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We study the mean-field version of the axial next-nearest-neighbor Ising (ANNNI) model 
with an arbitrary intralayer coupling. Within the mean-field theory there is the possibility 
of emergence of commensurate phases with the same period but with different symmetries. 
We study the transition between these different types of commensurate phases as a function 
of the intralayer coupling. We also study the dependence of the accuinulation points on the 
strength of the intralayer coupling. 

I. Introduction 

The axial next-nearest-neighbor Ising, or ANNNI 

model, is one of the simplest models exhibiting mod- 

ulated structures. In this model each spin Si = rtl 
interacts with nearest-neighbor coupling Jl > O and 

next-nearest-neighbor coupling Jz along one lattice di- 

rection, and with nearest-neighbor ferromagnetic cou- 

pling Jo > O within the layers perpendicular to the axial 

direction. The ANNNI model has been actively studied 

during the past decade and the subject has matured to 

the point of receiving two extensive r e v i e w ~ [ ~ ~ ~ I .  How- 

ever the model presents a very rich behavior and many 

of its aspects remain to be explored. 

Recently the mean-field phase diagram of the 

ANNNI xnodel was investigated for arbitrary intralayer 

interaction Jo t3l4], thus extending the previous works 

mostly limited to the case Jo = J1. The .main motiva- 

tion in carrying out this kind of study was to investigate 

to what extent the generic aspects of the phase diagram 

of the ANNNI model is sensitive to the variation of Jo .  

Interestingly enough, it was observed that some qual- 

itative changes in the phase diagram is brought about 

by the decrease of J o ,  most notably the pinching of 

some of the commensurate phases, as can be seem in 

figure 1 showing the phase diagram for J o  = 0.2Ji. The 

pinching effect is intimately related to the appearance 

of commensurate structures with disordered (zero mag- 

netization) layers and also of commensurate structures 

without definite symmetries. 

1- O= $= 0.2 PARA 

Figure 1. Global ~hase  diagram of the mean-field ANNNI 
model for Jo = 0.2 JI . 

In this paper we wish to reexamine the above men- 

tioned effects in greater detail and also to investi- 

gate other aspects of the problem left out by previous 

works. A11 the calculations will be carried out within 

the conventional mean-field approximation. Although 

the mean-field theory of the ANNNI model for Jo = Jl 
has revealed to be extremely successful in predicting 

the qualitative features of the phase diagram, there are 

no grounds for supposing that the same situation holds 

for J o  < J l .  In fact, very recent results based on im- 

proved mean-field approximation, where the model is 

treated exactly along the axial direction of competing 

interacti~ns[~l and Monte Carlo ~imulations[~1 provide 

strong evidence against the existence of commensurate 
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phases with disordered planes in the real ANNNI model. 

Therefore it is possible that some of the results pre- 

sented in thi-, paper, in particular those which assume 

the existence of commensur ate phases with disordered 

planes, will riot be realized in the real ANNNI model, 

but rather reflect the mathematical properties of the 

mean-field equations of the ANNNI model. However 

the disappearance of the accumulation points occurs 

for rather hit:h value of Jo, namely Jo < 0.75J1, and 

may be relevant to  the real ANNNI model. 

11. Mean-field equat ions  

The free-energy functional of the ANNNI model in 

the mean-field approximation is given by (- .,ee, e. g., 

REf. [TI), 

to the fact that the matrix M is symplectic, the secular 

equation becomes 

X 4  - (tr M ) X ~  + (tra M ) X ~  - (tr M)X + 1 = O . (5) 

This is a reciprocal equation which can easily be solved 

in terrns of quadratic equations. 

111. Phase  t ransi t ions within commensura te  

phases 

When Jo < J 1 ,  that is p < 1, there is the possibil- 

ity of phase transitions between commensurate phases 

with same period but different symmetries. Conven- 

tional commensurate phases, those found for p = 1, will 

be called of type A and are characterized by the fact 

that the centers of inversion symmetry are located mid- 

way between two planes. Commensurate phases with 

disordered planes, which can be found for p < 1, will 

be called of type B and have the centers of inversion 

symmetry located on the planes. Finally, commensu- 

rate phases with no centers of symmetry of any kind 

will be called of type C, and usually are present be- 

tween commensurate phases of types A and B. In this 
where p = Jo/Ji, K = - J2/Jl , Mn is the magnetization 

section we study numerically the existence and depen- 
per spin in the nth layer, and N 3  is the number of spins 

dence of these phases on the parameter p. In particular 
in the system. In what follows we will adopt the unit 

we determine the critica1 value p,(q), for a given com- 
system such t'iat kB = 1 and Ji = 1. The condition 

mensurate phase q ,  such that for p < p,(q) there is the 
that F be an extremum with respect to Mn gives 

possibility of type B and C phases. We remark that 

To be physically acceptable, an extremum should 

at least be mei>astable, that is, a local minimum of F. 

For a given peibiodic solution of period Q to be a local 

minimum it is necessary that the matrix 

where 

has no complex eigenvalues of unit modul~s["~]. Due 

in this paper q denotes the reciprocal of wavelength or 

wavenumber divided by 2 ~ .  

The commensurate q = 1/6 phase shows the most 

pronounced effect as the parameter p is varied and it 

is the easiest to study. Figure 2 shows, for K = 0.5, 

the relative dominance of different types of commen- 

surate 116 phase as a function of the parameter p in 

the T versus p plane. The transition lines TA and TB 

between A, B and C phases are of second order[ll], 

and were determined by monitoring the eigenvalues of 

the secular equation (??). In this case we found nu- 

merically p,(1/6) = 0.3 in agreement with analytical 

calc~lations[~]. Notice that as p decreases below 0.3 the 

B-phase becomes increasingly dominant until at  T = O 

it dominates completely. Of course this is an artifact 

of the mean-field approximation, since for p = O the 

model reduces to a set of non-interacting chains, which 

has no ordered phase. The C-phase, on the other hand, 
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Figure 2. Transition temperatures between different types 
of commensurate (3) or q = 116 phases for K = 0.5 in the T 
versus p plane. 

p = JJJ, 
Figure 3. Width of the 116 C-phase as a function of p for 
K = 0.5. 

first increases tor decreasing p and then decreases again 

to  zero for T = O, as shown in Figure 3. 

The study of commensurate phases other than q = 
1 / 6  is more difficult not only because the widths of com- 

mensurate phases are narrower but also because they 

are slanted relative to the T axis. Let us denote by 

the average value of K between the left (K , )  and right 

(K,) boundaries of the 3/14 phase. The line Z ( T )  fol- 

lows the middle of the 3/14 phase and is equivalent to 

the line K = 0.5 for the 1 /6  phase. Figure 4 shows the 

curves K ( T )  for different values of the parameter p. The 

heavy line indicates the transition between the A and B 

Figure 4. Graph of SE as a function oi temperature for 
different values of p for 3/14 phase. The bold line indi- 
cates the transition between different types of commensu- 
rate q = 3/14 phases. 

phases. The phase C is also present but it is too narrow 

to be indicated at the scale of the figure. By extrapolat- 

ing the curve of figure 4 we found numerically that the 

phase B exists only below p = pc(3/14) = 0.2316 . . .. 
In a similar way we have also studied the commen- 

surate phases 118 and 1/10. We found numerically 

pc(1/8) = 0.2095.. . and p c ( l / l O )  = 0.1904.. .. 
~akan i sh i [~ ]  provides an analytic expression for 

pc(q) which gives the results pc(3/14) = 0.2867 . . ., 
pc(1/8) = 0.2352. . . and p c ( l / l O )  = 0.2050. . .. We 

tend to attribute the discrepancies between the nu- 

merical and analytical calculations of pc(q), except for 

q = 116, to  the neglect of higher order harmonic terms 

in the analytical calculations carried out by Nakanishi. 

In fact, we performed an analytical calculation taking 

into account up to the eighth harmonic in the expansion 

of the magnetization and found 

in full agreement with numerical calculations. 

IV. Evolution of  the acciirnulation poin ts  

The transition between cornmensurate phases or be- 

tween commensurate and incommensurate phases in 

the ANNNI model can be described by the mechanism 
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of creation of defects (also called walls, discommen- 

surations or s o l i t ~ n s ) [ ~ ~ ] .  To be specific, let us con- 

sider the phase q = 116. At low tempei-atures the 

right boundzry of the phase 116 is composed of seg- 

ments of first-order transition lines to the phases of the 

form (23"). As the temperature increases the segments 

become shorter and they pile up as j -+ co at the 

accumulation point corresponding to the temperature 

T,'(p = 1) = 2.8563.. . [11112]. Above this temperature 

the 116 phasr undergoes a continuous comensurate- 

incommensurate transition. Thus the accumulation 

point separates the boundary composed of first-order 

transition lines from the boundary consisting of con- 

t inuou~ comrnensurate-incommensurate transition. A 

similar behavior is found also in the left bouindary, the 

transition being to the phases of the form (433) and the 

accumulation point corresponding to a different tem- 

perature TA(/)). It  should be remarked thal the tran- 

sitions to thc phases (433) may be cut short by the 

intervening ferromagnetic phase and have no real exis- 

tente. 

The simplt:st way to locate the accumulai,ion points 

is to use the fact that the eigenvalues of the matrix 

M in the phase 116, given by the solutions of equa- 

tion (??), chimge from complex to real, which is re- 

lated to  the cliange over of the interaction between de- 

fects at large distances[l2]. Figure 5 shows the depen- 

dente of T,P(p) and ~ ; f ( ~ )  on the parameter p for the 

phase (3). The most interesting aspect of these curves 

is that they t m d  to zero simultaneously for p = 0.75, 

indicating that for p < 0.75 a11 the boundaries of the 

phase 116 consist of lines of continuous commensurate- 

incormnensurate transitions. A similar behavior is ob- 

served for the ,~hases of the form (2i3). The dependence 

of c(p) for tlie cases j = 1 and j = 2 are also shown 

in figure 5. Ai, low temperatures it is possible to show 

that these cur fes behave as 

thus confirming the numerical result that p -, 314 as 

T -+ O. This iridicates that a11 the phases (2j3) undergo 

a second ordei commensurate-incommensurate transi- 

tion for p < 3/4. 

Figure 5. Temperatures of the right (R) and left (L) accu- 
mulation points of the (3) or 1 /6  phase as a function of the 
parameter p. Also shown are the temperatures of the right 
accumulation points of the phases (23) and (2'3). 

V. Concluding remarks 

We investigated two aspects of the mean-field theory 

of the ANNNI model when the intralayer interaction 

Jo is weakened relative to the interlayer interaction Ji. 
The first aspect is the occurrence of phases with dis- 

ordered planes. We obtained numerically various val- 

ues of p(q) = JolJi below which disordered phases ap- 

pear, checking the previous analytical calculations by 

~akanish i [~ l .  The values of p,(q) are, however, rather 

small, and in the light of recent r e s u l t ~ [ ~ ~ ~ ] ,  it is likely 

that these phases are artifacts of the mean-field approx- 

imation and have no counterpart in the real ANNNI 

model. The second aspect we have investigated con- 

cerns the dependence of the location of the accumula- 

tion points on the parameter p(q) = J o / J i .  For the 

phases of the form (2i3) we deterrnined numerically as 

well analytically, that the accumulation points disap- 

pear below p = 3/4, indicating that a11 the boundaries 

of these phases become second order. 
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