


D. Bertuccelli and Hector O. Di Ilocco 

when cross sections are expressed in analytical formu- 

lae. In this paper we start from a semiempirical depen- 

dente of a ( ~ )  in a modified Born approximation, valid 

also for ions and an expression for g(x) is obtained that 

for x -i co coincides with eq. (2) and for low x values 

is dependent of the type of transition explaining the 

experimental diference between gSdp and gp-d 

We systematize and generalize the results presented 

for Sobelman et al.['] using the Born approximation 

(not valid for ions near the threshold) and a few values 

quoted using the Coulomb approximation. 

11. Theory 

Cross sections (or collision strengths) calculated by 

means of diverse approaches can be expressed in various 

analytical simple f o r m ~ [ ~ - l ~ I  but for the purposes of 

this paper a form similar to the expression given hy 

Sobelman et al.ll] is choosen. The cross sections can 

be expressed for the multipole order 3t = [eo - ell (for 

simplicity, the case 'H = 1 is evaluated) in the Born 

approximation as 

where cp and C are related to  the constants tabulated 

in Ref. [I] (after adjustments by the method of least 

squares), D& is the angular part of the line strength 

S, and go is the degeneracy of the initial level. As it is 

well known, this approximation is not suitable for ionic 

lines but the empirical modification 

gives a good description of the cross sections including 

the finite values at threshold['l]. 

Then, it is possible to write eq. (4) in form 

where 

From the behavior of u(x -, co) and the relation 

f = S(AE/Ry)/3go it follows that 

where I>  is the greater of the angular moments involved 

in the transition and 

and in the Bates-Damgaard approximation they can be 

calculated in function of effective quantum numbers, 

the core charge and the tabulated function It 

must be noted that the quoted values of C['] after mul- 

tiplication by ( T ~ / T ~ ) ~ / ~  are similar to those calculated . 

using eq. (9), although the discrepancy can be of the 

order of 1096, where To and Ti are the term values of 

the initial and final levels. 

On the other hand, from eqs. (I),  (2) and (7) results 

and, at the threshold (x = 1) 

g(1) = 1.22/(3 + 2cp). (11) 

The evaluation of cp is more involved and we gener- 

alize the quoted values from Ref. [I] after least squares 

fitting. Cross sections calculated with eqs. (6) and (7) 

at x = 1 correspond to the calculation using the general 

expression of Born 

with 
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c0 

R(<!) J I  j e (13) 

for E = 2.5Al: (x = 2.5), as can be viewed from eq. (5). 

In Eq. ( I  2) Pne and P,le1 are expressed in terms 

of Whittaker functions as in the method of Bates- 

Damgaard; j (qr) is tlie spherical function of order 1: 

jl(x) = [(sinr)/x -cos x ] / z  The integral (13) is solved 

usinq Gauss- Laguerre method and further integration 

of eq. (12) hetween k,,, = c1I2 + (c - AE) ' /~  and 

kmi, = d I 2  - (c- A E ) ' / ~  is carried out using the Sirnp- 

son's rule. It  was verified that for x -+ cc the proper 

limit for tlie collision strength given by the Bethe for- 

mula 

xa  = 4 f ( R ~ I A E ) '  1n x (14) 

is consistent with the f values obtained from the Bates- 

Damgaard me thod[12], as it must be. 

Introducing the quantity 

Table 1. Fitting polynomials for and c p , - d  

Power of v, 

a. pp-d  

Power of vp 

1 4 3 2 1 o 
4 15.3 -238.3 1350.3 -3212.5 2672.6 
3 -24.0 383.5 -2208.7 5316.1 -4443.9 
2 9.2 -157.8 962.5 -2403.3 2042.1 
1 -0.07 8.3 -81.5 255.1 -237.4 
O -0.24 2.8 -10.7 16.8 -9.5 

the final resuli, for /p is 

After integrations, the values of cp can be adjusted 

in terms of v0 (the effective principal quanturn number 

of the initial level) and Av = v1 - v0 with tlie following 

polynomials 

4 

and 

4 

g(fl- d) = C ~ i ( ~ p ) ( ~ v p - d ) ~ ,  (l8) 
i = O  

valid at least for v0 = 1 - 5 and Av = 0.1 - 1.0. In Eqs. 

(17) and (18) P and Q are polynomials in v0 (v, and 

vp respectively), wliose values are in 'Table 1. 

111. Results and conclusions 

Tables 2a and 2b show tlie calculated values for 

y(s - p) and p(p - d) in terms of v. and Av. In Table 

3, cp values and g(x = 1) are shown for severa1 strong 

ns-np and np-nd transitions of one, two and tliree times 

ionized nohle gases using the very well studied spectra 

of tliese elementsi6]. Despite the fact that radial inte- 

grals Il and B( lo , l l ;  2.5) are calculated using Whit- 

taker functions (and not Hartree-Fock values for exam- 

ple) is noticeable that for a sa.me element, g(1) follows 

a trend of the form15] g(1) Y a - b/Z,, and for a same 

ion gSp = 1.5 gpd Ref. [G]. Furthermore, linewidths for 

single ionized noble gases calculated using the present 
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Table 2a. Transition s-p, parameter 4 

A v  The effective principal quantum number v, 

Table 2b. Transition s-p, parameter 4 

A v  The effective principal quantum number v, 
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formali~m['~] are in very good agreement with experi- 

ments where the ratio experimental widths/calculated 

widths is x C.9. 

In conclu~.ion, the empirical modification (5) applied 

to the analyt. cal expression of Sobelman et al. for Born 

cross sections[l] permits to explain severa1 experimental 

results and ii; is useful for rapid computations in gas 

discharges and plasma modeling. 

Table 3. Caunt factor for selected strong lines of 

ionized noble gases 

s-p transitions 
Element 'P g( i> 

Ne 11 (3s-3p) 1.85 0.118 

p-d transitions 
Element P d'L) 

Ne I1 (3p-3d) 2.86 0.14 
( 4 ~ - 4 4  
(5~-5d)  

Ne 111 (3p-3d) 
( 4 ~ - 4 4  
( 5 ~ - 5 4  

Ar I1 (4p-4d) 
Kr I1 (5p-5d) 

(6~ -6d )  
'Xe I1 (6p-6d) 
Xe I11 (6p-6d) 
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