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Vire obtain exact solutions for the time evolution of a quantum linear harmonic oscillator 
coupled to  a second one with quadratic self-interacting terrns. As known in the literature the 
sccond oscillator exhibits the squeezing effect in its quadratures while the first one doesn't 
exhibit it in a coherent state, i. e., the eigenfunctions of the annihilation operator. We show 
tliat due to  the coupling the squeezing effect contagiate the first linear oscillator. We observe 
a!so interesting features in these solutions, as the so called collapse and revival phenomena, 
independent of the existence of anharmonicity in the second oscillator, as recently suggested 
iri the literature. 

Squeezed states for harmonic oscillators (HO) and 

for electromagnetic fields have been investigated in the 

recent years for a variety of physical sit~atioxis[~]. They 

have been ohserved for light in many e ~ ~ e r i r n e n t s [ ~ ]  

and, more rec ently, the observation of squeezing for os- 

cillators has been proposed in the literaturd3]. These 

states do not xdmit a positive non singular diagonal rep- 

resent ations i n the coherent basis, thus becoming exam- 

ples of non classical states. Squeezing occurs whenever 

one of the v~xiances of quadrature phase amplitudes, 

here defined 2s 2 =  =(â+â+),f i  = m ( â - â + ) / i ,  

is below the shot noise leve1 of m. The symbols 

â+(â) stand iòr the raising (lowering) operator for the 

HO, or the creation (annihilation) operator of photons. 

Here we examine the possibility of obtaining the 

squeezing effect in a linear oscillator (HO) coupled to  

another "noniinear" oscillator (QO). The term "nonlin- 

ear" being u ~ e d  here on account for the fact that the 

&O Hamiltonian have quadratic self-interacting terms 

in the lowering operator â and the raising operator â$, 

as distinguished from the HO, which do nol, possesses 

these terrns. 4s is known['I, this "quadratic" Hamilto- 

nian is a candidate to  exhibit the squeezing effect and 

we will verify that the squeezing generated in the &O 

may contagiate one of the variances of the HO, thus 

becoming also squeezed. In the present paper we ob- 

tain an exact ciosed solution for the time evolution of 

the ?(t)  and p(t) operators for both oscillators, allow- 

ing us to  compute exactly their variances as a function 

of time. This time evolution shows interesting features 

such as the so called collapse and revival phenomena, 

which appears to be independent of the existence of an- 

harmonicity terrns, as suggested in the work of Agarwal 

and ~ u r i . [ ~ ]  
Recently, Agarwal and ~ u ~ t a [ ~ ]  investigated the 

combined system consisting of an atomic oscillator in- 

teracting with a squeezed light field, both damped by 

a heat bath. They found (exact) steady state solu- 

tions for the (non-Hamiltonian) dynamical equations 

of the combined system. From these solution they were 

able to analyze relaxation of the atomic oscillator and 

also effects of the squeezed radiation on the vacuum- 

field Rabi splitting. Due t o  the presence of the heat 

bath these authors have employed the (necessary) den- 

sity state formalism, through the Wigner function. In 

our case, however, there is no heat bath, hence our ap- 

proach is different: our system has a Hamiltonian dy- 

namics, which allow us to  employ the pure state formal- 

ism. In this way, we found (exact) undamped solutions 

for the Hamiltonian dynamical equations, of our com- 

bined system. These solutions allow us to  investigate 

the possibility of occurrence of squeezing effect in the 

H 0  interacting with the &O. 

Following Gordon, Walker and ~ouise l l [~]  we take 
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the model Hamiltonian for the whole system as and 

k = (fl + 2f2) . (1.12) 

From Eqs. (1.7) - (1.10) we obtain the Heisenberg 

equations of motion given by 

1 
HHo = fig(Â+Â + I )  , (1.2) 

is the Hamiltonian describing the (free) HO, 

1 
~ ~ o = h f i ( â + â + - ) + h f ~ ( â + ~ + â ~ ) ,  2 (1.3) 

is the Hamiltonian describing the (free) &O and 

If y = 0 the above system of equations decouples 

and we easily find the solutions is their interaction. We also have the commutation re- 

lations 

[â, h+] = [A, Â+] = 1 , 
~ ( t )  = ~ ( 0 )  cosgt + ~ ( 0 )  sin gt , (1.17) 

and 

~ ( t )  = -x(o) sin gt + P(0) cosgt , (1.18) 

for 'the H 0  and 

Next, we set the canonical tran~formation[~1 

1 a = -(i + ip) 
d z  

i (t) = ?(O) cos wot + - '(O) sinwot , (1.19) m 
and 

and their corresponding a Hermitin conjugate opera- 

tors, to obtain the Hamiltonian (1.1 ) in the form $(t) = -&%(O)  sin wot + p(0) cos wot , (1.20) 

for the &O, where wo = @$%. 
In this case, we find the variances for an initial co- 

H = HH0(X, P) + HQ0(2,p) + V( i ,  x,$, i)) , (1.7) 

where herent state 

with AX(t).AP(t) = h/2 and 

and 

with and 

112 
Ap(t) = Ji [I - ( I  - mk) sin 2wot] . m = (fl - 2fz)-l , 
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Here we are using the definitions, for a general op- 
A 

erator O (O =: 2,6 ,  X or P), 

where the brackets stand for the expectation value with 

respect to the eigenfunctions (at time t = O) of the cor- 

responding lowering operator, that is, â in the case of 

2 , 6 and Â in the case of x and P. 

Hence, if y = O the variances of ~ ( t )  and ~ ( t )  of 

the H 0  remains coherent for a11 t 2 O whereas either 

%(t) or fi(t) of the &O exhibit squeezing for t > O,  as 

expected. 

If y # O the Eqs. (1.13) - (1.16) can be decoupled 

using the transformation 

e+ cos 2 -e+ sin $ [ i )  = ( e * r ;  e+cos$ 0 

o O 

where 

The appliczkion of the above transformatiun (which 

corresponds to a rotation plus a dilation[") to the cou- 

pled Hamiltonian given in eq. (1.7) gives 

where 

4 2 4 p1 = siii - + ke-A cos - + y sin 4 , (1.30) 
2 2 

1 
a 2  = c,,s 2f + -e* sin 2- - y  sin 6 , (1.31) 

2 m 2 

>Rz = ge* c01 '2 + ke -h in  '2 - y sin 4 . (1.32) 
2 2 

Hence, the IIeisenberg equations of motion. for the 

new variables a ~ u m e  the form of eqs. (1.13) - (1.16) 

for the case y = O simply by replacing g -t a2,g -, 

P2, l / m  -, al, k -t P1 and therefore their solutions 

have similar forrns as those in eqs. (1.17) - (1.20). We 

find the following results 

Xi(t) = ~ ' ( 0 )  cos w2t + -?(O) sin wzt , (i.33) Jh 

P1(t) = - ~ x ' ( O )  sin w2t + P'(0) COS w2t , (1.34) 
a2 

where w l  = a, wz = and whenever ai,& > 
O and a2P2 > O , otherwise hyperbolic solutions occur, 

as is the case for intermediate values of the parameter 

y. For small or large values of y , how small or how 

large depending on the values of the other parameters 

m, k and g , we have always real oscillatory solutions 

as shown in eqs. (1.33) - (1.36). 

Next the application of the inverse transformation 

of eq. (1.25) to the solutions given by eqs. (1.33) - 
(1.36) results in the solution for our original coupled 

system as given by 
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and 

P ( t )  = 

for t h e  H 0  , and 

- cd [cos wl t  - cos w2t] ?(O) + [bd coswlt  + ac cos wzt]  ~ ( 0 )  , 

- ab [coswlt  - cos wzt] $(O) + [bd cos w i t  + accosw2t] P ( o ) ,  

and 

+ [ac cos w l t  + bd coswzt]  i ( 0 )  - ab [cos w l t  - cos w2t]  ~ ( 0 )  , 

+ [UC cos w i t  + bd cos w2t]  @(O) - cd [COS w1t - cos w2t] P (O)  , (1.40) 

for t h e  &O, where 

and 

-* 4 b = e T s i n - ,  
2 (1.42) with X , 4  given by eqs. (1.26) and (1.27). 

B y  applying our definition ( eq .  (1.24))  t o  t h e  above 
A 4 c = e ? c o s - ,  (1.43) solutions, we find, after some algebra, t h e  variances 

2 

A X ( t )  = 8 [d2(b2 + c2) cos 'w1t  + c2(a2 + d 2)  cos 'w2 t  + d2-(a2 Pi  + d 2 )  pin 2 y l f  

0 2  + c2-(b2 + C') sin ' w z t  + 2cd(ab - cd) cos w l t  cos w2t  
B 2  

+ 2cd J=(cd - ab) sin w i t  sin w2t 
Pi P 2  
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2 0 2  c -(a2 + d2) sin 'w2t + 2ab(cd - ab) cos wlt cos w2t 
f f 2  

+ 2 a b ~ ( a b  - cd) sin wlt sin w2t , 
ff1 a2 I + 

ff 1 Ar( t )  = [a2(b2 + C') cos 'wlt + b2(a2 + d2) cos 'w2t + a2-(a2 + d2) sin 'wlt 
Pl 

+b2-(b2 + C') sin 'w2t + 2ab(cd - ab) coswlt cosw2t 
P2 

+2ab/=(ab - cd) sin wlt sin w2t , 
Pl P2 I ' 

Ap(t) = 8 [c2(a2 + d2) cos2wlt + d2(b2 + C') cos2w2t + c2&(b2 + C') sin 'w1t 
ff 1 

2 P2 d -(a2 + d2) sin 'u2t + 2cd(ab - cd) cos wlt cos w2t 
f f 2  

+ 2 c d p ( c d  - aà) sin wlt sin wzt 
f f l f f 2  1 + 

The resulx given in eqs. (1.45) - (1.48) are plotted 

for some values of the parameters m, k, g and y for the 

H 0  and for the QO. These are shown in Figures 1, 2, 

5, 6, for the H 0  and Figures 3, 4, 7, 8 for the &O. 

Solid lines are for variances A X  and Ax, while dashed 

lines are for variances A P  and Ap. The vertical scales 

are in units of m. From the behavior of the vari- 

antes shown in these plots we point out the following 

interesting fedxres: 

i - if < = mk = 1 then fi = O (eqs. (1.11) and 

(1.12)) and there is no squeezing for the &O. As 

. a  consequence no squeezing is "transferred" to the 

HO, wit h both oscillators remaining in a coherent 

state if their initial states are coherent. 

ii- if (' = nzk > 1 then f2 # 0,  and the QO exhibits 

squeezi~ig in one quadrature for small value of the 

coupling constant y (Figure 3), but the squeez- 

ing is alternating for both quadratures for large 

values cif y (Figure 4). In this case the squeez- 

ing is transferred to the H 0  and contrary to the 

corresponding &O, the squeezing in the H 0  is al- 

I 
ternating for both quadratures for small values 

of y (Figure 1) while existing only in one of the 

two quadratures for large values of y (Figure 2). 

Also we notice that whereas variance A P  of the 

H 0  starts squeezing it is the variance Ax of the 

QO that starts squeezing. Hence the variance A P  

(AX) of the H 0  has a behavior similar to the 

variance Ax (Ap) of the &O when C = mk > 1. 

iii- if C = mk < 1 we have again f2 # O. Figures 5, 

6, 7, 8 stand for this case and they show a similar 

behavior as in Figures 1, 2, 3, 4 the difference be- 

ing a change in the roles played by the variances 

A X  H A P  and Ax H Ap when we pass from 

C > 1 to c < 1. Compare Figure 5 with Fig- 

ure 1 (Figure 7 with Figure 3) and Figure 6 with 

Figure 2 (Figure 8 and Figure 4). Again there is 

here also a change of behavior when we pass from 

a small value of y (y = 0.2) to a large value of y 

(y = 2.0), as commented in item ii. 
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Figure 5: Variances of the H 0  as function of time, for pa- 
rametersvalues m = 0 . 5 , k =  1 , g =  1, and y = 0 . 2 ; ( = 0 . 5 .  

Figure 1: Variances of the H 0  as function of. time, for pa- 
rameters values m  = 1.5, k = 1,g  = 1, and y = 0.2; C = 1.5. 
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Figure 6: Variances for the H 0  as function of time for pa- 
rameters values m = 0 . 5 , k  = l , g  = 1 and y = 2.0,Ç = 0.5. 

Figure 2: Variances of the H 0  as function of time, for pa- 
rameters values m  = 1.5, k = l , g  = 1, and y = 2.0; ( = 1.5. 
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Figure 7: Same quantities as in Figure 5, for the QO. Figure 3: Same quantities as in Figure 1, for the QO. 
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Figure 8: Same quantities as in Figure 6, for the QO. Figure 4: The  same as in Figure 2, for the QO. 
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Other inta2resting features displayed by this sys- 

tem, such as collapses and revivals of oscillations in 

the variances (see. Figures 1, 5), blow-up in vari- 

antes for asyinptotic times and intermediate values of 

y (y - 0.9), statistics of excitations, etc. are being 

investigated a.nd will be discussed in details elsewhere. 

As final remarks we mention that our H 0  acted 

upon by the &O displays features that are somewhat 

similar to  those displayed by a H 0  acted upon by a 

tirne-dependent magnetic fieldfg1. AIso, we should men- 

tion that a tv.0-leve1 atom interacting with a radiation 

field originate-, squeezing in the field, under certain con- 

ditions, which emerges from the squeezing generated in 

the atomic di-?ole operators[lO]. 
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