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We give a proof of exponential localization in the Anderson model with long range hopping 
based on a multiscale analysis. 

I. Introduction 

We consider the random Hamiltonian 

where 

1. r is a translation invariant self-adjoint operator 

with exponentially decaying matrix elements, i.e., 

r ( ~ ,  y )  = #(x - y) for some function 4 on zd with 
- 

4(-x) = 4( x) for which there exist C < co and 

y > O such that 

2. V(x) , x E zd, are independent identically dis- 

tributed random variables with common proba- 

bility tiistribution p.  

In the usu;tl Anderson model['] r = -A, where 

A(x, y) = 1 if lx - yl = 1 and zero otherwise. 

In this article we are concerned with localization. 

We say that the random operator H exhibits localiza- 

tion in an energy interval I if H has only pure point 

spectrum in I with probability one. We have exponen- 

tia1 localization in I if we have localization and a11 the 

eigenfunctioiis corresponding to eigenvalues in I have 

exponential decay. Localization for -A + V has been 

extensively s t ~ d i e d [ ~ - ' ~ ] .  

In this article we exténd the von ~ re i fu s -~ l e in [ '~ ]  

proof of localization to  random Hamiltonians of the 

form given in eq. (1.1). (Our methods also extend 

the original von ~ r e i f u s - ~ ~ e n c e r [ ' ~ ~ ~ ~ ]  proof of decay 

of Green's functions). If p satisfy certain regularities 

conditions, localization for such operators at high dis- 

order or low energy has been proved by Aizenman and 

~ o l c h a n o v [ ' ~ ~ .  The proof we give here, as other proofs 

based on a multiscale a n a ~ ~ s i s [ ~ ~ ~ ~ ] ,  do not require regu- 

larity of p ,  it only uses certain a pn'ori probabilistic es- 

timates about Green's functions in finite volumes. This 

has the advantage of allowing the treatment of poten- 

tials with singular probability distrib~tions[''~'~]. They 

can also be used to prove localization inside spectral 

gaps for small d i ~ o r d e r [ ~ ~ ] .  

11. Results  

We start with notation and definitions. 

If A C zd, we denote by HA the operator H re- 

stricted to A with zero boundary conditions outside A, 

i.e., 

HA(x, y) = { r ( x 1 y )  
if x, y E A  , 
otherwise . (2.1) 

The corresponding Green's function is GA(z) = (HA - 

z)-', defined for z 6 a(HA).  We will write 

G A ( Z ; X , ~ ) = ( H A - ~ ) - ' ( X , ~ )  for x , y ~ A .  (2.2) 



If A = Z d  we simply write G ( z ; x ,  y ) .  Notice that we 

omit the dependence of HA and GA on the potential V .  

We will use P to denote the probability measure in 

the underlying probability space for the random vari- 

ables V ( x )  , x E Z d .  We will also take C = 1 in (1.2) 

without loss of generality. 

For x E Z d ,  x = ( x l , .  . . , x d ) ,  we set 11x11 = llxllw 

m a x { l x i l , .  . . , lxd l} .  Distances in Z d  will always be 

taken with respect to this norm. 

If L > O ,  x E zd ,  we will denote by A L ( x )  the cube 

centered a t  x with sides of length L, i.e., 

We will also use 

We will say that S, E .e2(zd) decays exponentially 

fast with mass m > O if 

lim sup 1% I+(X)/ < -m 

1 1 ~ 1 1  - 
l I 4 I - t ~  

The following definition contains the key modifica- 

tion we make in the von Dreifus-Klein proof. We fix ,O, 

O < P < l .  

DEFINITION Let m > O ,  E E R. A cube A L ( x )  

is  (m, E)-regular (for a fixed potential and given P)  if 

for a11 y E Â L ( X ) .  Otherwise we say that A L ( x )  is  

(m,  E)-singular. 

We can now state our main result. 

T H E O R E M  2.1. Let E. E R and L. > O .  Suppose 

we have: 

1 
P{AL,(0)  is  (mo,  E o )  - regular} 2 1 - - 

L: 
(2.8)  

for some p > 2d and m o  with O < m o  2 2.  

for some q with q > 4p+6d, a11 E with ] E -  EoJ  5 

77 for some 77 > 0 ,  and a11 L 2 L o .  

Then,  given m, with O < rn < m o ,  there exists B = 

B ( p ,  d ,  P,  q , ~ :  mo, m )  < co, such that if L0 > B, we 

can find 6 = ~ ( L o ,  mo, m , P )  > O so, with probability 

one, the spectrum of H in  ( E o  - 5, E. + 6 )  is  pure point 

and the eigenfunctions corresponding t o  eigenvalues in  

(E0 - 5, E0 + 6 )  decay exponentially fast at infinity with 

mass m. 

The validity of ( P l )  and ( P 2 )  are discussed in ref. 

[15]. Notice that B and S do not depend on E o .  No- 

tice also that Theorem 2.1 is still valid if we weaken 

the requirements on p and m to p > d (as in ref. [15]; 

notice that if p > 2d we have J = 3 in ref. [15]) and 

O < m < y .  

As in ref. [15], Theorem 2.1 will follow from Theo- 

rems 2.2 and 2.3, which we will now state. 

T H E O R E M  2.2. Let I C R be an interval and L. > O .  Suppose we have: 

1 
P { f o r  any E E I either AL,(x) o r A ~ , ( y )  is  ( m o ,  E )  - regular) 2 1 - - 

L;* 

for some p > 2d,  m o  with O < mo < :, and any x ,  y E zd with llx -.y11 > Lo. 
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Then if we fix o, 1 < o < &, set Lxti = L$,  k = 0 , 1 , 2 ,  .. ., and pick rn with O < m < mo,  we can find 

Q = Q ( p ,  d ,  p, q , ~ ,  mo, a ,  m) < m, such that if L. > Q,  we have that for any k = O ,  1 , 2 , .  . . , 
1 

P{ for  any E E I either AL,(x)  or AL, ( y )  is ( m ,  E )  - regular) 2 1 - - 
L? 

for any x , y  E zd with ( ( x  - yll > L k .  

THEOREIM 2.3. Let I C R be an inteirial, and let 

p, Lo ,  a ,  m be such that p > d , L. > O , 1 < cu < 
, O < nt 5 $. Sei LkS1 = L; , k == 0 ,1 ,2 , .  . .. 

Suppose that we have (2.12) for a11 k = 0 , 1 , 2 , .  . . and 

any x ,  y E z d  with ( ( x  - y((  > L k .  Then, with probabil- 

ity one, the spectrzlm of H in  I is pure point and the 

eigenfunciions correspondidg to  eigenvalues in I decay 

exponentially fast ai infinity with mass m. 

Theorems 2.1-2.3 are essentially the the same as in 

ref. ([15]) ,  except that we have a different definition for 

when a a cube A L ( x )  is (m,  E)-regular, and we require 

that mo < (mo  5 2 is just t o  simplify the proofs). 

The probabilistic part o f  the proofs are not changed, 

we modify oiily the  deterministic part of the proofs. 

111. Proof of theorem 2.2 

I 

LEMMA 3.4. For 1 < e < L and O < m 5 3 , let 

A = AL(xO)  for some xo E zd, and lei x ,  y E A be such 

that & ( x )  C A is (m, E)-regular and y @ Ae(x) .  Then 

for any E E R we have 

for some u E A \ & ( x )  , where 

Proof: It follows from the resolvent identity that 

where we sum over a11 s E &(x)  and t E A \Ae(x)  . 
Thus  there exist s' E A ~ ( x )  and t' E A \ & ( x )  such 

that 

l G ~ ( E ; z , y ) l  5 (e  + 1 ) " ~  + i ) d  IG,i,(,)(E; X ,  e-llit'-S'II I G A ( E ; ~ ' ,  1.111 , 

where we used (1.2). 

There are two possible situations: 

(i) s' E & ( x )  

In this case i t  follows from eq. (2.7) that 
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(i;) s' E Ae (x) \ he (x) 

Now we use (2.6) to get 

IGnt(,)(E; 2, e-~IIt'-s'II - < 2,eB e-riit'-s'll - e-rllt'-xll+r(e/4)+eB+10g2 

< e-(&-*)llt'-xll < e-(m-*)llt'-xll 
- , (3.6) 

where we used the reverse triangular inequality, 11s' - zll 5 (e/4), Ilt' - x I I  > 4 and m 5 $. 

(3.1) now follows immediately from (3.4)-(3.6) and 

((t' - xll > $ . O 

Lemma 3.1 replaces (4.2) in ref. [15]. We now need 

a definition. 

DEFINITION A cube AL(x) is non-resonant at the 

energy E if d(E, C ( H ~ ~ ( , ) )  > i e . ,  if and only 

if IIGA,(,)(E)II 5 2eLB. In this case we will say that 

AL (x) is E - N R. 

The following lemma gives the deterministic part 

of the induction step in the proof of Theorem 2.2. It 

replaces Lemma 4.2 in [15]. 

L E M M A  3.5. Lei L = eQ wih 1 < cu < 2, E E R, 

and me with 

Suppose 

(i) AL(x) is E - N R .  

(ii) Aje(y) is E - N R  for j = 2,5,8 and a11 y E AL(x) 

with Aje(y) C AL(x). 

(iii) There exist a2 most 3 non-overlapping cubes of 

side 1 contained in AL(x) that are (me, E)-  

singular. 

There exists Q' = Qf(d, y , P , a )  < m such that if 

4 > Q', then hL(x) is (mL, E)-regular wiih 

Proof: Let m = me. By (iii) we have at most 

3 non-overlapping cubes of side & contained in AL(x) 

that are (m, E )  singular. It follows that we can find 

Z L ~  E AL(x), i = 1 , .  . . , r ,  where r 5 3, si~cli that if 

u E AL(x) \ UL=l A~e(?li) with d(u, d A ~ ( x ) )  2 $ , then 

Ae(u) is (m,  E)-regular. 

A geometric argument now shows that we can find 

cubes Aei C Ar;(%) witli side ei E {j!, j = 2,5,8} , i = 

1, .  . . , t ,  where t _< r ,  such that 

and 
t 

C &  < s e .  (3.11) 8 

i= 1 

It follows that if u E AL(x) \ Z and d(u, dAL(x)) > 4 ,  
we have that Ae(u) is (m, E)-regular. 

For u E AL(x) we set Ai(u) = Aei if u E Ali a.nd 

Aé(u) = Ae(u) if u 2. 

S U B L E M M A  3.6. Suppose u E E ,  with d(hé(u), d h ~ ( x ) )  > e, and y E AL(x) \Aé(u). There exist e1 = t l (d,  B)  < 
oo, such thot for & > we have 
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Proof: W? use the resolvent identity as in (3.3) and (3.4) to get 

IGnLcx)(E; 11, y)J < (41 -t l )d (L + JGn,,, (E;  U, s)l e-rllt-sll I G A L ( X ) ( ~ ; ~ , Y ) I  7 

for some s (: Aé(u) and t E AL(x) \ Aé(u). Since Aé(u) is E-NR by (ii), we have 

If [It - s(( > $ ,the sublemma follows immediately from (3.14) and (3.7). If not, Ae(t) must be (m, E)-regular, so we 

can use L e r ~ m a  3.1 to estirnate IGA,(,)(E;t, I/)[ in (3.14). We get 

for some t' E AL(x) \ Ae(t), where m' is given by the 

right hand .side of (3.2) and 

I 20 = rn - - 25 
e,-p > m -  41-P ' ' (3.17) 

where (3.15) and (3.17) are valid for e 2 li, for some 
e 1, = l l(d,B) < m, since Iltl -til > Z. 

If t' f Ae,, , the sublemma is proved. If not, it fol- 

lows from (3.16) that 

since m" > O by (3.17) and (3.7). In this case we ap- 

ply the above argument to IGAL(,)(E;tl, y)l, either ob- 
1 

taining (3.12) for it (and hence for IGAL(,)(E; u, y)l by 

(3.18)), or getting (again using (3.18)) 

for some tl' E Aé(tl) = Aé(u). Since we can keep on re- 

peating this argument, we eventually get (3.12), unless 

IGA,(,)(E; u, y)I = O,  in which case there is nothing to 

prove. O 

We can now finish the proof of Lemma 3.2. Let 

4 2 e,; for y E ÂL(z) we estirnate IGA,(,)(E; z ,  y)l by 

using either Lemma 3.1 or Sublemma 3.2, as appropri- 

ate, starting from the center a: of the box AL(x). Setting 

M' = rn - &, we get, after n steps, 

< e-.~'(II~i-~II+II~2-úill+.~~+II~n-ú"-'lll) lGnL(x)(E; un,  y)l , ~ G A ~ ( x ) ( ~ ;  x, Y)I (3.20) 

with u l , .  . . , u, E AL(x), ii = u if u $ E and otherwise 6 E Aé(u), as long as we obtained ui $ with 

d(Aé(ui), dAL(x)) > 1 for i - 1, . . . , n - 1. The (n + 1)th step can now be performed, if we have 

By throwing away terms in (3.20), we can assume that each A,, is visited only once, i. e., u i ,u j  E 2, i # j ,  

imply Aé(u .) # Aé(uj). Thus, using (3.11), we have 
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The procedure must be stopped the first time (3.21) is violated; in which case we have 

1 1 ~ 1  - 211 + I I U Z  - ~ 1 1 1 +  . . .  + 1111~ - un-iII 2 IIun - ~ 1 1  2 IIy - x I I  - (9e + 1) . 

It now follows from (3.20), (3.22), (3.23) and (i) that 

~ G A I , ( X ) ( ~ ;  Y)I 5 2e L* e-M'(ll~-~ll-(17~+l)) < - e-M"II~-~ll , (3.24) 

P 
with 

25 69 5 Mt1 = (m - -)(I - - - 
p - P  e"-i) - L I - p  

(3.25) 

since llx - yll > 4 . It follows that there exists Q' = Q1(d, y , P ,  a )  < m, such that if e 2 Q1 we have, using (3.7), 

M" 2 m -  
35 30 

36 31 
(3.26) 

Abel Klein 

The lemma is proved. 

Theorem 2.2 is now proven as in ref. [15]. The prob- 

abilistic part of the proof is the same, the deterministic 

induction step is given by Lemma 3.2. 

IV. Proof of theorem 2.3 

We recall that E is a generalized eigenvalue for H as 

in (1.1), if there exists a nonzero polynomially bounded 

function S, on zd such that 

H(., y)+(y) = E+(y) for a11 x E zd . (4.1) 

y€Zd 

In this case S, is called a generalized eigenfunction. 

We use the following basic r e s ~ l t [ ~ ~ ~ ~ ~ ~ ~ ~ ] ;  notice that 

in e2(zd) the proof does not require I' = -A, it suffices 

for I' to  be as in (1.1): 

With respect to the spectral measure of H ,  almost 

every energy is a generalized eigenvahe. 

Thus, Theorem 2.3 follows from the following 

lemma, as in ref. 1151. 

LEMMA 4.7. Under the hypothesis of Theorem 2.3, 

with probability one the generalized eigenfundions of 

H ,  corresponding to generalized eigenvalues in I ,  decay 

exponentially fast at infinity with mass m. 

Lemma 4.1 is proved in the same way as Lemma 3.1 

in ref. [15], the necessary modifications will be given 

below as lemmas. H will always be as in (1.1) and P, 
m, a, Lk as in Theorem 2.3. Notice the lemmas are 

stated for a fixed potential V . 

LEMMA 4.8. Let E be a generalized eigenvalue for 

H ,  with corresponding generalized eigenfunction +. 
Suppose &(x) is a (m, E)-regular box, then 

with 

Proof: Since &(x) is a (m, E)-regular, E @ 

g(HAtíx)), so it follows from (4.1) that 

hence 
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The lerrima now follows by the same argument as in 

the proof o€  Lemma 3.1. 0 

LEMMA 4.9. Lei E be a generalited eágenvalue for 

H ,  with corresponding generalized eigenfunction S,. 

Suppose xo E zd is such that $(xo) # O .  Then there 

exists kl == kl(V, E , x o )  < co, such that AL,(xo) is 

(m, E)-sinsular for a11 k 2 kl . 

Proof: Suppose the lemma is false, then there exists a 

sequence k, + oo such that ALkn (xO) is (rn, E)-regular 

for a11 n. But then it follows from Lemma 4.2 that 

I$(xo)l < lim C e - ~ l l ~ - ~ ~ l l  
n-oo I ~ ( Y ) I  = 0 3 

Y ~ A L , , ,  (.o) 

since S, is polynomially bounded. This is a contradic- 

tion . O 

We set 

where b is a positive integer. 

LEMMA 4.10. Let E be a generalited eigenvalue for 

H ,  with corresponding generalized eigenfunction $, and 

xo E Zd is such that $(xo) # O .  Suppose that for a11 

b there exists kb < co, such that for k > kò we have 

AL,(x) (m, E)-regular for a11 x E A ~ ~ ~ ( X O ) .  Then 4 
decays exponentially fast at infinity with rnass m. 

Proof: Siiice 4 is polynomially bounded, there exists t > O such that 

IS,(x)l < (1 + llx - ~ 0 1 1 ) ~  for a11 x E Zd  , 

if $ is properly normalized. 

Now 1et p ;  O < p < 1, be given, we picli b > 2, and define 

Ã k + l ( ~ o )  = Ão9?(x0) k+1 = L L ~ , + ~ ( X O )  I+p \ A*L&o) . (4.9) 

Then Ãt+i(xo) C Ak+i(zo) = Ag1(xo), and, if x E Ãk+i(zo), we have 

d(z,  dAk+i(xo)) 2 pllx - ~ 0 1 1 .  (4.10) 

Moreover, if Ilx - xoll > e, we have x E Ãk+l(zo) for some k. 

So let u:, fix a: E Ãk+l(xO), with k > Eb. It follows that AL,(y) is (m, E)-regular for any y E Apllx-xoll(x) C 

Ak+l(xO). We now apply Lemma 4.2 with l = Lk ; it follows from (4.2) that for any y E Apllx-xoll(x) with 

Sy = pllx - :rol[ - - x I I  > 3, there exists u E A2ay (V) \ AL, (Y), such that 

l$(y)l (26, + i )d e -ml~~u-y~l  Is,(u)/ + C e-mlllv-ylI l+(v)l , (4.11) 
v@A2SY(y)  

L 

with ml givc:n by the right hand side of (4.3). We now use (4.8), so 
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witli ma = m - % , in case Lk > tl for some ti = ll(cl, p, a, m,  b, t )  < m. On the other liand, 
L;- 

if Lk 2 t2 for some l2 = t2(d, ,B, a, õ) < m. 

Thus, given y E AP~Ix-roll(x) with 6, > 9,  if Lk 2 & = max(tl, &) there exists u E A2sy(y) \ AL*(Y), such that 

We now start from x and apply (4.14) repeatedly, obtaining, at  the nth step, 

1. We obtain (4.15) with n such that 

In this case we have 

if Lk 2 l4 for some t4 = .t4(di ,O, cr, b,m) < a, where 

2. We must stop the procedure with n < &pllx - xol/ In this case we must have byn 5 2 ,  so we rnust liave 

(Iyn - 211 > pI[x - xoll - 2. It now follows from (4.15) that 

But since yn E ~ , , l lx -xol l (x) ,  we know that ALk(yn) is (m, E)-regular, so it follows from (4.11) and (4.12) with 

2 substituted for by, that 

I V ~ ( Y , ~ ) I  5 e-m2? . (4.20) 
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Combining (4.19) and (4.20) we get 

It follow~ from (4.17), (4.21) and (4.18) that, given 

O < p' <: 1, we can find L < co such tliat, if k 2 

we have 

I$(%)I 5 e-~'~llx-xO1l (4.22) 

in case Ilx - oO1l > S. 
We can conclude that $ decays exponeiitially, and 

lim sup 1% I$(x)~ < - P I V  (4.23) 
1141-+~ 11x11 

for any p and p' E (O, 1). 

Lemma <:.4 is proved. 
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