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We use an exact renormalization group method to study the Ising model on a family of
Sierpinski gasket type of fractals. For general values of b, where b is an integer (b > 2)
ct aracterizing the fractal, we derive exact recursion relations between partition functions
at successive generations of the fractals. We calculate the temperature dependence of the
thermodynamicfunctions for the ferromagnetic and antiferromagnetic models with b < 10,
arid the antiferromagnetic residual entropies up to b = 11. We find that these functions
show a smooth crossover to the corresponding quantities of the same models defined on a

regular triangular lattice.

|. Introduction

Considerable attention has been devoted in the last
quarter of this century to the investigation of physi-
cal modelsrelated with fractall’:2] and hierarchical®®=5
lattices. When such lattices exhibit self-similarity and
finite order of ramification, some physical models on
these | attices can be solved exactly through a renormal-
ization transfcrmation. Several aspects of these models
have been stucied in different contexts, among which we
may mention those related with percolation!®™, ther-
modynamic bshavior of frustrated Ising models!8=10,
superconductivity in disordered medialtll, magnon dy-
namicson diluted Heisenberg magnets{*2, crossover be-
tween fractal and Euclidean lattices!'3, fractal interpo-
lating dimensions between Euclidean dimensions(*4:15],
and a great diversity of other problems.

In this paper, the Ising model with either ferro-
magnetic or antiferromagnetic couplings on a family
of fractals which are generalizations of the Sierpinski
Gasket isstudied using an exact renormalization group
techniquel!%l, "n the absence of external magnetic field
we calculate the thermodynamic potentials for arbi-
trary temperature and we get, as a subproduct, the
residual entropy of the family. The method presented
hereis based on an adaptation of the Real Space Renor-
malization Group via Decimation, where we impose a
well specific invariance of the partition function during

each renormalization step, and on the ideas of the scale
theory of finite size systems.

Several authors have considered the calculation of
thermodynamic potentials of spin systems on the Ster-
pinski Gasket and some of its generalizations either in
the two-dimensional Euclidean spacel*7=25] or in spaces
of higher Euclidean dimensions!?!). However, most of
these works concentrate themselves on the ferromag-
netic region of the coupling parameter and in the zero
temperature limit. Westress here three exceptions; the
first is the calculations of the thermodynamic poten-
tialsof the Sierpinski Gasket for arbitrary temperature
in the ferromagnetic region2?; the second is an exact
calculation of the residual entropy of fully frustrated
generalized Sierpinski Gaskets?3:24] with results cor-
roborating with those obtained here within a precision
of more than fifteen decimals; and the third is the cal-
culus of the residual entropy of the Sierpinski Gasket
family in the zero-temperature limit(?%,

II. Model

The model we consider for illustration of the method
introduced here consists of a family of fractals embed-
ded in a two-dimensional Euclidean space and repre-
sents one of the possible generalizations of the Sierpin-
ski Gasket. Each member of this farnily, designated by
.S’Gg"), where b isan integer greater or equal two identi-
fying the member of thefamily, is constituted by a set of
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Figure 1. (a) The generators SG!" of the two-dimensiond
Sierpinski type o fractals, for b = 2,3,4 and 5. (b) The
fractal (SG{? structures) at the » = 2 stage d the con-
struction.

self-similar structures identified by the integer n greater
or equal zero. The onset of the process of construc-
tion of these structures is an upward triangle of unity
sides, denominated root of the member and designated
by SG%O). In the first stage of the construction of each
member of the family, we divide the root in b? equi-
lateral triangles and drop out the b(b — 1)/2 downward
triangles. In thisway, we get M, ; = b(b+1)/2 upward
triangles of sides equal 1/b physically present in the
root, spanning an infinity set of generators of the family
designated by SGgl). This process isiterated, with the
length scale of the membersof the family decreasing by
afactor bin each step of the construction, and it stops
at some suitable microscopic length 4=" correspond-
ing to the structures SG{™ with M, ,, = [b(b+ 1)/2]"
upward triangles of sides b= physicaly present. The
fractal lattices SGy are, by definition, the n — oo limit
of this process. The Hausdorff dimension of each mem-
ber of the family is expressed by Dy = In(Mjp 1)/ In(b),
and the number of vertexes at the nth step is given by
Ny = 3F[(0F 4)/(6 + 2))[Ms. - 1]. Fig. 1 depicts
the construction procedure.

We construct an Ising model on the SGE”) attaching
aspin variable o; = 41 to each vertex o thisstructure,
with nearest-neighbor adimensional interactions and in
the absence of external fields. The reduced Hamiltonian
is

Hyn=—Ky Y (0i0}), (1)

<if>
where < {5 > indicates the sum over all nearest-
neighbor spins variables. In Eq. (1) K, = 8J, isthe
coupling parameter, with 8 = 1/kpT and J,, is the ex-
change interaction for nearest neighbor pair of spins,
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kp is the Boltzmann constant, and T is an arbitrary
temperature. The partition function is given by

Zy(Kn) = Z exp[Kn Z (oi05)], (2)
{o:} <ij>
where the composed symbol {&;} represents all possible
configurations that the spin variables of the structure
can assume.

II1. Formalism
II1.1. Partial partition functions

The partial partition functions of the SGI(,") are
those partition functions obtained when we keep fixed
a determined configuration of the external spins, and
accomplish the trace over the internal spins of such
structures. These functions play a crucia role in the
evaluation of the thermodynamic potentials of the frac-
tals.

Let us work out the process of determining the par-
tial partition functions of the second order structure of
the member Sierpinski Gasket SGS of the family. Ac-
cording to the scheme of Fig. 2, we can factorize the
internal clusters of the SG%Q) by tracing over the in-
ternal spin variables indexed by 1, 2 and 3 separately.
Then the partial partition functions may be written as:

Z9(K2;{0i}) = F(01,09,03)F(02,04,05)F(03,05,06),

3)
where
F(oj,05,01) = xg 4+ 3z + 4x§3 (4)
for ¢; = 05 = o3, and
F(oi,04,01) = 5 + 4z2 + 3252 (5)

otherwise. From now on we use the notation z, =
exp(K,) for the Boltzmann weights.

Denoting these two expressions by Ag(zz) and
Bo(z2), respectively, and inspecting the possible combi-
nations of their argumentsin Eq. (3), wefind that the
SGgZ) has only four distinct partial partition functions
which may be written in a compact manner as

Zy(wa; 1) = AY ! (22) B3(x2), (6)

where 0 < I < 3 represents the energy levels ez 1(K1) =
—(3Mz1 —4D K, of the SGgl) related with the external
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Figure 2. The sets of external and internal spins of
this structure are designated by {a;1 < i < 6} ad
{ri,8i,ti; 1 <i < 3}, respectively.

spin configurations of the structure SG(ZQ). Note that
we change the partial partition functions notation from
a representation in terms of the external spin configu-
rations {o;} of the structure SG(ZZ) to arepresentation
in terms of energy levels {/} of the structure SGgl). As
there are 2% = 64 possible configurations of the external
spins, agiven partial partition function is degenerated,
and its degeneracy degree is equal to the degeneracy
of the energy level associated with the configuration of
the external spins.

Extending she ideaof factorizing of theinternal clus-
ters to higher orders and to other members of the fam-
ily, we get for any SG,(,")

Zolansl) = 4,77 @) BY(an), (D)
where 0 < 1< My p—1, My ,—1 isthe number of physical
triangles of the structure 505,”‘”, and the structure
functions As(z,) and By(z,) are determined from the
sum over the internal spins of the generator SG?) of
the member b of the family. We see from Eq. (7) that
these two functions are the only relevant ones to write
down the partial partition functions for any SG%").

111.2. Partition functions

From the rcot of the membersof the family, an up-
ward triangle, is easy to see that the 5G§°> has eight
possible physical states, and two energy levels. Thefirst

level corresponds to the ground state of aferromagnetic
system with energy —3 K, and has degeneracy two, the
other, with energy Ky has degeneracy six. The parti-
tion function in terms of Boltzmann weights is then

Zy(xo) = 223 4 6z71. (8)

Each of these levels generates a partial partition func-
tion for the structures of immediate higher order with
the same degeneracy of the ownlevel, and with thefirst
level of the SGEO) corresponding to the function As(z1)
and the other level to By(z;). Accordingly we may ex-
press the partition function for the set of generators
SGV as

Zb(arl) = 2Ab(161) + 6Bb($1) (9)

The structure functions As(z1) and By(z;) are calcu-
lated by adlightly different method from that suggested
by Fernandes and Brady Moreiral?¢l, In the Appendix
we give the functions for 4 < 8 (for larger values of b see
Ref. 27). By substituting these functions into Eq. (9),
we can write the partition functions of the generators
of the membersof the family in terms of the Boltzmann
weights.

Proceeding to higher orders, we observe that the
structure of order n of member 4 of family has M, +1
energy levels, with energies ¢ (Kn) = —(3M;, —
4)K,. Here My , = [b(b T+ 1)/2]" is the number of up-
ward triangles in the structure, and | =0, 1, ..., My n—1.
Each of these levels generates a partial partition func-
tion for the structure of order superior, with the same
degeneracy of the level, and then we can generalize the
foregoing reasoning and express the partition function
of SG{™ as

My, p—1
Z(@n) =Y, Cin-1Zs(2n;d), (10)

=0
where Zy(z,;1) is given by Eq. (7), and the Cjp-1
are the samefactors of the partition function Z(z,-1)
when expresses in terms of Boltzmann weights, that is

Mb,n—l
Zb(xn—l) - Z Cl,n-—l exp[(3Mb,n—1 - 4I)Kn—1].
=0
(11)
The last two expressions, linked by the coefficients
Cin—1, formalizethe physical ideasuggested in this sec-
tion. They may be thought of as a recursion relation
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which allows us to write down the partition function o
SG%”) at any arbitrary order.

111.3. Renormalization

The recursion relations for the coupling parameter
Ky and for the free energy Fi(z,) of the structure
SG,(,") can be suitably derived from an adaptation of
a decimation transformation. By assuming the invari-
ance of the Boltzmann weights of a given energy level
of SG&""I), which are related with the partial partition
function originated by the trace over the internal spins
of the structures SG%”), that is,

Zy(2n; 1) = exp[Go(an)] exp[(3Mp n-1 — 4) Kn_1],
(12)
where ! = 0,1,..., Ms -1 represents the energy levels
of structure SG\"~Y with My, _, physical triangles.
In the above equation Gy(z,) = Np ngs(2r) is an auxil-
iary function of the free energy distribution during the
decimation, Nj,, is the number of spin variables (ver-
texes) of S’Gg"), and g;(z,) is a specific function to be
determined in the renormalization process.

Starting from Eq. (12), multiplying both members
by the degeneracies () -1 of the energy levels of the
Sng_i), performing the sum over the ! levels, and sub-
stituting the result by Egs. (10) and (11), we find

Zy(xn) = exp(Gy(zn)] Zs(2n-1). (13)

Therefore, the partition functions o SG§") and
SG%”"I) are related by the same factor as the par-
tial partition functions of SGE") and the correspond-
ing Boltzmann weights of SG"™". This implies that
the invariance of the partial partition functions led us
to the invariance of the partition function under the
renormalization.

The idea of imposing the invariance o the partial
partition functions of clusters of decimated spins, in
relation to the Boltzmann weights of the remaining
spins, and thence to reach the invariance of the parti-
tion functions under the renormalization was previously
presented in determining the thermodynamic proper-
ties of Ising spins on the triangular latticel?). In fact,
the Eq. (13) represents the invariance requirement for
the partition function of the original and renormalized

systems under a scale transformation(29.
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Eq. (12) represents asystem with M; ,_; T1 equa-
tions, nevertheless we only have two quantities to be
determined, K,-; and gs(z,), and then only two of
those equations are needed. In fact, for any pair of
equations indexed by 1 and m, with { # m referring to
distinct levels of energy, we obtain:

Kpoy = 411 [‘g;g:;] (14)

Mb,n—l 3
AN, In[As(zn) By (4)], (15)

which are independent of I and m. The irrelevance o
the choice of the energy levelsis then established.

gb(xn) =

111.4. Thermodynamicfunctions

We now turn to the recursion relation for the free
energy. Defining the dimensionless free energy per spin
o the SG\™ as

In{Zy(zn)] (16)

Fb(xn) = an

and using (13), we can write

Moot g Vtap(en) . (17)

Fy(zn) = Nor

Iterating Eg. (17) we obtain

Fy(z,) =

($0)+E{ e l]gb(xn 1), (18)

where Fy(zo) = 3 In(223 + 6251) is the free energy per
spin of the root SGgo). Thus, Eqgs. (14-18) enableus to
determine the free energy of any SGE") for general val-
uesof the coupling parameter &,. Theexact expression
for Fy(z,), EQ. (18), was first derived in Ref. 16.

The internal energy Ey(z.) = dF3(z,)/dK, is de-
rived from Eq. (17). After (n — 1) iterations we get:

Eb(:cn) =

Ny o dKy Ny; dK; dgy(z;)
Ny dK,, aK, D@0 + Z[N,,,n dK, dK; |’

(19)
where Ey(zo) = [z4 — 1]/[z& T 3] is the internal energy
per spin of SGI¥, and dk;/dK, = P} (dK,/dK 1,).
The entropy can then be calculated from the thermo-
dynamic relation

Sb(:cn) = Fb(-'l?n) — KnEb(:L'n), (20)
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and the specific heat can be written as

Nio\ [ KndKo\?
(N,,,,) <K0d1’ ) Co(zo)

dK

{2 n4+l—1
E Z( dK, )

Noi\ [ &Ko
[(72) (iR st

Nn -1 d2 nt+l—1 2
o (M) (St ]
b,n An+1 -1

where Cy(zo) = 16K3222/(z3 T 3271) represents the

specific heat of the 5G§°>. The results of the numerical
calculation are presented in the next Section.

C(, (.’l?n)

L
¥

IV. Results

We first present our results for the thermodynamic
potentials calculated at successive stages of construc-
tion of the Sierpinski gasket type of fractals, described
in Sec. |, and then we examine the question of how
the thermodynamic functions of these fractals converge
to the correspcnding functions of the regular triangular
lattice.

The free energies Fy(x,) present the high-
temperature limit of In2in X = 0, and increase with
| K| with a well defined concavity as expected for free
energy functioris. For the case b = 2, the calculated free
energiesfor the first ten stages of construction saturate
numerically within a specified precision. For example,
for the structure SG%S) made up from 9,843 particles,
the thermodynamic lirnit (n — oo) is achieved within a
precision of 10~-®. This means that the surface effects
due to the finite size of the systerns become negligible
for those structures labeled by 6 = 2 and n > 8, and,
therefore, the thermodynamic properties of the Sier-
pinski Gasket is, above this order, dominated predom-
inantly by the characteristics of the bulk. Of course,
any desired precision may be reached by iterating the
renormalizatioii at a compatible order.

Figure 3(a) presents the internal energies per spin
of the SG{™ , for 1< n < 10. They must be understood
negative in entire K space. The two plateaux indicate
that the low-temperature regime is quickly reached,
and that the chosen interval of values of X is therefore
quite suitable <o represent the thermodynamic poten-
tials. We note that the internal energy curves saturate
after just a few renormalization steps.

The entropies of the SG(Z“), 1< n <10, are shown
in Fig. 3(b). There is a maximum in the origin, corre-
spondingto T + oo, equals toln 2. In theferromagnetic
side the curves tend towards the asymptotic value zero,
while in the antiferromagnetic one the curves tend to-
wards the asymptotic residual value 0.493006107. This
residual entropy for the Serpinski Gasket is higher than
the value 0.32066 calculated exactly by Wannier[3%
for the Ising antiferromagnet on the triangular lattice.
Such unexpected result is contrary to the idea that the
presence of holes in the lattice can reduce the frustra-
tion. Indeed, it was found that the random removal of
bonds (sites) reduces the frustration in randomly di-
luted disordered systemsf1.

In Fig. 3(c) we show the specific heat per spin of
the SG%"), for 1 < n < 10. Each curve tends towards
zero in both limitsof T — 0 and T — o0, and presents
two finite maxima in the pseudocritical temperatures.
For antiferromagneticinteraction (K < O), the rounded
peaks saturate at C ~ 0.1184, with the pseudocriti-
cal temperatures being located in the neighborhood of
K = —0.58. For K > 0 the peaks aso become higher
as n increases, saturating at C ~ 0.7453 and, except
for the first two orders, their positions remain fixed
around K = 0.52. Furthermore, the curves intersect
each other in the region where the systems reach the
low-temperature regime, that is K ~ 0.67.

Thermodynamic functions of the higher members
(b > 3) of thefamily present, in general terms, the same
dependence with temperature asthe appropriate curves
of the Sierpinski Gasket. However, we have noted for all
thermodynamic potentials that the rate of convergence
towards the appropriate asymptotic curves (N — oo
limit) become more pronounced for larger b.

Table | presents the results for the antiferromag-
netic residual (zero-temperature) entropies of the first
six members of the family SGE”). The data were listed
for a chosen accuracy of O(10~7) and, for fixed b, we
included only those entries needed to achieve the de-
sired precision. In this way we might establish a stop
criterion (avoiding unnecessary calculations) to calcu-
late, within a specified precision, the thermodynamic
functions of a given fractal lattice through a sequence
o renormalizations.

Once accomplished the sequences of renormaliza-
tions which allow us to determine the order n of the
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Table 1 - The antiferromagnetic residual entropy per spin of the SGE") structures. For agiven b, only those entries
needed to achieve an accuracy of O(10~7) were quoted.

n b=2 b=3 b=4 b=5 b=6 b=7
1 0.5430161 0.5075174 0.4822785 0.4633318  0.448456  0.4366635
2 0.5130202 0.4789589 0.4588857 0.4443779 0.4330644 0.4238393
3 0.5001540 0.4733224 0.4562160 0.4430026 0.4322783 0.4233576
4 0.4954469 0.4723541 0.4559495 0.4429103 0.4322407 0.4233404
5 0.4938263 0.4721918 0.4559228 0.4429042 0.4322388 0.4233398
6 0.4932839 0.4721647 0.4559202  0.4429038

7 0.4930759  0.4721602 0.4559199

8 0.4930366 0.4721594

9 0.4930163  0.4721593

10 0.4930095

11 0.4930072

12 0.4930064

13 0.4930062

generation needed to reach the thermodynamic limit
for each member b of the family, we proceed with the
calculation of the potentials for increasing values of b.
The difficult of going very far away with this purpose
resides in obtaining the exact expressionsfor the partial
partition functions since, as b increases, the degree of
degeneracy are represented by very big numbers. (Ac-
tually, for the case b = 12 not included in the present
calculation, the degeneracies cannot be accommodated
in an integer word of the computer.)

We have calculated the temperature dependence of
the thermodynamic potentials on the bgaskets with
2 < b < 10 and for both ferromagnetic (F) and an-
tiferromagnetic (AF) interactions. Theinternal energy,
the entropy, and the specific heat per spin are shown
in Fig. 4. In Fig. 4(c) we aso included the specific
heat of the regular triangular lattice. All curves were
obtained with n = 10. By comparing these results with
those shown in Fig. 3, one can see that the convergence
of any thermodynamic potential towards an asymptotic
curve isfaster when we increase the number of spins in
a lattice with a fixed fractal dimension than when, in
thelimit of large n, we increase the fractal dimension.

Asbincreases, the specific heat curves present round
peaks with increasing amplitudesin both ferromagnetic
and antiferromagnetic regions, but whilein the AF case
they spread out and are located at lower temperatures,
in the F region the round peaks become narrower and
occur at higher temperatures. Such a general trend of

crossing over from fractal to Euclidean behavior has
also been observed for the other thermodynamic func-
tions shown in Fig. 4.

The rate of convergence of the potentials with in-
creasing b is better illustrated through the b-dependence
of the ground-state energy and of the zero-temperature
entropy. In this limit, for both the AF and F systems,
we can obtain a relation between the internal energy
per spin and the parameter b, that is

Eo = eo(b+2)/(b+4), (22)

where ¢g = —1(—3) is the antiferromagnetic (ferromag-
netic) ground-state energy per site on theregular trian-
gular lattice. As b increases, theinternal energy in the
limit T — 0 increases systematically in modulus and,
for a fixed b, its absolute value in the ferromagnetic
fractal is three times larger than the antiferromagnetic
one, asin the Euclidean triangular lattice. Besides, the
crossover behavior of Ey, when b — oo, is given by
Ey = (1-2/b)eg.

Theentropy of all ferromagnetic systems vanishesin
thelimit T — Q For antiferromagnetic interactions the
zero-temperature entropy reaches its maximum value
for b = 2, and then decreases as b increases approaching
smoothly the entropy of the Euclidean triangular lat-
tice. In Table IT we show the residual entropy for the
antiferromagnetic fractal lattices with b = 8,9,10,11.
The seven-digit values for SA(T'— Q with2< b< 7
can be read from thelast entries of TableI.
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regular triangular lattice isincluded for comparison.
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Table II - Antiferromagnetic residual entropies
SHT — O for the fractal lattices with b = 8,9, 10
and 11. The values of n stand for the number of itera-
tions needed to achieve the precision shown. The corre-
sponding values for thefirst six members (2 < b < 7) of
the family can be read froin the last entries of Table I.

b ‘n ST — 0)
8 4 0.4158001
9 4 0.4093292
10 4 0.4037138
11 4 (0.3987939

The results obtained from several rescaling factors
can be used to form a basis for the application of a
scale theory to determine a law for the values of the
residual entropy in any higher dimension. In Fig. 5 we
have plotted the antiferromagnetic residual entrcpy asa
function of the number of spinsin the generator of each
member of the family. This figure shows S{(7° — 0),
for 4 < b < 11, in the thermodynamic limit (large n).
A last-square fitting to the data resultsin a power-law
expression given by

SE(T — 0) = 0.323094 + 0.384133(N ~1/2)0™6 (93)

where N = (b4 1)(b + 2)/2 is the number of spins
in the generator.
axis (N = oo) corresponds to the residua entropy
SA(T" — 0) = 0.323094 of tlie fully frustrated trian-
gular lattice. The exponent ws = 0.746 found for the
family of fractals studied in this work, should be com-

The intersection with the vertical

pared to theexponent wg = 1for their generators which
was first derived from an exact enumeration on finite
triangular clusters(2®l,

V. Concluding remarks

We have studied tlie thermodynamic behavior of
both the ferromagnetic and antiferromagnetic Ising
models on afamily of fractal lattices. Thiswork extends
the results of Ref. 16 to higher fractal dimensionalities.
Our exact calculations of the thermodynamic potentials
presented in the above Sections may be viewed as an
exact study of the Ising model on a generalized family
of fractals, or as an investigation of the behavior from
fractal to Euclidean crossover.
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Figure 5. The antiferromagnetic zero-temperature entropy
per Spin, in the tliermodynamic limit of members with
4 < b < 11, as a function of tlie number of spinsin the
generators.

The results obtained for the SG{™ lead us to con-
clude that the method developed here is perfectly fea-
sible for determining the thermodynamic potentials of
non-homogeneous and self-similar fractal structures.
The non-homogeneity alow us to decompose a given
system of particles in several subsystems with internal
structures being connected by a finite number of links.
In the case of the SGE,”), this property becomes man-
ifest through the possibility of factorizing the clusters
of internal spins; cf. Eq. (7). On the other hand,
the self-similarity is also necessary to obtain the recur-
sion relation for the partition functions of two successive
structures; cf. Egs. (10) and (11).

The family of fractals considered in this work is uni-
form, nevertheless this property is not necessary. The
application of the present formalism to non-uniform
self-similar lattices may render more defiances, but it
is also possible, in principle. We choose this general-
ization of the Sierpinski Gasket because we were in-
terested in the thermodynamic behavior of cooperative
systems where frustration plays an important role in
their ground-state properties. We could eventually be
interested in other quantities, such as the magnetiza-
tion and susceptibility. The inclusion of an external
magnetic field on our formalism, spite of being much

more complicated, is perfectly feasible.

In the case of the antiferromagnetic model, the ap-
plication of the present formalism to calculate theresid-
ual entropy is an cxact study of the frustration effects.
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We found ttat these fractals present degeneracies of
their respective ground states which are even larger
than that of the corresponding Ising model on the reg-
ular triangular lattice. The higher ground-state degen-
eracy found in the b-gaskets, where the bonds (sites)
are removed in some organized fashion, should be con-
trast with Monte Carlo simulations of randomly diluted
Ising models on the triangular lattice. In these latter
systems, the random removal of bonds (sites) leads to
less frustration and lower ground-state degeneracy.

We have also found from the results on the frac-
tals with 4 < b < 11, that the residual entropy
S#(T — O shows a power law behavior given by Eq.
(23). Whether a crossover expression of the same type
can be found in the case of other fractals presenting a
finite order of ramification is a subject of further work.
The question of finding universal behavior on fractals
isstill open, and our calculations may suggest the uni-
versal character of the exponent ws = 0.75.

To summaerize, we have developed a renormalization
group approach to calculate exactly the thermodynamic
functions of I:ing modelson non-homogeneous and self-
similar fractal lattices. The method wasapplied to both
ferromagnetic and antiferromagnetic Ising modelson a
family of Sierpinski gasket type of fractals. We con-
cluded that all thermodynamic functions calculated on
the fractal s ap proach the corresponding functions of the
Euclidean triengular lattice in a smooth way.
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Appendix

AQ(CI:)
BQ(I)

A3(.’L‘)
Bs(x‘)

A4(IL')
B4(.’L’)

As(:ﬂ)

B5($)

As(:l,‘)

Be(z)

A7(:12)

B7(:U)

As(z)

Bg(il?)

hn i Imu

M. P. Grillon and F. G. Brady Moreira

Partial partition functions of the generators SG,EI)
[z = exp(K1)]

2%+ 3z + 4278
z5 44z + 3273

218 4 6210 4 826 + 4522 + 4822 + 2026
214 4 4210 + 1825 + 3222 + 53272 + 2028

230 49222 4 13218 4+ 75214 + 21321% 4+ 5952% + 97522 + 120022 4 847z~% + 168210
226 4+ 4222 4 21218 + 81214 + 223210 + 54526 + 99122 + 124322 + 81226 + 175210

% 4 12257 4 19233 + 11422 + 339225 + 1301221 + 3846217 + 10341213 + 224142° + 405662°
+58359x + 63112273 + 434552~7 + 16137z~ 11 4 2128215

et 4 4237 4 24233 4 99229 + 402275 + 130322 + 3905217 + 10038213 + 224052° + 407942°
+58906x + 6215122 4 438482~ 7 + 16171z~ 1 + 2093215

283 4 15255 4+ 26251 4+ 162247 4 519243 4+ 199223 + 7119235 + 23730231 + 73659227
+2065742%3 + 52158321° + 1172052215 + 2325213z + 3992784z7 + 5790653z>
4682302921 4 62404892 % + 41483312 ~° + 1782315213 + 408546217 + 35640521
%% 4+ 4255 + 2725 4 1182%7 + 514x%3 + 204723 4 7284235 + 2427123t + 73662227
+205395223 4 5192022° + 1172135215 + 2330608z + 399884527 + 578021223
468146852~ 4 625365725 + 41492292~ 4+ 17764752z~ 13 4+ 410487217 + 35574221

234 4 18276 + 34272 + 219258 4 76225 + 2944250 + 11190255 + 39930252 + 141756248
+469728z%% + 1490328240 + 4407910236 + 12212220232 + 31362744228 + 74480732224
+16221635722° + 321512928216 + 573270666212 + 90743459423 + 125452585524
+1485220986 + 1467077592z % + 1167837678z 8 + 712749872z 12 + 311063028216
+878764682 2% + 13692132224 + 835920228

23 4+ 4276 + 30277 + 138258 + 639284 + 2710250 + 10800256 + 40454252 + 142854743
+476092z44 4 1493564240 + 440994423¢ + 12181630232 + 31328724228 + 74456504224
+162333468229 + 321654781216 + 573249668212 4 90706529428 + 1254426090z *
+1485547763 4+ 14674819902~ + 116732599223 + 7126675502~ 12 + 311285516x 16
+878409722 20 + 13670856224 + 840564223

2198 4 212100 4 43296 4 2852°2 + 1077258 + 420823¢ + 1703723° + 62025276 4 234271272
+83213125% 4 29146952%% 4 977835025° + 31602186255 + 97640163252 + 287800246248
+806524818z%% -+ 2142496410247 + 5377217634236 + 1270160634032 4 28111800417223
+57989098873224 + 110813359398220 4 1947986964572 + 312495041721 212
+453188767851x% + 587545995579z + 671785931011 + 6661280889242 4
+5608808844722~8 + 3903868386152~ 1% + 2168822356202 16 4 917577952592 20
4277232412602 24 + 5464697595228 + 607727703232 + 27578408238

2104 4 42100 4 33296 4 150292 4 777288 + 349323% + 14608230 + 59149276 + 225897272
+830931258 + 919915254 4 9835195250 + 31720542256 + 97802902252 + 28782807122
+806028482z%* + 2141286838240 + 5375925466236 + 1270257055822 + 28116664404x23
57995016389224 + 1108109548812%° + 19478416273421° + 3124819049292
+4532019455372% + 587576120623z + 71787003339 + 666092292775~
+5608695477162 8 4 390416524852z~ 12 4 216887411563z~ 16 + 917439253762 ~2°
+277241787352~ 21 4 5466868016228 4+ 607422299232 4 27513915236



