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We give a proof of exponential localization in the Anderson model with long range hopping

based on a multiscale analysis.

|. Introduction

We consider the random Hamiltonian
H =T+ YV on 2%, (1.1)
where

1. T is a translation invariant self-adjoint operator
with exponentially decaying matrix elements, i.e.,
I(z,y) = ¢(z —y) for somefunction ¢ on Z¢ with

¢(—z) = é(x) for which there exist C < oo and
+ > 0 such that

[N(z,9)| = l¢(z—y)| < Ce vl (1.9)
for all z,y € Z9%.

2. V(z) , x € 24, are independent identicaly dis-
tributed random variables with common proba-

bility distribution .

In the usual Anderson model] T' = —A, where
A(z,y) =11if |« — y] = 1 and zero otherwise.

In this article we are concerned with localization.
We say that the random operator H exhibits localiza-
tion in an energy interval | if H has only pure point
spectrum in 1 with probability one. We have exponen-
tial localization in | if we have localization and all the
eigenfunctions corresponding to eigenvalues in |1 have
exponential decay. Localization for —A + V has been

extensively studied!?—~20],

In this article we exténd the von Dreifus-Klein!!5)
proof o localization to random Hamiltonians of the
form given in eq. (1.1). (Our methods also extend
the original von Dreifus-Spencer!!314] proof of decay
d Green's functions). If u satisfy certain regularities
conditions, localization for such operators at high dis-
order or low energy has been proved by Aizenman and
Molchanov!!8l. The proof we give here, as other proofs
based on a multiscale analysis!® %!, do not require regu-
larity of u, it only uses certain a priori probabilistic es-
timates about Green's functionsin finite volumes. This
has the advantage of allowing the treatment of poten-
tials with singular probability distributions!!1:161, They
can aso be used to prove localization inside spectral

gaps for small disorder(2%},

II. Results

We start with notation and definitions.
If A C Z% we denote by H, the operator H re-
stricted to A with zero boundary conditions outside A,

1.e.,

H(z,y)

if x,y€A ,
HA(%Y) = {() Y

otherwise . (2.1)
The corresponding Green's function is Ga{z) = (Hp —

z)~}, defined for z ¢ o(Ha). We will write

Ga(z;2,y) = (Hy—2)"Hz,y) for z,y€A. (2.2)
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If A = Z9 we simply write G(z;x,y). Notice that we
omit the dependence of H4 and G4 on the potential V.

We will use P to denote the probability measure in
the underlying probability space for the random vari-
ables V(z), x € Z9. We will aso take C= 1in (1.2)
without loss of generality.

Forz € Z¢, x =(z1,...,24), we set ||z|| = ||z]|c =
max{|e1,...,|zq|}. Distances in Z will always be
taken with respect to this norm.

If L>0, x € Z¢, we will denote by Ar(z) the cube

centered at x with sides of length L, i.e.,
Ar(e) = {yeZ ly-2i< 5} (23)
We will also use
Au@)={vehr(@); ly-2l> %} (9

We will say that ¥ € ¢2(Z%) decays exponentially
fast with mass m> 0 if

log [¥(z)l < _
k- 25)

The following definition contains the key modifica-

limsup

|l o0

tion we make in the von Dreifus-Klein proof. We fix £,
0<B8<l.

DEFINITION Let m>0, E ER. A cube Ar(z)
is (m,E)-regular (for a fized potential and given 2) if

~LA
€
d(E,oc(Ha,) 2 5 (2.6)
and
1GAL @) (B; 2, y)| < e Io=vl 2.7)

for all y E Ar(z). Otherwise we say that Ar(z) is

(m,E)-singular.
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We can now state our main result.

THEOREM 21. Let £y € R and Ly = 0. Suppose

we have:

(P1)
; 1
P{AL,(0) is (mo, Eo) — regular} > 1= 75
0
(2.8)
for some p> 2d and mq with 0 < mo < 1.
(P2)
P{d H ~fy o 2.9
{d(E,0(Hpp ) < e} < 7 (2.9)

for some q with q > 4p+6d, all E with |E— Ep| <
n for somen >0, and all L > L.

Then, given m, with 0 < m < my, there exists B =
B(p,d,8,¢,v,mg,m) < oo, such that if Lg > B, we
can find 6 = §(Lo, mo,m,B) > 0 so, with probability
one, the spectrum of H in (Ey— 6, Eo+6) s pure point
and the eigenfunctions corresponding to eigenvaluesin
(Eo - 5,Eot6) decay exponentially fast at infinity with

mass m.

The validity of (P1) and (P2) are discussed in ref.
[156]. Notice that B and é do not depend on E;. No-
tice also that Theorem 2.1 is still valid if we weaken
the requirementson p and m top > d (asin ref. {15];
notice that if p> 2d we have J = 3 in ref. [15]) and
0<m«<y.

Asin ref. {15], Theorem 2.1 will follow from Theo-

rems 2.2 and 2.3, which we will now state.

THEOREM 22. Let | C R be an interval and Lo > 0. Suppose we have:

(K1)

P{for any E € | either AL,(z) or Ar,(y) is(mo, E)— regular) > 1— Eg—p

(2.10)

0

for some p> 2d, mo with0 <mg < %, and any z,y E Z¢ with ||z —y|| > Lo.
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(K2)
~LF 1
P{d(E,0c(Hp,0)) <e ¥} < 7 (2.11)
for scme q with ¢ > 4p+ 6d, all E with d(E,I) < %e‘Lﬂ, and all L > Lg.

Then if we fix 0, 1 < o < ﬁ%, set Lpyy = LY, k =0,1,2,..., and pick m with 0 < m < mg, we can find

Q=0Q(p,d,B,¢,7,mo,&,M) < oo, such that if Lo > Q, we have that for any k=0,1,2,...,

1
P{for any E E | either Ar,(z) or Ar,(y)is (m,E)— regular) > 1— — (2.12)

for any z,y € Z* with ||z — y{| > Ly.

THEOREM 2.3. Let | ¢ R be an zaterval, and let
p,Lo,a,mbesuchthat p>d, Ly >0, 1< <
Z0<m< 3 SetLiyr =EF, k=012...
Suppose that we have (2.12) for «ll k = 0,1,2,... and
any x,y € 24 with ||z — y|| > L. Then, with probabil-
ity one, the spectrum of H in | is pure point and the
eigenfunctions correspondihg to eigenvalues in | decay

exponentially fast et infinity with mass m.

Theorems 2.1-2.3 are essentially the the same asin
ref. ({15]), except that we have a differentdefinition for
when a a cube Az(z) is (m,E)-regular, and we require

that mo <+ (mo < % is just to simplify the proofs).

The probabilistic part of the proofs are not changed,
we modify only the deterministic part of the proofs.

III. Proof of theorem 2.2

Ly

|

LEMMA 34. Forl<f< Land0<m< %, let
A= Az(zo) for some z E Z9, and let z,y E A be such
that Ae(z) C A is (m,E)-regular and y ¢ A¢(z). Then
for any E € R we have

IGA(E;z,y)| < e MW=l |Gy (E;u,p)]  (3.1)

for some u € A\ A(z) , where

4 2log{(¢+ 1)*(L+1)%}

M=m—£1_ﬁ 7

(3.2)

Proof: It follows fromthe resolvent identity that

GA(B;z,y) = — ) Ga)(E;2,9)T(s,) Ga(Ejt, ),
st
(3.3)
where we sumover all s € A¢(z) andt E A\ Ae(z) .
Thusthere exist s’ E Ag(z) and t’ € A\ Ae(z) such
that

IGa(B;2,0)] < (et 1) (L+ 1% ny(Bs 2, ) €N N GA(E: ', 0)] (3.4)

where we used (1.2).
There are two possible situations:

(i) 5" E Ay(=)
In this case it follows fromeq. (2.7) that

(Caye)(Esz, o) e =1l < e=mlls' =2l =l =l < o=milt'=ll (3.5)

by the triangular inequality, since m < 7.
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(ll) s'e Ag(ib) \ Ag(iv)
Now we use (2.6) to get

}GAL(:D)(E;.’L‘,Sl),e“’)’“t'——s’” <
<

F-mip)lit—eff <
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=l =s"l < o=l ~ll+v(e/4) 4¢P +log 2

o~ (m=ip)lie~=f] ’ (3.6)

where we used the reverse triangular inequality, ||s’ — z|] < (£/4), |jt' — 2| > £ and m < 1.

(3.1) now followsimmediately from (3.4)-(3.6) and
I 2l > 4. 0

Lemma 3.1 replaces (4.2) in ref. [15]. We now need

a definition.

DEFINITION A cube Ag(z) is non-resonant at the
energy E if d(E,0(Hp,(z)) > 3 3 e~L? ie., if and only
i Gy (BN < 2¢5°. In th|s case we will say that
Ar(z) isE- NR.

The following lemma gives the deterministic part
of the induction step in the proof of Theorem 2.2. It

replaces Lemma4.2 in [15].

LEMMARGS. Let L=¢* wihl<a<2 Ee¢R,
and m, with

36 31
VE—QTI'FZT_? < my <

[NCRES

(3.7)

Suppose

(i) Ar(z) isSE- NR.

(i) Aje(y) iISE=-NRforj=
with Aje(y) C Ar(z).

2,5,8 and all y € Ar(z)

(ii1) There exist at most 3 non-overlapping cubes of
side £ contained in Ar(z) that are (mg, E)-
singular.

l
There exists Q' = Q'(d,v,8,a) < oo such that if

£>Q', then Ap(z) is(myg, E)

_ 35 30 36 31
my, = myg — ’Yzq—_T—Fz'l—_—ﬁ“ > ‘)/F.:l‘-{-fl_—ﬁ' .

(3.8)

-regular with

Proof:

3 non-overlapping cubes of side ¢ contained in Ap(z)

Let m = m,. By (iii) we have at most

that are (m,E) singular. It follows that we can find
w EAp(2),i=1,...,
w E Ar(z) \UiZ; Ase(ws) with d(u, dAL(2)) > £, then
Ae(u) is (m, E)-regular.

r,where r < 3, such that if

A geometric argument now shows that we can find
cubes Ay, C Ap(x) with side 4; € {j¢,  =2,5,8},i=
1,...,t,wheret <r,such that

d(AlnAlj) > i i#7, (3.9)

2[(“2 s (310)

t r
EEU U
and

(3.11)

t
oo < 8e.
i=1

It follows that if u € Az(z) \ 2 and d(u, 0AL(z)) > £,
we have that A¢(u) is (m,E)-regular.

For u € Ar(z) weset Ay(u) = Ay, if u € Ag; and
Aj(u) = Ag(u) if ug B

SUBLEMMA 3.6. Suppose u E E, with d(A}(u),8AL(z)) > ¢, andy E Ar(z)\Aj(u). There exist ¢, = £:(d,8) <

oo, such thot for ¢ > ¢; we have

IGaL o) (Esu,y)] < e~ rampli=aliqy (Bt )]

for some 5, € Aj(u) and t; € Ap(z) \ Af(u).

(3.12)
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Proof: W: use the resolvent identity asin (3.3) and (3.4) to get

1GaL ) (Bsw,9)] < (8o + D (LT G, (Eju.s)e MM [Ga, ) (Bt 0)] (3.13)

for some s & Aj(u) and t € Ap(z) \ A)(w) . Since A(u) is E-NR by (ii), we have

IGaL@) (B, y)] < (G + 1) (L+1)"2 o e M= Gy, 0y (Bt )]

< (Be+ DL+ )26 =Sl Gy (Brt y)] (3.14)

If {jt —s|| > -é,the sublemma follows immediately from (3.14) and (3.7). If not, A¢(¢) must be (m, E)-regular, so we
can use Lerama 3.1 to estirnate |Ga, ()(£;t, )| in (3.14). We get

G (Brup)l < (B804 1) (L+1)7 2B M=l =l Gy ) (B3, )] (3.15)

< o=t o= Mit=sll g=m" It~ |G1\L(”0)(E;tl’l‘y)l

IN

for some t' € A(z) \ Ay(t), where m' is given by the
right hand side of (3.2) and

m”:m'-—% >m—z¢2=573s (3.17)
where (3.15) and (3.17) are valid for £ > ¢;, for some
& =4,(d, B) < oo, since ||t —t]| > £.

If t ¢ A, , the sublemmais proved. If not, it fol-
lows from (3.16) that

IGAL @) (B3, 9)] < e |Gy (E5t, )] (3.18)

since m"” > 0 by (3.17) and (3.7). In this case we ap-
ply the above argument to |Ga,()(E;t’, )], either ob-
taining (3.12) for it (and hence for |Gy, ) (E;u,y)| by

e~ e I =sll |G, (Bt y) (3.16)

|
(3.18)), or getting (again using (3.18))

Gare)(B;w,9) < ¢ 2 |Gay(B5t",9) (3.19)

for some t” E Aj(t') = Aj(w) . Since we can keep on re-
peating this argument, we eventually get (3.12), unless
|Ga,(=)(E;u,y)| =0, in which case there is nothing to

prove. o

We can now finish the proof of Lemma 3.2. Let
2> 4y; for y E Ar(z) we estimate |Ga, ) (E;2,y)| by
using either Lemma 3.1 or Sublemma 3.2, as appropri-
ate, starting from the center a of thebox Az (z). Setting
M' =m — 25, we get, after n steps,

|Gy )5 7 9)] < o= M (llus =&l +luz—aa |+ +llwn—dn-all) IGAL)(E5tn, y)| (3.20)

with ULy .-

,U € Ar(z), @ = uif u ¢ = and otherwise & € Aj(u), aslong as we obtained u; ¢ Aj(y) with

d(Ay(w), dA(z)) >2fori —1,...,n—1. The (nt 1)th step can now be performed, if we have

up € Aj(y) and d(Aj(un),0AL(z)) > £ (3.21)

By throwing away terms in (3.20), we can assume that each A,, is visited only once, i. e., u;,u; € E, i # j,

imply Aj(u:) # Aj(u;). Thus, using (3.11), we have

flur = &) + lluz — @i+ -+ llun = @l 2 flur = 2f] + |lue — w4 - + [Jun — un—a || - 8. (3.22)
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The procedure must be stopped the first time (3.21) is violated; in which case we have

s — zll F fluz — will+ - F lltn = wncll > llun — 2] > Jly - 2l - (9£F 1), (3.23)
It now followsfrom (3.20), (3.22), (3.23) and (i) that
Gape)(Es2y)] < 2e87 oM Ulemsll=07E1) - o= M"lle—ull (3.24)
with
M" = (m- ;—_Sﬁ)(l - Zg?—;) _ Lli_ﬂ (3.25)

since [lz — y|| > £ . It follows that there exists Q' = Q'(d, 7, 8,a) < oo, such that if £ > Q' we have, using (3.7),

MII 2

69 25
m — M1 +

1 1
2 7£<*_-1+m >

The lemmais proved.

Theorem 2.2 is now proven asin ref. [15]. The prob-
abilistic part of the proof isthe same, the deterministic

induction step is given by Lemma 3.2.

1V. Proof of theorem 2.3

Werecall that E isageneralized eigenvaluefor H as
in (1.1), if there exists a nonzero polynomially bounded

function v on Z4 such that

Y H(z,y)(y) = Eg(y) forall xe€Z*. (41)

yeZd
In this case ¢ is called a generalized eigenfunction.
We use thefollowing basic result?1:22:23}; notice that
in £2(Z4) the proof doesnot require I' = — A, it suffices
for ' to be asin (1.1):

With respect to the spectral measure of H, almost

every energy is a generalized etgenvalue.

Thus, Theorem 2.3 follows from the following

lemma, as in ref. [15].

LEMMA 4.7. Under the hypothesis of Theorem 2.3,
with probability one the generalized eigenfunctions of

7i-F T 7B

5 {
) > m-— | 7% + n13£)n
\ e ey
[ 36 31
\7__L°"’1 + 717 ) - (3.26)
a

I
H, corresponding to generalized eigenvaluesin |, decay
ezponentially fast at infinity with mass m.

Lemmad4.lis proved in the same way as Lemma 3.1
in ref. [15], the necessary modifications will be given
below as lemmas. H will always be asin (1.1) and 5,
m, a, Ly asin Theorem 2.3. Notice the lemmas are
stated for afixed potential V .

LEMMA 4.8. Let E be a generalized eigenvalue for
H, with corresponding generalized eigenfunction .

Suppose A¢(z) is a (m, E)-regular box, then

@) < > e My, (42)

y¢Au(z)
with J
4 2log{(¢+ 1)}
M = m— i~ 7 . (4.3)
Proof: Since Aq(z) is a (m,E)-regular, E ¢

o(Ha,(z)), S0 it followsfrom (4.1) that

¢($) = - Z GAz(z)(EW:y)F(u»y)TP(y), (44)
yu;xﬁé?)

hence

(@) < D 1Gaw)(Buy)le Wl y(y) .
v€AL(x)
yﬁel\t(fv)
(45)
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The leruma. now follows by the same argument asin since # is polynomially bounded. This is a contradic-

the proof of Lemma 3.1. O tion. )

LEMMA 4.9. Let E ke a generalited edgenvalue for
H, with corresponding generalized eigenfunction 1.
Suppose zo € Z% is such that ¥(zo) # 0. Then there Agﬁl(%) = A2sLyy, (%0) \ A2, (0) , (4.7)
exists ky == ki(V, E,zo) < oo, such that Ag,(zo) is

(m, E)-singular for all K > k; .

We set

where b is a positive integer.

LEMMA 4.10. Let E be a generalited eigenvalue for
H, with corresponding generalized eigenfunction ¢, and
zo € Z° is such that (z,) # 0. Suppose that for all
b there exists k; < oo, such that for k > k; we have

[¥(zo)| < lim Z o= % lly=2oll ()l = 0 Ar.(2) (mE)-regular for all x € Affll(xo). Then 9
= n—oo - 3

y#AL, (20) decays exponentially fast at infinity with mass m.
(4.6)

]

Proof: Since ¢ is polynomially bounded, there existst > 0 such that

Proof: Suppose thelemmaisfalse, then there existsa
sequence k,, — co such that Az, (zo) is (m, E)-regular

for all n. But then it follows from Lemma 4.2 that

(@) < 1T [z —zoll)' forall x €z, (4.8)

if ¢ is properly normalized.

Now let p; 0 < p<1, be given, we pick b> i*£, and define

Arp1(zo) = AR (20) = Mg, (20) \A 2 1, (20). (4.9)
Then Ag41(z0) C Agga(2o) = Agc’?_l(xo), and, if x € Ary1(0), we have
d(z, 0 Ax+1(x0)) 2 pllz — zoll. (4.10)

Moreover, if ||z — zol] > 1—L_°;, we have X € ﬁkﬂ(zo) for some k.
So let us fix @ E Azpq(zp), With k > k. It follows that Az, (y) is (m,E)-regular for any y € Apljz=a,) (%) C
App1(zo). We now apply Lemma 4.2 with £ = Ly; it follows from (4.2) that for any y € Az —zop(€) With

8, = pllz — ol — lly — zl| > L&, there exists u € Az, (y) \ Ar, (v), such that

W)l < 26, T e ™l + Y emalie=vlljg(v)] (4.11)

véAzs,(y)

with m; given by the right hand side of (4.3). We now use (4.8), so

Yo ey < YT eIl (14 v — zof))!
v#Azs, (y) v Azs, (y)
D DR e )
v¢Azs,(y)
< e ™Mby (4.12)
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witli my = m — Lf__ ,in case Ly > ¢, for some ¢, = ¢,(d,3,a,m,b,t) < co. On the other liand,

(26, +1)¢ emmalle=ull < (Lo + 1) e~mllu-vll < gmmaflu-yll (4.13)

if Ly > £, for some £, = £5(d, B, a,b) < co.
Thus, giveny € A jjp—z(z) With § > Le if Ly > €3 = max(£y, £) there exists u E A26,(y) \ AL, (v), such that

()| < el )| 4 emmaty (4.14)
We now start from x and apply (4.14) repeatedly, obtaining, at the nth step,

e—mzéz + e—m2”y1_x” ,1/}(?/1),

< e~—m26, + e"m2“yl—1‘|| e—m25y1 + e—mzllyl—rll e_m2”y2"y1“ |¢(y2)|

[ (=)l

[7AN

U LI e~ m2{llyi—l+8y, } +o e_m2{”y1‘_x'”'*‘“y2—y1“+"'”?/n—1—yn—2”+6yn_1}

IN

+ e~mzlllyi=zll+lyz—vall+llyn —yn-all} 9 (ya)l » (4.15)

for some Y € Apjjz—af|(€) With ||yn —yn—1]| > £, in case the first n—1 applications of (4.14) gave us y1,- .., Yn-1 €

Ap”x_%”(m), Hor — |-, lyn—1 = Yn—2|| > %’i, with &,,,...,6,, _, > %’i We have two cases:
1. We obtain (4.15) with n such that
2 2
—pllz — zof| < n < —pllz —zo|| + 1. (4.16)
Lk Ly
In this case we have

, L
ne=mallo=soll 4 o=man |y )

[(z)] <
< (e —zoll+1) + 6] ) st
< (31’11;—:*1 +1+ (1+bLk+1)*> e~ marllz=ol
< emmerdemal (4.17)

if Ly > £4 for some £4 = £4(d, B, «,b,m) < oo, where

6

- EE‘ . (4.18)

mg=1m
2. We must stop the procedure with n < £-p|lz — zol|. In this case we must have §,, < L | 50 we rnust have

llyn — || > pllz — zoll = Z=. It now followsfrom (4.15) that

()] < ne—m2ellz—oll + e"”2“y"‘x”{¢(yn){

—Ma r—Tol|l— “Iﬁ
< pe~meellz-eell 4o (p" =% )W’(yn)l (4.19)

But since yn E A,jjz—sjj (), we know that Az, (¥,) is (m, E)-regular, so it followsfrom (4.11) and (4.12) with

%’* substituted for §,, that
Ly
2

[¥(yn)] < €™ (4.20)
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Combining (4.19) and (4.20) we get

W) <

IA

< (22

< emmaplle—woll

if Ly > Ly.

It follows from (4.17), (4.21) and (4.18) that, given
o, 0<p' < 1, wecan find k < oo such tliat, if k> k
we have

[(z)] < =P pllz—zol| (4.22)

. L:
in case ||z — zoll > 5.

We can conclude that ¢ decays exponentially, and

limsup log|¥(z)| < —p'pm (4.23)
lefi—oo (Il
for any p and ¢’ € (O,1).
Lemma<.4 is proved. o
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