
Brazilian Journal of Physics, vol. 23, no. 4, December, 1993 

Controlling the Effect of Griffiths' 
Singularities in Random Ferromagnets: 

Smoothness of t he Magnetization 

J.  Fernando Perez 
Instituto de Fisica, Universidade de São Paulo 

P. O. Box 20516, 01498-970 São Paulo, SP,  Brasil 

Received October 28, 1993 

The magnetization of random ferromagnets with site or bond disorder is shown to  be a 
differentiable function of the externa1 magnetic field a t  sufficiently high temperatures. This 
is shown to happen even in a region of the parameters where this function is not analytic 
as a consequence of the so called Griffiths' singularities. The result is proven through 
the use of correlation inequalities specific of ferromagnetic systems and with the weakest 
possible assumptions on the probability distribution of the random couplings. With the same 
methods one can actually prove infinite differentiability in the same region of parameters. We 
also discuss the analogous problem for ferromagnets in (d -+ 1) dimensions with d-dimensional 
disorder. In this case translation invariance in the extra direction produces slower decay rates 
in the presence of Griffiths' singularities. The results for the latter systems are oE importance 
in the analysis of quantum disordered ferromagnetic models. 

I. Introduction 

In the Statistical Mechanics of Disordered Sys- 

t e m  a special role is played by the family of ran- 

dom ferromagnets. A typical representative of this 

class is the Ising model in z d ,  with configurations 

a = {a, = f 1, x E zd) and with energy function for 

the system in a finite volume h C zd given by: 

where J = {JXy, (xy) E zd} is a family of identically 

distributed random variables satisfying: Jry 2 0, where 

the notation (xy) means that Ix - yl = 1, i.e. the 

summation is taken only over pairs of nearest neigh- 

bor sites in zd. The model will be called bond disor- 

dered if the random variables J = { JZy , (XY) E zd} are 

taken as independent, whereas if JXy=JxJy J where J = 
{J, >_ 0, x E zd) are independent random variables the 

model will be called site disordered. For a given real- 

ization of the random parameters J = {JZy, (xy) E zd) 

the thermal expectations at inverse temperature P of an 

observable A (a) are defined in the usual way: 

1 
(A ) ,  (J) = - exp [-BHA (u, J)] . (I.:!) 

ZA (J> ,, 

The so called quenched expectations are defined as av- 

erages over the random parameters J and will be de- 
- 

noted by (A) , .  We will be primarily interested in these 

quantities considered in the thermodynarnical limit: 

(A) (J) = lim (A)^ (J) and (A) = lim (A)  ̂. 
A- Zd A-+ Zd 

We shall be interested mainly in the case where the ex- 

terna1 magnetic field h is zero, but in many cases we 

will have to take the limit h -+ O only after taking the 

thermodynamic limit A -t zd. 
In 1969 R. ~r i f f i thd l ]  considered the site diliite 

model, with 
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( 1 with probabilityp 
'( O with probability (1 - p) ' (1.3) 

and called the attention to the fact that the quenched 

magnetization 

viewed as a function of z = e-ph displayed a non 

analytic behavior at z = O even at values of the in- 

verse temperature ,O for which the system has neither 

spontaneous magnetization nor long range order, pro- 

vided only ,h J > K,(d), the critica1 value for a homo- 

geneous d-dimensional deterministic system with cou- 

pling JXy = J for a11 bonds (xy). This phenomenon 

goes nowadays under the name of Griffiths' singulari- 

ties; its existence has been rigorously proved[2] and it 

is now recogriized as a regular feature in the Statistical 

Mechanics of disordered ~ ~ s t e m s [ ~ ] .  The physical ori- 

gin of this behavior may be better understood in the 

following situation which dramatizes the phenomenon. 

Consider the site dilute model given by (1.3) and sup- 

pose p < pc(d), where pc(d) is the critica1 value for the 

occupation probability of a site in the site percolation 

problem in Iri. We are therefore in a situation where, 

with probability one, only finite clusters of sites which 

,are coupled (i e. J,, = J )  with their nearest neighbors, 

so that the system decomposes into a collection of fi- 

nite independmt subsystems. In this case we may con- 

clude that wit4 probability one, there is no spontaneous 

magnetization nor long-range order for a11 values of the 

temperature. However, as a consequence of the law of 

large numbers, also with probabilty one, there are arbi- 

trarily large d-dimensional boxes inside which, sites are 

coupled with 1 heir nearest neighbors with strength J. 

Now, if /3J > .r(,(d) there will be arbitrady large (but 

finite!) boxes inside which the system is strongly cor- 

related, i.e. below the critica1 temperature, thus gener- 

ating the singb lar behavior . 
The above simplified situation suggests the gen- 

eral mechanisni for the phenomenon. Define a region 

S C Ird to be singular when P J ,  > KC(d) for a11 bonds 

(ij) in S . Then, even if the inverse temperature is such 

that the system is not ordered (so that singular regions 

are mostly finite or even small) as a whole, there exist 

with probability one, arbitrarily large singular regions, 

i.e. finite regions inside which the system is strongly 

correlated. 

Another remarkable consequence of these singular- 

ities is that for those models, with either site or bond 

disorder, where the couplings Jxy may assume arbitrar- 

ily large values (even if with very small but non-zero 

probability) the usual high temperature expansions do 

not converge for any values of /3. An example of this 

situation is the bond disordered model where J,, has a 

probability p distribution like a one-sided gaussian: 

O for J < O 
x2 

exp -,o, 

with arbitrary variance o2 , with the property that 

p ( J )  > O for a11 J . 
The next question to be asked concerns the nature 

of this singularity. The first rigorous result control- 

ling the effect of Griffiths' singularities was obtained by 

Olivieri, Perez and Goulart ~ o s a [ ~ ]  who discussed the 

bond disordered ferromagnetic model and showed ex- 

ponential decay of correlation functions in the presence 

of Griffiths' singularities. Their results implied also, 

although not explicitly stated in the paper, infinite dif- 

ferentiability of the quenched magnetization (see dis- 

cussion below) . Their techniques however, could only 

be applied to the specific situation of bond disorder and 

for Ising systems, i.e. r, = & /í. It  required also finite 

average of the coupling Jxy . 
More general results, concerning exponential decay 

of truncated correlation functions for not necessarily 

ferromagnetic models, where obtained by ~ e r r e t t i [ ~ ]  

with strong restrictions on the probability distribution 

of the random parameters and subsequently by Fkohlich 

and 1mbrie161 through an intricate resummation of high- 

temperature or low-activity expansions. More recently 

Dreifus, Klein and perezI7] produced a very general and 
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simple proof of infinite differentiability of tlie magneti- 

zation at sufficiently high temperatures, with no as- 

sumption on the probabiblity distribution of the ran- 

dom parameters. 

The purpose of this note is to show how the use of 

correlation inequalities specific of purely ferromagnetic 

systems drastically simplifies the analysis. We are go- 

ing to sliow exponential decay of the two point func- 

tions and differentiability of the quenched magnetiza- 

tion as a function of the externa1 magnetic field, in the 

presence of Griffiths' singularities at sufficiently high- 

temperatures. Actually our methods can be sharpened, 

along the lines discussed in ref. [7] to prove exponen- 

tia1 decay of a11 truncated correlation functions and in- 

finite differentiability of the qnenched magnetization, 

but this would go beyond the scope of this contribu- 

tion. Our assumptions on the probability distribution 

of the random variables (Jcy), apart from ferromag- 

netism are the weakest possible. In the case of bounded 

spins (lo, 1 5 c, for some positive constant c) JXy may 

even take the value +m if this happens with sufficiently 

small prohability. This is to be compared with tlie 

methods of ref.[4], which crucially requires a, = f 1 

and < m. With some restrictions on the probabil- 

ity distribution of the coupling JXy we can also elimi- 

nate the restriction on the values of the spin variable 

'Jx . 
Another interesting class of random ferromagnetic 

spin sytems are the so called (d+ 1)-dimensional systeni 

with d-dimensional disorder. A typical representative 

of these models is the Ising model in zdf lwith energy 

function given by 

where J = ( J ( X , ~ ) , < X ~ > E Z ~ )  and 

K = {K (x) , x E Z) are two families of independent, 

and within each family identically distributed ran- 

dom variables with J (x, y) 2 O and I( (x) > O. The 

spin variables a (x, t)are taken to be f 1, the symbol 

< uv >denotes that u and v are nearest neighbor points 

in Zd or Z i.e.(u - v( = I ;  A C zd and T C Z are finite 

subsets. The characteristic feature of these systems is 

the fact that both "horizontal" J (x, y) and "vertical" 

li' (x) couplings do not depend on the "time" variable 

t E Z. 

Apart from its own interest (see [$I), these models 

when realized in Zd x (;Z), that is with lattice spacing 

($)h the "time" direction and with the replacements 

J (x, Y) -) J (x, Y) 
I < ( x ) - + - $ l n t a n l i i h ( x )  ' 

produce in the limit n -, co the path space of a quan- 

tum disordered system: the Ising model with a random 

transverse field in zd [9], [lO] with Hamiltonian foi- 

mally given by: 

where ui (2) , i = 1 , 2 , 3  are usual Pauli spin operators. 

These models appear also in the study of contact pro- 

cesses in random e n ~ i r o n r n e n t s [ ~ ~ ~ ~ ~ ] .  

In this paper we briefly revisit the problem of tlie 

phase diagram of such models and provide some in- 

sight into the nature of the effects of Griffiths' sing;u- 

larities for these systerns. It  is intuitively clear that 

their effect should be even more serious than those .for 

the standard random ferromagnets in zd+l :  as a con- 

sequence of translation invariance in the "time" direc- 

tion the singular regions (defined as those regions inside 

which the system is strongly correlated) are now in- 

finitely extended tubes of the form S x Z where S C zd 
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is a finite sc,t. For simplicity, we shall consider only a 

simplified model where one can explicitly compute how 

one looses ecponential decay of the two-point function 

in the "time" direction. Our technique is considerably 

simpler, tholigh similar in many respects to those used 

in refs. [8], 191, [ l l ]  and many of the results there may 

be obtained with the techniques described here. Our 

main ingredients are ferromagnetic correlation inequal- 

ities which i11 the general case, not considered here will 

have to be c~upled  to a multiscale analysis of the type 

used in ref. :13] and will be discussed elsewhere. 

This paprr is organized as follows. In section I1 we 

discuss the rnodels given by (1.1) showing exponential 

decay of the two-point function and differentiability of 

the quenchetl magnetization. In section I11 we discuss 

the models n (d + 1)-dimensions with d-ctimensional 

disorder given by (1.4). 

11. Exponeiztial decay of correlation functions 

Let us consider the model given by eq. 1.1. For a 

given configuration J = {Jxy), the two point function 

of the system can be estimated by 

where the summation is taken over a11 self-avoiding 

paths w : x -, y in zd connecting x to y, that is 

w = {( i l j l ) ,  (izjz), ... (injn)) with = 2, &+I = j k  

f o r t = l ,  ..., n - l a n d j , = y ; i k # i i f o r k # l .  We 

shall denote by Iw I the number n of steps in the walk w .  

This bound, derived by I'isher[l21, is an immediate con- 

sequence of ferromagnetism (J,, 2 0) and of the spins 

being f 1. Suppose now we are in the bond disordered 

model, so that {Jxy) are independent and identically 

distributed random variables and let 

where the bar indicates the average over the random 

parameters. In this case we may compute the average 

over the randomness of the above inequality, to  obtain: 

so that,  if 2d< < 1 

where m = -- ln (2dC) and C = (1 - 2 d ~ ) - l  . Since 

this estimate is uniform in the volume A, we can con- 

clude that the quenched two-point function, in the in- 

finite volume limit also decays exponentially, provided 

2dC < 1: 

It is now simple to convert this bound on the averaged 

correlation function (u,uy) into a bound implying ex- 

ponential dec3y of the two point function (uxuy) ( J )  

that is obtained with probability one in the realization 

1 
of the random paramenters J = { J,,). This is through 

the use of Chebyschev's inequality: 

where P {Aldenotes the probability of the event A. If 

we take 

f = e ~ I ~ - ~ I  (uxuy) 9 

Y 

where O <p < m, we obtain 

and this together with the Borel-Cantelli lemma implies 

that there exists no (x) < m, such that for lx - yl 2 
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no (x) with probability one 

or alternatively, for every O < /I < m with probability 

one there exists C, (J ,p)  < co, such that 

It  should be noticed that the condition C < 1, may 

be satisfied even if JZy = m with non zero (but small) 

probability. If, for example, 

J with probability (1 - p) 
Jij = co with probability p 

then 

C = P +  (1 - p) t anhBJ ,  

so that (2dC) < 1 if p and PJ are sufficiently small. 

In the region of parameters implying exponential de- 

cay of the correlation functions we can prove differen- 

tiability of the quenched magnetization a t  zero externa1 

field from the formula: 

The ~ r o o f  of infinite differentiability of m (h) at h = O 

requires the analysis of the decay properties of the n- 

point correlation functions. 

111. Discussion o f  a simple model  for  d- 

dimensional disorder  in (d+ 1) dimensions 

We begin our discussion with an extremely simple 

model which incoporates the basic features of the more 

general situation. It is given by the following condi- 

tions: 

w, with probability p 
(" Y) = { O with probability 1 - p 

(3.1) 

For a given realization J of the random parameters 

we say that two sites x, y E zd are in the same con- 

nected cluster if there is a path w : x + y such that 

J (i, j) = co for (i, j) E w .  In this moiel, for any two 

sites (x,t) ,  (y, t )  E zd x Z in the same horizontal layer 

the corresponding spin variables are equal if the two 

sites x, y E zd lie in the same connected cluster or 

else they are statistically independent. Therefore, for a 

given realization J ,  the only nontrivial correlation func- 

tions are those between the spin variables in sites lying 

on the same vertical line (x, s) ,  (x, t )  and they are given 

by the correlation functions of a one dimensional Ising; 

model with coupling N(x)I( where N(x) is the numbei. 

of sites in the connected cluster of sites containing x. 

We can therefore write down the correlation function:; 

for this model: 

(tanh I ~ N ( X ) ) ~ " ~ ~  if x and y are in the same cluster 

We should first remark that i fp < p, (d), where p, (d) > cay of correlation functions in the time-direction: 

is the critical value for the bond percolation prob- 

lem in zd the random variables N(x) are finite with (a (x, t )  u (2, s)) 5 exp -m It - s] (3.3) 

probability one, since where m = e - 2 N ( x ) K .  This is a trivial remark since, 

k although finite with probability one, N(x) takes arbi- 

z ~ { N ( r ) = n )  < m .  trarily large values, also witli probability one. This 
n=l 

phenomenon is the trade mark of the Griffiths' singu- 

Therefore with probability one we have exponential de- larities. The quenched two-point function is then given 
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that is. by: 

-- 03 

(u (x, t )  u ( r ,  s)) = P(n)  (tanh Kn)l3-'' 
n = l  

(3.4) 

where P(n)  = P {N(x) = n), and 7 r E(f)  denotes 

the expecte.tion with respect to the random param- 

eters of thc random variable f .  Using the obvious 

bounds P(n)  5 (2d)n-1pn (actually for d := 1 we have 

P (n) = (1 -- p12 npn) and tanh x 5 (1 - exp -(2x)) 5 

exp - (exp --(22)) it follows from (3.4) thai 

wher e 

It should be remarked that for d = 1 with little ex- 

tra work, the above inequalities can be reversed to yield 

the lower bound 

for some constant C(K, 1) > O . 
For x # y we have only the clusters with n > lx - yl 

give a non trivial contribution: 

so that 

m 

(c (x, t )  u (y, s)) < e-'lx-yl (2dp)"-' ,-(t-sl exp -(2lx-y(K)exp -(2nK) 

n = l  

This shows that 

c(K, 1 )  
(õ (x, t )  u (y, s)S 5 e-IIX-~I -L 

[It - slexp- (2 lx - yl I<)]'" 

so that if 1 > 2 K  we have exponential decay in the space 

direction and polynomial decay in the time direction. 

The upper bound (3.6) can be used to prove differ- 

entiability of the quenched magnetization provided & 
is sufficiently large so that 

whereas the lower bound precludes exponential decay of 

the quenched correlation functions. The lower bound is 

I 
in this case the visible sign of the Griffiths' singularity. 
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