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%'e use an exact renormalization group method to study the Ising model on a family of 
Sierpinski gasket type of fractals. For general values of h, where b is an integer (b 2 2) 
cf aracterizing the fractal, we derive exact recursion relations between partition functions 
at successive generations of the fractals. We calculate the temperature dependence of the 
thermodynamic functions for the ferromagnetic and antiferromagnetic models with b 5 10, 
arid the antiferromagnetic residual entropies up to b = 11. We find that these functions 
show a smooth crossover t o  the corresponding quantities of the same models defined on a 
regular triangular lattice. 

I. Introduction 

Considera1)le attention has been devoted in the last 

quarter of this century to the investigation of physi- 

cal models rel.ited with f r a ~ t a l [ ~ l ~ I  and hierarchi~al[~-~I  

lattices. When such lattices exhibit self-similarity and 

finite order oj' ramification, some physical models on 

these lattices an be solved exactly through a renormal- 

ization transfcrmation. Several aspects of these models 

have been stuc ied in different contexts, among which we 

may mention those related with percolation[6~71, ther- 

modynamic b,:havior of frustrated Ising m~dels [ ' -~~] ,  

superconducti-rity in disordered media[''], magnon dy- 

namics on diluted Heisenberg magnets[12], crossover be- 

tween fractal and Euclidean ~attices['~], fractal interpo- 

lating dimensims between Euclidean d i m e n ~ i o n s [ ~ ~ ~ ' ~ ] ,  

and a great diversity of other problems. 

In this paper, the Ising model with either ferro- 

magnetic or antiferromagnetic couplings on a family 

of fractals which are generalizations of the Sierpinski 

Gasket is studied using an exact renormalization group 

technique[l6I. "n the absence of externa1 magnetic field 

we calculate the thermodynamic potentials for arbi- 

trary temperature and we get, as a subproduct, the 

residual entropy of the family. The method presented 

here is based o11 an adaptation of the Real Space Renor- 

malization Group via Decimation, where we impose a 

well specific in ~ariance of the partition function during 

each renormalization step, and on the ideas of the scale 

theory of finite size systems. 

Several authors have considered the calculation of 

thermodynamic potentials of spin systems on the Sier- 

pinski Gasket and some of its generalizations either in 

the two-dimensional Euclidean space[17-25] or in spaces 

of higher Euclidean d imens ion~[~~I .  However, most of 

these works concentrate themselves on the ferromag- 

netic region of the coupling parameter and in the zero 

temperature limit. We stress here three exceptions; the 

first is the calculations of the thermodynamic poten- 

tials of the Sierpinski Gasket for arbitrary temperature 

in the ferromagnetic region[221; the second is an exact 

calculation of the residual entropy of fully frustrated 

generalized Sierpinski ~ a s k e t s [ ~ ~ ~ ~ ~ ] ,  with resuits cor- 

roborating with those obtained here within a precision 

of more than fifteen decimals; and the third is the cal- 

culus of the residual entropy of the Sierpinski Gasket 

family in the zero-temperature limit[25]. 

11. Model 

The model we consider for illustration of the method 

introduced here consists of a family of fractals embed- 

ded in a two-dimensional Euclidean space and repre- 

sents one of the possible generalizations of the Sierpin- 

ski Gasket. Each member of this farnily, designated by 

S G ~ ) ,  where b is an integer greater or equal two identi- 

fying the member of the family, is constituted by a set of 
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Figure 1. (a) The generators SGV) of the two-dimensional 
Sierpinski type of fractals, for b = 2 , 3 , 4  and 5. (b) The 
fractal (SGF) structures) at the n = 2 stage of the con- 
struction. 

self-similar structures identified by the integer n greater 

or equal zero. The onset of the process of construc- 

tion of these structures is an upward triangle of unity 

sides, denominated root of the member and designated 

by S G ~ ) .  In the first stage of the construction of each 

member of the family, we divide the root in b2 equi- 

lateral triangles and drop out the b(b - 1)/2 downward 

triangles. In this way, we get Mb,l = b(b + 1)/2 upward 

triangles of sides equal l l b  physically present in the 

root, spanning an infinity set of generators of the family 

designated by SG!'). This process is iterated, with the 

length scale of the members of the family decreasing by 

a factor b in each step of the construction, and it stops 

at some suitable microscopic length b-" correspond- 

ing to the structures S G ~ )  with Mb,, = [b(b + 1)/2In 

upward triangles of sides b-n physically present. The 

fractal lattices SGb are, by definition, the n -+ co limit 

of this process. The Hausdorff dimension of each mem- 

ber of the family is expressed by Da = h(Mb,l)/ln(b), 

and the number of vertexes at the nth step is given by 

Na,n = 3 + [(b + 4)/(b + 2)][Mb,n - 11. Fig. 1 depicts 
the construction procedure. 

We construct an Ising model on the SGP) attaching 

a spin variable ai = Itl to each vertex of this structure, 

with nearest-neighbor adimensional interactions and in 

the absence of external fields. The reduced Hamiltonian 

is 

where < ij > indicates the sum over a11 nearest- 

neighbor spins variables. In Eq. (1) I(, = PJn is the 

coupling parameter, with /3 = l /kBT and Jn is the ex- 

change interaction for nearest neighbor pair of spins, 

kB is the Boltzmann constant, and T is an arbitrary 

temperature. The partition function is given by 

where the composed symbol {ai) represents a11 possible 

configurations that the spin variables of the structure 

can assume. 

111. Formalism 

The partial partition functions of the S G ~ )  are 

those partition functions obtained when we keep fixed 

a determined configuration of the external spins, and 

accomplish the trace over the internal spins of such 

structures. These functions play a crucial role in the 

evaluation of the thermodynamic potentials of the frac- 

tals. 
Let us work out the process of determining the par- 

tia1 partition functions of the second order structure of 

the member Sierpinski Gasket S G ~ )  of the family. Ac- 

cording to the scheme of Fig. 2, we can factorize the 

internal clusters of the S G ~ )  by tracing over the in- 

terna1 spin variables indexed by 1, 2 and 3 separately. 

Then the partial partition functions may be written as: 

forui  = ~ j  = Q ,  and 

otherwise. From now on we use the notation x, = 
exp(IC,) for the Boltzmann weights. 

Denoting these two expressions by A2(x2) and 

B2(x2), respectively, and inspecting the possible combi- 

nations of their arguments in Eq. (3), we find that the 
(2) 

SG2 has only four distinct partial partition functions 

which may be written in a compact manner as 

where O 5 I 5 3 represents the energy Ievels .c2,~(K1) = 
-(3442,1- 41)Ki of the S G ~ )  related with the external 
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O4 t2 O5 -t 3 O6 

Figure 2. Tlie sets of external and interna1 spins of 
this structure are designated by {a;; 1 5 i 5 63 and 
{ri, Si, ti; 1 5 i 5 31, respectively. 

(2) spin configurations of the structure SG2 . Note that 

we change the partial partition functions notation from 

a representation in terms of the external spin configu- 

rations {ai) of the structure S G ~ )  to a representation 

in terms of e n q y  levels { I )  of the structure S G ~ ) .  As 

there are 26 = 64 possible configurations of the external 

spins, a given partial partition function is degenerated, 

and its degenuacy degree is equal to the degeneracy 

of the energy level associated with the configuration of 

the external spins. 

Extending l,he idea of factorizing of the internal clus- 

ters to higher orders and to other members of the fam- 

ily, we get for m y  S G ~ )  

where O 5 1 5 ,Wb,n-l, Mb,n-l is the number of physical 
triangles of tht: structure SGP-'), and the structure 

functions Ab(x,) and Bb(xn) are determined from the 

sum over the internal spins of the generator SG:') of 

the member b of the family. We see from Eq. (7) that 

these two f~ncl~ions are the only relevant ones to write 
( down the parti31 partition functions for any SG;). 

111.2. Partitiam functions 

From the rcot of the members of the family, an up- 

ward triangle, is easy to  see that the S G ~ )  has eight 

possible physical states, and two energy levels. The first 

level corresponds to the ground state of a ferromagnetic 

system with energy -3I(o and has degeneracy two, the 

other, with energy Ko has degeneracy six. The parti- 

tion function in terms of Boltzmann weights is then 

Each of these levels generates a partial partition func- 

tion for the structures of immediate higher order with 

the same degeneracy of the own level, and with the first 

level of the SG$O) corresponding to the function Ab(x1) 

and the other level to Bb(xl). Accordingly we may ex- 

press the partition function for the set of generators 

SG~') as 

The structure functions Ab(xl) and Bb(xl) are calcu- 

lated by a slightly different method from that suggested 

by Fernandes and Brady   ore ira['^]. In the Appendix 

we give the functions for 6 _< 8 (for larger values of b see 

Ref. 27). By substituting these functions into Eq. (9), 

we can write the partition functions of the generators 

of the members of the family in terms of the Boltzmann 

weights. 
Proceeding to higher orders, we observe that the 

structure of order n of member 6 of family has Ma,, + 1 

energy levels, with energies C ~ , / ( I ( ~ )  = -(3Mb,, - 
41)Kn. Here Mb,n = [b(b + 1)/2In is the number of up- 

ward triangles in the structure, and 1 = 0,1, ..., M6,n-1. 

Each of these levels generates a partial partition func- 

tion for the structure of order superior, with the same 

degeneracy of the level, and then we can generalize the 

foregoing reasoning and express the partition function 

of SGP) as 

where Zb(xn; 1) is given by Eq. (7), and the Cl,,-l 

are the same factors of the partition function Z ~ ( X , - ~ )  

when expresses in terms of Boltzmann weights, that is 

Mb,n-i 

z b ( ~ n - i )  = C Ci,n-i exp[(BMb,n-~ -41)1<,-1]. 
I=O 

(11) 
The last two expressions, linked by the coefficients 

Cl,n-l, formalize the physical idea suggested in this sec- 

tion. They may be thought of as a recursion relation 
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which allows us to write down the partition function of 

SG?) a t  any arbitrary order. 

111.3. Renormalizat ion 

The recursion relations for the coupling parameter 

I(, and for the free energy Fb(xn) of the structure 

SGP) can be suitably derived from an adaptation of 

a decimation transformation. By assuming the invari- 

ance of the Boltzmann weights of a given energy leve1 

of S G P - ~ ) ,  which are related with the partial partition 

function originated by the trace over the internal spins 

of the structures S G ~ ) ,  that is, 

Zb(x,; 1) = exp[Gb(xn)] exp[(3Mb,n-i - 41)I(n-i], 

(12) 
where I = 0,1, ..., Mb ,,,- 1 represents the energy levels 

of structure SGP-') with physical triangles. 

In the above equation Gb(xn) = Nb,ngb(xn) is an auxil- 

iary function of the free energy distribution during the 

decimation, Nb,n is the number of spin variables (ver- 

texes) of SGP), and gb(xn) is a specific function to be 

determined in the renormalization process. 

Starting from Eq. (12), multiplying both members 

by the degeneracies Ci,n-l of the energy levels of the 

SGP-I) ,  performing the sum over the 1 levels, and sub- 

stituting the result by Eqs. (10) and ( l l ) ,  we find 

Therefore, the partition functions of S G ~ )  and 

SGP-') are related by the same factor as the par- 

tia1 partition functions of SGP) and the correspond- 

ing Boltzmann weights of SGP-'). This irnplies that 

the invariance of the partial partition functions led us 

to the invariance of the partition function under the 

renormalization. 

The idea of imposing the invariance of the partial 

partition functions of clusters of decimated spins, in 

relation to the Boltzmann weights of the remaining 

spins, and thence to  reach the invariance of the parti- 

tion functions under the renormalization was previously 

presented in determining the thermodynamic proper- 

ties of Ising spins on the triangular lattice12". In fact, 

the Eq. (13) represents the invariance requirement for 

the partition function of the original and renormalized 

systems under a xa le  t ran~formation[~~I.  

Eq. (12) represents a system with Mb,n-i + 1 equa- 

tions, nevertheless we only have two quantities to be 

determined, Kn-' and gb(xn), and then only two of 

those equations are needed. In fact, for any pair of 

equations indexed by 1 and m,  with 1 # m referring to 

distinct levels of energy, we obtain: 

which are independent of 1 and m. The irrelevance of 

the choice of the energy levels is then established. 

111.4. The rmodynamic  funct ions 

We now turn to the recursion relation for the free 

energy. Defining the dimensionless free energy per spin 

of the SGP) as 

and using (13), we can write 

Iterating Eq. (17) we obtain 

where Fb(xo) = ln(2xz + 6xõ1) is the free energy per 

spin of the root SG?). Thus, Eqs. (14-18) enable us to 

determine the free energy of any ~ ~ ( b n )  for general val- 

ues of the coupling parameter I&. The exact expression 

for Fb(xn), Eq. (lg), was first derived in Ref. 16. 

The internal energy Eb(xn) = dFb(xn)/dIi', is de- 

rived from Eq. (17). After (n - 1) iterations we get: 

(19) 
where Eb(xo) = [x: - l]/[x: + 31 is the internal energy 

per spin of S G ~ ) ,  and dKi/dKn = I I ~ ~ l ( d X i / d l < i + ~ ) .  

The entropy can then be calculated from the thermo- 

dynamic relation 



Brazilian Journal of Physics, vol. 23, no. 4, December, 1993 337 

and the specific heat can be written as 

where Cb(xo) = 1611'02x;/(x2 + 3xõ1) represents the 
specific heat 01' the SG?). The results of the numerical 

calculation are presented in the next Section. 

IV. Resul t s  

We first present our results for the thermodynamic 

potentials calculated a t  successive stages of construc- 

tion of the Siei,pinski gasket type of fractals, described 

in Sec. I, and then we examine the question of how 

the thermodynamic functions of these fractals converge 

to  the correspcnding functions of the regular triangular 

lattice. 

The free energies Fb(xn) present the high- 

temperature linit  of ln 2 in K = 0, and increase with 

IKI with a well defined concavity as expected for free 

energy functioris. Fòr the case b = 2, the calculated free 

energies for thc: first ten stages of construction saturate 

numerically within a specified precision. For example, 

for the structure S G ~ )  made up from 9,843 particles, 
the thermodynamic lirnit (n + m) is achieved within a 

precision of 10-5. This means that the surface effects 

due to the finhe size of the systerns become negligible 

for those structures labeled by b = 2 and n 2 8, and, 

therefore, the thermodynamic properties of the Sier- 

pinski Gasket is, above this order, dominated predom- 

inantly by the characteristics of the bulk. Of course, 

any desired precision may be reached by iterating the 

renormalizatioii at a compatible order. 

Figure 3(a) presents the internal energies per spin 

of the S G ~ ) ,  for 1 5 n 5 10. They must be understood 
negative in entire I< space. The two plateaux indicate 

that the low-temperature regime is quickly reached, 

and that the chosen interval of values of Ii' is therefore 

quite suitable .;o represent the thermodynamic poten- 

tials. We note that the internal energy curves saturate 

after just a few renormalization steps. 

The entropies of the S G ~ ) ,  1 5 n 5 10, are shown 
in Fig. 3(b). There is a maximum in the origin, corre- 

sponding to T + co, equals to  In 2. In the ferromagnetic 

side the curves tend towards the asymptotic value zero, 

while in the antiferromagnetic one the curves tend to- 

wards the asymptotic residual value 0.493006107. This 

residual entropy for the Sierpinski Gasket is higher than 

the value 0.32066 calculated exactly by ~ a n n i e r [ ~ O ]  

for the Ising antiferromagnet on the triangular lattice. 

Such unexpected result is contrary to  the idea that the 

presence of holes in the lattice can reduce the frustra- 

tion. Indeed, it was found that the random remova1 of 

bonds (sites) reduces the frustration in randomly di- 

luted disordered ~ ~ s t e m s [ ~ ~ ] .  

In Fig. 3(c) we show the specific heat per spin of 

the S G ~ ) ,  for 1 5 n 5 10. Each curve tends towards 

zero in both limits of T -, O and T -, oo, and presents 

two finite maxima in the pseudocritical temperatures. 

For antiferromagnetic interaction (li' < O), the rounded 

peaks saturate at C 0.1184, with the pseudocriti- 

cal temperatures being located in the neighborhood of 

K = -0.58. For K > O the peaks also become higher 

as n increases, saturating at C E 0.7453 and, except 

for the first two orders, their positions remain fixed 

around K = 0.52. Furthermore, the curves intersect 

each other in the region where the systems reach the 

low-temperature regime, that is Ii' e 0.67. 

Thermodynamic functions of the higher members 

(b 2 3) of the family present, in general terms, the same 
dependence with temperature as the appropriate curves 

of the Sierpinski Gasket. However, we have noted for a11 

thermodynamic potentials that the rate of convergence 

towards the appropriate asymptotic curves (n -+ CCI 

limit) become more pronounced for larger b. 
Table I presents the results for the antiferromag- 

netic residual (zero-temperature) entropies of the first 

six members of the family S G ~ ) .  The data were listed 

for a chosen accuracy of 0 ( 1 0 - ~ )  and, for fixed b, we 

included only those entries needed to achieve the de- 

sired precision. In this way we might establish a stop 
criterion (avoiding unnecessary calculations) t o  calcu- 

late, within a specified precision, the thermodynamic 

functions of a given fractal lattice through a sequence 

of renormalizations. 

Once accomplished the sequences of renormaliza- 

tions which allow us to determine the order n of the 
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Table 1 - The antiferroinagnetic residual entropy per spin of the S G ~ )  structures. For a given b, only thcse entries 
needed t o  achieve an accuracy of 0 ( 1 0 - ~ )  were quoted. 

generation needed t o  reach the thermodynamic limit 

for each member b of the family, we proceed with the 

calculation of the potentials for increasing values of b. 

The difficult of going very far away with this purpose 

resides in obtaining the exact expressions for the partia1 

partition functions since, as b increases, the degree of 

degeneracy are represented by very big numbers. (Ac- 

tually, for the case b = 12 not included in the present 

calculation, the degeneracies cannot be accommodated 

in an integer word of the computer.) 

We have calculated the temperature dependence of 

the thermodynamic potentials on the bgaskets with 

2 5 b 5 10 and for both ferromagnetic (F) and an- 

tiferromagnetic (AF) interactions. The internal energy, 

the entropy, and the specific heat per spin are shown 

in Fig. 4. In Fig. 4(c) we also included the specific 

heat of the regular triangular lattice. A11 curves were 

obtained with n = 10. By comparing these results with 

those shown in Fig. 3, one can see that the convergence 

of any thermodynamic potential towards an asymptotic 

curve is faster when we increase the number of spins in 

a lattice with a fixed fractal dimension than when, in 

the limit of large n, we increase the fractal dimension. 

As b increases, the specific heat curves present round 

peaks with increasing amplitudes in both ferromagnetic 

and antiferromagnetic regions, but while in the AF case 

they spread out and are located at lower temperatures, 

in the F region the round peaks become narrower and 

occur at higher temperatures. Such a general trend of 

crossing over from fractal t o  EucCdean behavior has 

also been observed for the other thermodynamic func- 

tions shown in Fig. 4. 

The rate of convergence of the potentials with in- 

creasing b is better illustrated through the b-dependence 

of the ground-state energy and of the zero-temperature 

entropy. In this limit, for both the AF and F systems, 

we can obtain a relation between the internal energy 

per spin and the parameter b, that is 

where €0 = -I(-3) is the antiferromagnetic (ferromag- 

netic) ground-state energy per site on the regular trian- 

gular lattice. As b increases, the internal energy in the 

limit T -t O increases systematically in modulus and, 

for a fixed b, its absolute value in the ferromagnetic 

fractal is three times larger than the antiferromagnetic 

one, as in the Euclidean triangular lattice. Besides, the 

crossover behavior of Eo, when b -, w, is given by 

E. = (1 - 2/b)fo. 

The entropy of a11 ferromagnetic systems vanishes in 

the limit T -+ O. For antiferromagnetic interactions the 

zero-temperature entropy reaches its maximum value 

for b = 2, and then decreases as b increases approaching 

smoothly the entropy of the Euclidean triangular lat- 

tice. In Table I1 we show the residual entropy for the 

antiferromagnetic fractal lattices with b = 8,9,10,11. 

The seven-digit values for S t ( T  -, O) with 2 5 b 5 7 

can be read from the last entries of Table I. 
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Figure 3. Temperature dependence of (a) the internal en- Figure 4. Temperature dependence of (a) the internal en- 

ergy, (b) the entropy, and (c) the specific heat per spin of ergy, (b) the entropy, and (c) the specific heat per spin for 

Ising spins with ferromagnetic and antiferromagnetic inter- both ferromagnetic and aiitiferromagnetic models on the b- 
actions at the r!th stage of construction of the b = 2 Sier- gaskets, for 2 5 b 5 10. The specific heat curve (TL) for the 

pinski gasket fr;rctal. regular triangular lattice is included for comparison. 
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Table I1 - Antiferromagnetic residual entropies 
S t ( T  --+ O) for the  fractal lattices with I> = 8,9, 10 
and 11. Tlie values of n stand for tlie number of itera- 
tions needed to  achieve tlie precision shown. Tlie corre- 
sponding values for the first six members (2 5 b 7) oi 
the family can be read froin the last egtries of Ta.ble I. 

The results obtained from several rescaling fa.ctors 

can be used to  form a. basis for the application of a 

x a l e  theory to  determine a law for tlie values of the  

residual entropy in any higher cliniension. In Fig. 5 we 

have plotted the ailtiferroma,grietic residual entrcpy as a. 

function of the number of spins in tlie generator of eacli 

member of the family. This figure shows S f ( T  O), 
for 4 5 I> 5 11, in tlie thermodynan~ic liniit (la.rge n). 
A last-square fitting to  tlie da ta  results in a power-law 

expression given by 

wherc M = ( b  + l ) ( b  + 2 ) / 2  is the niiiiiber of spiiis 

in the generator. The intersect,ion with the vertical 

axis (N = co) corresponds to  the  residual entropy 

S$(T + 0) = 0.323094 of tlie fully frustrated trian- 

gular lattice. Tlie exponent ws = 0.746 found for the 

family of fractals studied in this work, should be conz- 

pared to  the exponent ws = 1 for their generatois which 

was first derived from an exact enumeration o11 fiiiite 

triangular c l u s t e r ~ [ ~ ~ ] .  

V. Concluding remarks 

Wc have studied tlie thermodynaniic beliavior of 

both the ferromagnetic and antiferromagnetic Ising 

models on a family of fractal lat,tices. This work extends 

the  results of Ref. 16 to  higher fractal dimeiisionalit,ies. 

Our exact calculations of the thermodynamic potentials 

presented in the above Sections inay be viewed as ai 

exact study of the  Ising model on a generalized family 

of fractals, or as an  investigation of the  behavior from 

fractal t o  Euclidean crossover. 

Figiire 5. l'he antiferromagnetic zero-temperature entropy 
per spin, in hlie tliermodynamic limit of members with 
4 _< b 5 11, as a funct.ion of tlie number of spins in the 
generators. 

The  results obtained for the  S G ~ )  lead us to  con- 

clude tha t  tlie nx thod  developed here is perfectly fea- 

sible for deterrnining the thermodynamic potentials of 

non-homogeneous aild self-similar fractal structures. 

Tlie tioli-lioiilogciieity allow us to  decompose a given 

systeim of particles in several subsystems with interna1 

structures being connected by a finite number of links. 

In the case of the  S G ~ ) ,  tliis property becomes man- 

ifest througli the possibility of factorizing the clusters 

of interna1 spins; cf. Eq.  (7). On the other hand, 

t,he self-similarity is also necessary t o  obtain t h e  recur- 

sion relation for the partition functions of two successive 

structures; cf. Eqs. (10) and (11). 

The family of fractals considered in this work is uni- 

forni, nevertheless this property is not necessary. The  

application of tlie present, formalism to non-uniform 

self-similar lattices may render more defimces, bu t  i t  

is also possible, in principle. We choose this general- 

ization of the Sie~pinski  Gasket because we were in- 

terested in the thermodynamic behavior of cooperative 

systems where frustration plays ali iniportant role in 

tlieir grouiid-state properties. We could eventually be 

interested in other quantities, such as the  niagnetiza- 

tion and susceptibility. T h e  inclusion of an  externa1 

nmgnetic field on our formalism, spite of being much 

more con~plicated, is perfectly feasible. 

111 the case of the antiferromagnetic model, the ap- 

plication of the  present forma.lism to  calculate the resid- 

ual entropy is an  cxact study of tl-ie frustration effects. 
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We found tkat these fractals present degeneracies of 

their respective ground states which are even larger 

than that of the corresponding Ising model on the reg- 

ular triangulx lattice. The higher ground-state degen- 

eracy found in the b-gaskets, where the bonds (sites) 

are removed in some organized fashion, should be con- 

trast with Monte Carlo simulations of randomly diluted 
Ising models on the triangular lattice. In these latter 

systems, the random remova1 of bonds (sites) leads to 

less frustraticbn and lower ground-state degeneracy. 

We have also found from the results on the frac- 

tals with 4 5 b 5 11, that the residual entropy 

S t (T  -t O) E ~ O W S  a power law behavior given by Eq. 

(23). Whethcr a crossover expression of the same type 

can be found in the case of other fractals presenting a 

finite order oi'ramification is a subject of further work. 

The question of finding universal behavior on fractals 

is still open, imd our calculations may suggest the uni- 

versal charader of the exponent ws = 0.75. 

To summxize, we have developed a renormalization 

group approach to calculate exactly the thermodynamic 

functions of h ing models on non-homogeneous and self- 

similar fractal lattices. The method was applied to both 

ferromagnetic and antiferromagnetic Ising models on a 
family of Sierpinski gasket type of fractals. We con- 

cluded that a11 thermodynamic functions calculated on 
the fractals ar proach the corresponding functions of the 
Euclidean tr iagular  lattice in a smooth way. 
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Appendix 

Partia1 partition functions of the generators SG:') 
[x = exp(I(1 )I 


