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Semiempirical formulas for dipole excitation cross sections necessary in solving plasma kinet-
ics problems are mainly based on the Bethe approximation or its modifications, for example
the effective Gaunt factor approximation. The published values for the effective Gaunt fac-
tor, g(z), are the same for all ions irrespective of the ionic charge or the orbital moments
involved in the transitions in contradiction with experimental results. For explaining this
difference we use a simple analytical representation of cross sections for ions based on a
modification of Born approximation. An expression for the Gaunt factor is obtained that
for high energies coincides with previous results, but for low energies shows a noticeable
difference depending of the type of transitions (ns-np or np-nd, for example) and also a
certain dependence of g(z) on the atomic number, Z, and the core charge Z,. The formula
for cross sections contains two parameters C and ¢; C can be calculated from the Bates-
Damgaard approximation whereas ¢ is calculated using the general expression for the Born
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approximation.

I. Introduction

The optically allowed dipole transitions Al =
41, AS = 0) induced by electron impact on ions are
very important processes in different branches of gas
discharge and plasma physics. Due to the scarcity of
experimenta’ values, the data on cross sections and ex-
citation rates are generally taken from theoretical cal-
culations.

There are several semiempirical formulas for esti-
mating dipols excitation cross sections in neutral atoms
and ions{!). For high energies of the incident electron,
the excitation cross section for optically allowed transi-
tion is expressed in terms of the oscillator strength by
means of the Bethe approximation. The widely used
semiempirical formula of Van Regemorter is based on

the Bethe formulall"?] and reads, in atomic units,

o = (87/v3) f(Ry/AEYg(2)/z, )
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with ¢ = ¢/AE, where ¢ is the incident electron en-
ergy, f is the absorption oscillator strength, Ry is the
Rydberg energy and g(z) is the Gaunt factor. When

z — oo we obtain
9(z) = (V3/2m) Inz, (2)

and eq. (1) becomes the Bethe formula.

Closely related with cross section calculations is the
semiempirical approach of Griem for linewidths calcu-
lations based in the impact approximation,[s"‘] where

the thermally averaged Gaunt factor is given by

<g>= / g(O)exp(—¢/KT)A(/KT),  (3)

where the notation of Ref. [5] is used.

The tabulated values of g(z)!''#) are the same for
all types of ions and transitions. However, in published
papers experimental dependences of g(z) on the core
charge Zc 1®] and the orbital quantum numbers of the
transition!® were showed.

The above mentioned dependences are hidden in

numerical calculations, but it is possible to find them
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when cross sections are expressed in analytical formu-
lae. In this paper we start from a semiempirical depen-
dente of a ( ~ih a modified Born approximation, valid
alsofor ions and an expression for g(z) is obtained that
for x — oo coincides with eg. (2) and for low z values
is dependent of the type of transition explaining the
experimental diference between g,_, and g,_g4.

We systematize and generalize the results presented
for Sobelman et al.l'l using the Born approximation
(not valid for ions near the threshold) and afew values

quoted using the Coulomb approximation.

II. Theory

Cross sections (or collision strengths) calculated by
means of diverse approaches can be expressed in various
analytical simple forms("=19 but for the purposes o
this paper a form similar to the expression given hy
Sobelman et al.lll is choosen. The cross sections can
be expressed for the multipole order ‘H = |€y — ¢4| (for
simplicity, the case H = 1 is evaluated) in the Born

approximation as

B

o =

C(Ry/AE)*(D} s/g0)
[(z — 1)/2)1"?In(15 + ) /(z — L+ @), (4)

where ¢ and C are related to the constants tabulated
in Ref. [1] (after adjustments by the method of least
squares), D% is the angular part of the line strength
S, and gy is the degeneracy of theinitial level. Asit is
well known, this approximation is not suitable for ionic

lines but the empirical modification
o(z) = oBle+3/(1+2)], " (5)

gives a good description of the cross sections including
the finite values at threshold!*4,

Then, it is possible to write eg. (4) in form

o = (Ry/AE) (D}s/90)CF(z),  (6)
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where

F(z) = {l(z* +2)/(z° + =+ 3)]/*(z + 1)
In[(2? + 162 + 18)/(1 + 2))}/(2? + 2 + ¢ + pz).
(7)

From the behavior of o(x — o0) and the relation
f = S(AE/Ry)/3go it follows that

C = (4/3)(AE/Ry)l; 13, ®)

wherels, isthe greater of the angular moments involved

in the transition and

I = /Po(r)Pl(r)rdr , 9)

and in the Bates-Damgaard approximation they can be
calculated in function of effective quantum numbers,

the core charge and the tabulated function ®13. |t

must be noted that the quoted values of Gt after mul-

tiplication by (Tp/71)%/? are similar to those calculated .
using eq. (9), although the discrepancy can be of the
order of 10%, where Ty and T} are the term values of

theinitial and final levels.

On theother hand, fromegs. (1), (2) and (7) resuits

9(z) = (/3/2m)2F (z), (10)

and, at the threshold (z = 1)

o(1) = 1.22/(3 + 2). (11)

The evaluation of ¢ is more involved and we gener-
alize the quoted values from Ref. [1] after least squares
fitting. Cross sections calculated with egs. (6) and (7)
at x = 1 correspond to the calculation using the general

expression of Born

oB = (8Ry/e)(Dis/90)(@H +1)(2t0 + 1)(21 + 1)
2
(%6 7%) [raorcsa

with
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oo
R(e) = / Poe(r)ji(qr) P (r)dr,  (13)
0
fore= 2.6AF (x = 2.5), as can be viewed from eg. (5).

In Eq. (12) P,¢ and P, are expressed in terms
of Whittaker functions as in the method of Bates-
Damgaard; j (qr) is tlie spherical function o order 1:
ji{z) = [(sina)/z —cos z]/z. Theintegral (13) issolved
using Gauss- Laguerre method and further integration
of eq. (12) between kmax = €/2+ (c— AE)/? and
kmin = €1/2 — (e~ AE)'/? is carried out using the Simp-
son’s rule. It was verified that for x — cc the proper
limit for tlie collision strength given by the Bethe for-

mula
zo = 4f (Ry/AE)?In x (14)
isconsistent with thef values obtained from the Bates-

Damgaard method!!?, asit must be.

Introducing the quantity

B(ly,£3;2.5)

@+ 1) [ (R@Padn

92.5(AE/Ry)gooB(2.5)/8D%

(15)
thefinal resuls; for ¢ is
. 12 RyD?
p=05 éﬂlﬁdgﬁi_g ) (16)

After integrations, the values of ¢ can be adjusted
in terms of v, (the effective principal quanturn number

of theinitial level) and Av = 11 — v with tlie following

polynomials

g(s—p) = ﬁ% Pvs)(Avsp)', - (1T)
and _

9(p—d) = éQi(Vp)(AVp—d)i, (18)

valid at least for o = 1—-5and Av = 0.1-1.0. In Egs.

Table 1. Fitting polynomials for ¢,—, and ¢,—4

a Ps—p
Power of v,
i 4 3 2 1 0
4 -0.78 -8.80 82.87 -174.74 126.27
3 136 18.62 -162.55 347.56 -251.30
2 -0.81 -12.50 104.44 -224.50 162.20
1 0.18 3.10 -25.50 57.40  -39.25
0 -0.04 0.12 0.27 -1.07 0.92

ie. Py(vs) = —0.78 v —8.80 12 +82.87 12 —174.T4 v, +
126.27

a. Pp—d
Power of v,
1 4 3 2 1 0
4 153 -2383 13503 -32125 2672.6
3 -240 3835 -2208.7 5316.1 -4443.9
2 9.2 -157.8 9625 -2403.3 20421
1 -0.07 8.3 -81.5 2551 -2374
0 -024 2.8 -10.7 16.8 -9.5

(17) and (18) P and Q are polynomials in v, (v, and

v, respectively), whose values are in Table 1.

II1. Results and conclusions

Tables 2a and 2b show tlie calculated values for
(s —p) and ¢(p — d) in terms of v, and Av. In Table
3, ¢ vaues and g(x = 1) are shown for several strong
ns-np and np-nd transitions of one, two and three times
ionized nohle gases using the very wel studied spectra
Of these elements!®]. Despite the fact that radial inte-
gras I; and B(fg,41;2.5) are calculated using Whit-
taker functions (and not Hartree-Fock valuesfor exam-
ple) is noticeable that for a same element, g(1) follows
atrend of the form!® g(1) ~ a - b/Z,, and for a same
lon gsp ~ 1.5 g, Ref. [6]. Furthermore, linewidths for

single ionized noble gases calculated using the present
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Table 2a. Transition s-p, parameter ¢

Ay The effective principal quantum number v,

150 2.00 250 3.00 350 400 450 5.00

d0 32 047 060 073 087  1.00 113 1.25
200 .74 102 127 152 177 201 226 251
30 115 156 193 231 269 3.08 347 3.88
40 157 213 263 318 373 431 491 553
500 202 275 345 420 499 583 6.73 7.68
.60 253 348 444 550 664 788 9.24 10.75
.70 313 441 b75 725 894 10.83 1297 15.33
80 389 567 759 984 1246 1550 19.06 23.10
90 493 751 1042 1396 18.17 23.15 2894 35.59
1.00 668 10.44 1489 20.00 2542 30.69 35.33 38.81

Table 2b. Transition s-p, parameter ¢

Ay The effective principal quantum number v,

2.00 250 3.06 350 4.00 450 5.00

10 47 0586 061 077 091 150 1.18
20 86 107 129 157 182 209 234
30 123 153 193 234 275 316 357
.40 159 200 260 316 376 437 5.00
.50 148 250 326 411 494 584 6.76
.60 1.86 353 411 534 644 777 915
.70 229 457 517 692 846 1046 12.55
.80 280 570 658 9.0 1142 1456 1797

.90 3.44 708 8.61 1240 16.18 2142 27.38
S 492 ARQ 16.96 92432 2V KRR 417N
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formalism['!! are in very good agreement with experi-
ments where the ratio experimental widths/calculated
widths is =~ C9.

In conclusion, the empirical modification (5) applied
to the analyt.cal expression of Sobelman et al. for Born
crosssections(!] permits to explain several experimental
results and i is useful for rapid computations in gas

discharges and plasma modeling.

Table 3. C'aunt factor for selected strong lines of

ionized noble gases

s-p transitions

Element P é’;(})_

Ne I (3s-3p) 1.85 0.18
(4s-4p) 2.75 0.14

Ne IIT (3s-3p) 1.44 0.21
(4s-4p) 2.07 0.17
(5s-5p) 2.71 0.15

Ar I (4s-4p) 2.06 0.17
Kr I (55-5p) 9.43 0.16
(6s-6p) 3.54 0.12

Kr IIT (5s-5p) 1.98 0.18
Xe II (6s-6p) 2.53 0.15
(7s-7p) 3.73 0.12

Xe III (6s-6p) 0.15

p-d transitions

Element ® g(1)

Nell (3p-3d) 2.86 0.14
(4p-4d) 497 0.09
(5p-5d) 7.37 0.07

Ne II1 (3p-3d) 2.28 0.16
(4p-4d) 3.16 0.13
(5p-5d) 4.37 0.10

Ar I (4p-4d) 5.70 0.08
Kr I (5p-5d) 7.69 0.07
(6p-6d) 11.80 0.05

Xe II (6p-6d) 7.11 0.07

Xe III (6p-6d) 6.16 0.08
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