the 

values of y aiid p as in the latter case. For each value of 

/? and y, 21 converged eigenvalues have been obtained 

with a precision of a t  Ieast 30 figures. 

The  transition moments have been computed by us- 

iiig two different expressions, which allow very reliable 

stucly of the convergence and accuracy of the wave func- 

tions. Moreover, from the transition moments and en- 

ergy eigenvalues, t he  intensities of the transitions have 

been obtained These transitions are of particular inter- 

est in a spectroscopic test of the  method, as they are 

very strongly dcpendent on the wave f~mctions.  

Iii section I1 a brief review of the computational 

method is given. In  section I11 the  results are shown 

and compareci to  the literature results, and finally in 

section IV the conclusions are presented. 

11. Details of the calculation 

T h e  Rayleigh-Ritz variational method used to  ob- 

tain solutioiis t o  tlie Schrodinger equation 

consists in assuming a linearly independent basis set of 

real orthonorinal functions ( ln  >), which satisfy the  

boundary c o n d i t i o i ~ s [ ~ ~ ] ,  and writing down a n  approxi- 

niate solution to  the Eq. (3) as finite linear expansion, 

M 

where C,'s are expansion coefficients to  be determined 

and the functions {In >} satisfy 
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Since the Hamiltonian is Hermitian and tlie ba.sis is 

real: the matrix 7-1 which represents H is synin~et~ric! 

such that 

The trial cvallefunction defined in Ey. (4) is normal- 

ized, and thi:j iinplies that the coefficients C:, satisfy 

the coiidition 

and t,he expe1:tation value of t,lie Hamiltonian is given 

by: 

m , n = l  

The problem consists in finding the set of coefficients 

for which < 4 [H19  > is minimuni. Introducing tlie La- 

grange's undetermined multipliers t ,  in order to  satisfy 

the constrain given in Eq. (7), we huild the functional, 

J ( C I , C ~ , C ~ '  ..., G ' M ; ~ )  =< QIHIQJ > -6 < QIQ > , 
(9) 

and minimize i t  by imposing tlx coiidition, d J / d C k  = 

O. Taking into account the condition given in Eq. (6) 

the following result can be obtained, 

12 1 

In matrix notittion the set of equations (10) can be writ- 

which is the standard eigenvalue problem for the ma- 

trix 7-1. Since 3-1 is symmetric Eq . ( l l )  can be solved 

to yield iI4 orthonormal eigenvectors Ck and the corre- 

sponding eigenvalues 61,. To this extent, with the linear 

variational approacli, the eigenvalue equation, Eq.(3), 

can be solved in a finite subspace spanned by { I n  >), 
{n = 1 , 2 ,  ..., M ) .  The successive a.pproxima.tions are 

then obtained by increasing t,he number M of basis 

functions of the subspace until tlie requested accuracy 

of the eigenvalues t k  is attained. 

A very important point concerning the convergence 

of tlie eigenvalues in this method is based on the Mac- 

Dona.ld's t l ~ e o r e m [ ~ ~ ] .  MacDonald has shown that if 

tlie matrix 7-1 is symmetric and the basis set has the 

propert,ies discussed above, the eigenvalues in the M- 

th  approxiimation split up from those of the (M + 1)-th 

approximation obeying the rule: 

Thus the eigenvalue, t p ,  of the M-th approximation is 

greater or equal to  the k-th eigenvalue of any succeed- 

ing approximation. Therefore, assuming convergence 

of the process tf 2 t i ,  where 6: is the k-th correct 

eigenvalue, and when M one has exact eigenvalues and 

eigenvectors. The eigenvalues t k  (k = 0 ,1 ,2 ,  .. ., iM - 1) 

are associated to  the ground state and the excited states 

of the system. To perform the calculations in this work, 

tlie basis set chosen was composed by the eigenvectors 

of tlie SHO whose Hamiltonian is given by: 

Due t,o the x+ - x symmetry of the Hamiltonian H, 

Eq.(2), even and odd states are obtained by a separate 

diagonalization in a sub-space of M even or odd basis 

functioils. 

With this basis set and using the operators a+ and 

a,  defined as 

such t,liat 

aat - ata = 1 , (15) 

and 

tlie matrix elements of the Hamiltonian, Eq.(2), can be 

directly derived and are given by 
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a )  for 17 = 4 

13) for p = 6 

c) for p = 8 

where j = n./2 + 1 for matrix eleinents between eveii tlnreen states of opposite parity, extremely difficult. In 

states, and j = ( n  + 1)/2 for the rila.t~rix ele~ncnt~s be- order to  avoid these prohlems we have built a pseudo- 

tween odd states. &ate as a linear coinbination of the ground s ta te  and 

Baiierjee et a.1.[30>311 11a.ve sliown that  the introduc- the first excited s ta te  of the renormalized SHO, nameiy, 

tion of the scaling parail~et~er tu ,  clefinecl iii Eq.(13), is 24 >= (10 > $11 >)/a and determined w by minimis- 

ing the pseudo-energy < q5lHI4 >, where H is given of para.mount importante in order {.o irnprove Ilie coil- 
by Ey.(2). Following this procedure the scaling factor 

vergeiice of the nuinerical results. Balsa et  liave 
tu,  for each form of the anharmonic potential, is deter- 

used tliis scaling form in the calcrilation of t,hc energy 
minecl from the followiilg set of equations: levels of a syinmetric double well pot,entia.l. Tliey have 

deterinined two sca.liiig parameters, associated to st,ates 
uw3 - @w - 9-//2 = 0 for p = 4 , 

of even and odd pariiy: by minimisii-ig tlic expectatioi~ 
(20a) 

value of the Hami1tonia.n of this aiiharmonic oscilla,- azo4 - !9w2 - 45712 = 0 for p = 6 , (206) 

tor evaluated in the grouncl and first excited stat,e of 

tlie renorinalized SHO sliown in Ec1.(13). One proh- 
(rw5 - /3w3 - 525y/4 = 0 for p = 8 , (20c) 

lein involved in this approa.cIi is t,Iiat one gcts two non- In this way, after determining w, one obtains a basis 

orthogona.1 sets of ba.sis funct,ioils t,o desciibe sta.tes of set t.hat has embodied a. better approximat,e asymptotic 

different parities. This nlaltes t,he cdculatioii of so im beliaviour characterist,ic of each type of pot,ential and of 

properties like for instance tlie traiisit,ion rnornerits be- the defining parameters B ancl 7 .  As it will be shown in 
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the next sec t im,  this effect is remarkahle iii improving 

considerably f,he convergence of tlie eigeiiva.lues. Iiicor- 

porat,ing this procedure into t,he Rayleigh-Rit,z va.ria- 

tiona.1 scheme described above, tlie yieldecl results are 

as good as tEe ones produced by ot,lier met,liods used 

for determini:ig the energies. Moreover, it allows oiie 

to  obtain higlily accurate wave functions. 

E q . ( l l )  was solved by using a sta.ndard diagonal- 

ization routine from the IMSL packages properly mod- 

ified to  run ia extended precision on a. SUN Sparc 2 

workstation. Although in this precision tlie results are 

expressecl with 35 figures, tlie final results have been 

considered ur to 30 digits in order to  avoid round off 

errors. 

Due to thc properties of the basis set used, i t  is quite 

siniple to calculate transition nioments, pj j ,  in terms of 

the niatrix eltmeiit of the moil-ieiituin a.nd position 011- 

erators for tw3 given states I j > a.nd I j > siiice t,liey are 

given by, 

For e m c t  \vaJre functions oiie has 

Thus  if an approxinia.te calculat,ion is performed for 

two states of i.he system, and Eq.(22) is sa.tisfied within 

some precisio.1, i t  gives great credit to the a.pproxima.te 

wave functior S. 

These traiisition inomeilts liave b e m  calculat,ed aiid 

the above criterio11 has been used to verify tlie a.ccuracy 

of the wave functions. From the tra.nsition moments the  

intensities of 1,he transitions of tlie systerns st,udied ha.ve 

been obtained by using the formula 

111. R e s u l t s  and discuss ion 

As has b 3en reviewecl in tlie former sect,ion, tlie 

Rayleigli-Rit2 variational method is computat~ioiially 

very simple, specially i11 the cases where the mat,rix 

elements of H can be detrermiiied in closed foriii. It,s 

great advant:.ge resides in t-lie fact. tliat the eigeiivalues 

and eigenvecl,ors are obtained by solving an ordinary 

eigenvalue probleiii in a given Hilbert sub-space, and 

tlie coiivergence of the results is determiried by increas- 

ing tlie dimension of this sub-space. 

It is also well lmown that  for basis set dependent 

methocls, the  numerical convergence is strongly depen- 

dent on the the basis set used and in particular on the 

scaling of this basis set[20~30'32]. ~ a n e r j e e [ ~ ' ] ,  Balsa e t  

al.[""] aad Haut and ~ a g n u s [ ~ ~ l  have pointed out t,his 

clificiilty and by scaling the basis set used in their cal- 

ciila.t.ions were able t o  improve considerably tlie conver- 

gente of tlieir results, i.e., the nurnber of basis functions 

necessary to  converge a given eigenvalue was reduced 

whenever ai1 optimal scaling paramet,er was introduced 

into the basis set. 

I11 order to study t.his effect on anharmonic oscil- 

la.tors clescribed by Eq.(2), in the context of the  vari- 

atioi1a.l method, rui1 test calculations were performed 

usirig a.rit,limetics double precision. In table I the re- 

sults are presented for the octic anharmonic oscillator 

with 3 = 1.0 and = 10.0. Two groups of eigenenergies 

were computed by using various scaled basis functions 

of clifferent dimensions (c:, w obtained from eq.(20c)) 

a.ncl noii-scaled basis functions with the  same dimen- 

sions (c,,,w = 1). The variation in tlie number of ba- 

sis functions (144=20; 50; 100; 200) has allowed one t o  

study how the  convergence of a given eigenenergy de- 

peiids on tlie number of scaled or non-caled basis func- 

tions. 

Froni the data  of table I it is very clear the  role of 

tlic purameter w i11 reducing the number of functions 

necessary to converge ai1 eigenvalue. For instance, for 

iVí = 20 and n = 10, while the  scaled result (cl0) is cor- 

rect to 3 figures, the  corrcsponding non-scaled result 

(c io )  is nieaiiingless and it only approaches the scaled 

result when the nuinber of non-scaled basis functions 

increases five times. The  otlier da ta  shown also give 

support t o  this conclusion, namely, tha t  t o  obtain a 

specific result in a given precision using a non-scaled 

basis set it is necessary five times more functions than 

wlien a scaled basis is used. These results demonstrate 

clea.rly tlie necessity of tlie scaling of the  basis set if 

one wants to  ca.lculate energies of excited states with 

grea.t accuracy. Tlierefore the calculations for the an- 
liariiioiiic oscillator were performed by adopting as a 

I m i s  set tlie simple harmonic oscillator basis set prop- 

erly sca.led. The results obtained by using arithmetic 

extended precision are shown in Tables I1 to  IV. 
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Table I - Convergence of the energies for H = p2 + x2 + 10.0x%s a function of the diinensionality of the basis set 
M ,  and tlie scaling parameter w 

M 2 O 5 O 100 200 260 (extended precision) 
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Table I1 - Eiiergy eigenvalues for tl-ie potentials V(X)~ = x2 + yx4, ~ ( z ) ~  = -yx4 

- Refs. [30,31,32It This work 
n y = 0.001 
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Table I1 - (Continued) 
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11784.368 555 239 6 (100) 

t The results with 15 figures are from Refs. [30,31], a,nd tlie results witli 30 figures shown in the first column are 
from Ref. [32j. 
$ The numbers in parenthesis are the dimensionality of the basis set used to obtain the corresponding eigenvalue. 
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Table 111 - Energy eigenva.lues for t,he potentials V(z)' = e2 + y26, V ( X ) ~  = -yx6 

Refs. [23,31,32]+ This worlt 
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Table I11 - (Coiltinued) 
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Table I11 - (Contiilued) 
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Table I11 - (Continued) 

The results witli 15 figures are from Refs. [31], the resiilts ivith 10 figures are from Ref. [23] and the results with 
30 figures shown in tlie first column are from Ref. [32]. 
1 Tlie nun~bers in parenthesis are tlie diinensionality of the basis set used to obtain the corresponding eigenvalue. 
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Table IV - Eilergy eigenvalues for tlie poteiltials V ( x ) *  = a2 + yz\ = 

Refs. D3,31,32]+ Tliis work 
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Table IV - (Continued) 



Table IV - (Continued) 
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Table IV - (Cont,inued) 

t The results with 15 figures are from Refs. [31], the result,~ wit,li 10 figures are from Ref.[23] and the results with 
30 figures shown in the first colunm are frorri Rei. [32]. 
$ The numbers in parenthesis are the dimensioilality of the basis set used to obtain the corresponding eigenvalue. 
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In Tables 11, 111 and IV are prescnted selected en- calculated in order t o  verify the accuracy of the wave 

ergies eigenva.lues for the quartic, sextic a,nd octic po- f ~ n c t ~ i o n s .  This has been achieved by cross comparing 

tentials respectively, and for eacli potential were con- tliem, and verifying up to  wliich precision Eq.(22) is 

sidered two va,lues of 3, nm-iely, 3 = 0 and 3 = 1. ~at~isfied.  I t  is clear t,ha.t this convergence criterion is a 

In the  first column of these tables a r e  displayed the  measure of the qualit,y of the  wave functions involved in 

qua.ntum nuinbers t,ogctl-ier with the indices a and b a given transition. In Table V these results are shown 

associated to the eigenvalues for the cases 3 = O and for y = 0. y = 40000.0 and p = 4 , 6 , 8 .  since they 

= 1 ,  respectively. TIie niiml~ers in prtrent,hesis jndi- 11a.ve presented the worst numerical convergence. The 

cate the number of basis functions necessa.ry t,o obt,ain transition mornents from the  ground state up t p  41th 

the indicated eigenvalue converged to 15 figures. Tlie excited state are displayed i11 Table V. 

other shown eigenvalues, were chosen among t,he first. 21 

eigenvalues converged within 30 figures and coinpared 

to those from referentes [23,30,31,32]. Thc da.ta on Ta- 

bles 11,111 and IV extend the  list of known eigenenergies 

for those class of poteiitia.ls,es~ecia.lly t,o the case of pure 

anharmonic potentals (3 = O)! where the literatiiie re- 

sults are rather scarce. The  a.greemeiit of tlie 30 figures 

values with those of ref.1321, obt,a,iiied by a different 

method and ba.sis set,, is a very important rcsult since 

it provides the necessary reliability test for the present 

calculation. For tlie ca.se p = 4, tlie two approaches 

yield eigenvalries with given precision with practically 

the  same number of ba.sis functions. The maxiinun dif- 

ference in the number of basis funct,ion het.ween t.he two 

methods was two. For p = 6 and p = 8, a.s expected, 

the number of ba.sis functions increases i11 order to  yield 

results as precise as  the results for p = 4. For a given 

potential M also increases as g increases, and t8his ef- 

fect is more pronounced for y >_ 10.0. This was also an 

expected result, since it reflects the enl-ia.nccment of the 

anharmonic effects. 

The  deliberate choice in displaying the  transition 

moment,s for the transitions of the kind (0-j) only is 

because it allows one to  estiniate the error of the wave 

f~inction of a given j state.  As the  ground state has an 

eigenvalue converged to  30 digits the  difference between 

tlie values of p$ and pOj (see Eq.(21)) comes from the 

accuracy of the eigenvalue cj  and from the correspond- 

ing wave function Si. Then,  if ~j is known within a 

certain precision, one can have a measure of the  qual- 

it,y of the wave funct,ion di comparing & and p:j. As 

ai; example Iet one consider the case p = 8 in table 

V.  For the transitions (0-.5,11,15) bot,h eigenvalues 

are converged to  30 figures (M = 310) and transition 

~noments  are converged to  29 figures. I t  means that  

the wave function for the  5th,  11th and 15th excited 

sthtes is as accurate as the  corresponding eigenvalues. 

For the transition (0-025) the  eigenvalue is computed 

with 29 figures and the transition moments are given 

with 26 converged figures. Finally, for the transition 

(0-+41), t o  ai1 energy converged t o  22 figures the  tran- 

sition moments are calculated with 19 figures of accu- 

One of the  main advaiitages of the prescnt method is racy. Thercfore, from this calculation it is possible to  

tha t  the wave funct,ion is aut,omatically obt.ained from infer the quality of the  wave function for a given state.  

the diagonalization proccss. In this nray one can easily T h e  link between experiment and theory can be 
calculate properties otl-ier than energy, as for inshnce,  

spectroscopically done by calculating the  relative in- 
the  moments of a11 orders. Tliese moment,s can be read- tensities of the transitions obtained from Eq. (23). 
ily expressed in terms of t-he expansion coeficients ob- 

The  intensities for the pure anharmonic potentials (S = 
tained froin Eq.(lO), by using the operators a and a1 

O, y = 40000.0) are given in table VI. As for the results 
defined in Eq.(14), and Eqs.(l6) and (4). 

shown in Table V these parameters have been chosen 

The  transition inoments pzj and (Eq.(21)) were since they correspond t o  the  worst numerical conver- 
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Table V - 'hansitioil inoineiits fi.0111 tlie grouild state to some excited states for the potentials V(x) = 40000xP, 
p = 4,6,8 for M = 310. 
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Table Ví  - Intcnsities ( I o j )  round to  19 figures 
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gence case. 

Froni t h e x  results one cai1 see t,liat tjhose iiit,eiisi- 

ties sa.t,isfy t:le well lmown T1ioiiia.s-ItcicI~e-I<~~lii~ sum 

r i ~ l e [ ~ "  t11a.t ieads. 

in oiie part iii 10" 

IV. C o n c l u  E 1011s ' 

I t  cai1 be coi~cludecl from tlie preseiit calculat,ions 

that  the Rayleigh-Ritz variational iiiethod, in t,he 

frainemork of successive approximations ancl wit,li a 

variationally xa led  basis set of SHO funct~ions, can be 

used to obtaiii higlily accurate energies and wavefunc- 

tions for yuaitic, sextic arid oct,ic anha.rmonic pol,eii- 

tials. Due to  i,he propert.ies of t,he basis set t,lie nia.t,rix 

clements can be easily conlputed, and tlie wave f~liic- 

tions cai1 be used to calcula.te properties otlier tliaii 

energies to  test the  accuracy of tlie eigeavalues aiid the  

cluality of the wave functions. 

As a variational calculat.ioii a.nd support,ed by hfac- 

Doilald's t l i e ~ r e i d ~ ~ ] ,  the rcsults of this conLribut,ion 

cai1 safely be said to be exact in the given precision. 

It is important t o  realize t,liat the preseiit inelhocl does 

not apply to tlie Han~iltoiliail shown in Ey. ( l ) ,  when 

7 < 0.0. 111 tliis ca.se tliere will be uiibounded st&s 

and consequen;ly, tlie conditioils of discreteriess of the 

eigenvalues aiid quadratic integrabilit,~ of tlie soltitions 

concerned are not sat,isfied, [">'I. 

Finally it should be not,ed that  from the preseiit 

results the tliermodyna.mic properties of tliese a.nl1a.r- 

inonic poteiiti;.ls cai1 be detertnined very a.ccurately. 

In particular cne can easily obtaiii the specific heat 

which cai1 1x3 c:ompa.red t,o some Iinown approxiina.te 

results["]. This calculatioii is uiider ~ a y .  
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