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We use a real-space renormalization-group scheme to obtain exact recursion relations for 
analyzing the thermodynamic behavior of one-dimensional analogs of six and eight-vertex 
mc3dels. In particular, we show the existence of a smooth flow line and a fixed point to 
describe the first-order transition of these models. We also show that the method leads to 
thr  correct transition temperature of the two-dimensional KDP model. 

Six-vertex models were originally proposed to ac- 

count for the .esidual entropy in ice and for the ferro- 

electric phase transition in the hydrogen-bonded crys- 

tal KH2P04. Although there are no exact solutions 

in three dimensions, the transfer matrix method and 

the Bethe Antatz have been used to obtain complete 

solutions of a .rariety of analogs of ferro and antiferro- 

electric six-veri,ex models on a square lattice[l]. There is 

also a famous exact solution of a two-dimensional eight- 

vertex model, lvith a continuous phase transition char- 

acterized by parameter-dependent critica1 e ~ ~ o n e n t s [ ~ ] .  

The two-dimensional version of the simple ferroelectric 

model for KHz:'04 (which we cal1 the KDP model) dis- 

plays a first-order transition, with a latent heat, at a 
well defined temperature, while a two-dimensional anti- 

ferroelectric six-vertex model (the F-model) displays a 

subtle infinite-order transition, with a smooth specific 

heat as a function of temperature. Also, it has been 

shown that analogs of the KDP model still exhibit a 

first-order tranrition on d-dimensional ~attices[~]. 
In this papcr we use the transfer matrix method 

and ren~rmaliz~ttion-group techniques to study a new 

class of exactly solvable one-dimensional analogs of six 

and eight-verte:[ models. The one-dimensional analog 

of the ferroelectric KDP model, which is more general 

than a systern solved by ~ a ~ l e [ ~ ] ,  displays a first-order 

transition, with a latent heat, at a finite temperature 

T, = c / ( k B  ln 2:1, where c > O is an energy parameter 

and k~ is Bolt::mannls constant. We show the exis- 

tente of smooth flow lines of the exact renormalization- 

group recursion relations in a suitable parameter space 

and a hyperbolic fixed p'oint associated with the first- 

order tran~it~ion. The existence of a (first-order) phase 

transition in the one-dimensional analogs of Baxter's 

eight-vertex model depends on the ratio between the 

energy parameters. We show that it is possible to an- 

ticipate this kind of behavior from the analysis of the 

renormalization-group recursion relations. We also gen- 

eralize the renormalization-group calculations to obtain 

a set of recursion relations for the two-dimensional KDP 
model (and calculate the exact value of the transition 

temperature) . 
The one-dimensional models considered in this pa- 

per are defined on the double-chain lattice illustrated 

in Fig.(l). Each vertex is bonded to  its three near- 
est neighbors by four hydrogen bonds. We then have 

an N x 2 lattice, with N sites along one of the hor- 

izontal lines and periodic boundary conditions in the 

vertical direction. This is indeed the building block 

of the N x M models, which can be obtained by the 

addition of extra horizontal lines. It  is equally easy 

to obtain the exact thermodynamic functions and the 

renormalization-group recursion relations for the N x 1 
model, as considered by the Nagle14], and the N x 3 
model. If we allow only those configurations with two 

arrows pointing to each vertex, we have the six-vertex 

model. If we allow in addition the configurations with 

four arrows pointing into (or out of) each vertex, we 

have an eight-vertex model. The energies assigned to 

these eight types of vertex configurations are given in 

Fig.(2). Farei =e;!  = O, e3 = ... = e6 = c  > 0, 
and e7 = e8 = co, we have the simple ferroelectric 
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------- - - -  models is related to a law of conservation of the left- 

ward (or rightward) arrows. For an N x M lattice, 

------ - -- -  'm ' 1  2 3 - - - e - -  N-1 KK N the block first is block amenable is 1 x to 1, a and renormalization-group the second largest M treat- x M 

Figure DoublcChain laltice ( N  2) for the one- ment. It is easy to show that there is a competition 

dimensional vertex models. between the largest eigenvalues of T6 . At high temper- 

atures, there is a single well defined functional form of 

the largest eigenvalue. At low temperatures , however, i- 4 4 C 4 -i; -i- ' there is another functional form of a double-degenerate 
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Figure 2: The vertex configurations for the KDP (first line) 
and the Baxter (second line) models, and their respective 
energies. 

KDP model. The antiferroelectric F-model is defined 

by the choice e1 = ... = e4 = E > 0, e5 = eg = 0, and 

e7 = e8 = ca. Finally, the Baxter eight-vertex model 
. . 
1s given by e1 = e2 = O, es = ... = e6 = E > 0, a.nd 

e7 = e8 = ne, with n > O . The energy of a micro- 

scopic state of the Iattice is given by the sum of the 

energies of the vertex configurations. We can use the 

transfer matrix method to obtain the exact thermody- 

namic potential of these m o d e l ~ [ ~ ~ ~ I .  Let 4i and di+i 
be the states of two successive columns of horizontal 

bonds. With periodic boundary conditions in the hor- 

izontal direction, the partition function can be written 

as 

N z = ~ ~ ( m ~ , r n ~ ) ~ ( r n ~ , m ~ ) - . . ~ ( ~ ~ , r n ~ ) = ~ r ~  , 
t41 

(1) 
where the first sum is over the states of the columns and 

T is a transfer matrix.For the six-vertex KDP model, 

it is convenient to write the transfer matrix in the form 

where 

and 

I{, = exp ( -~PE)  [I + exp ( - 2 ~ ~ ) ] - l ,  (4) 

with /3 = l/kBT. It is well known that the block- 

diagonal nature of the transfer matrix for the six-vertex 

Iargest eigenvalue. The first-order transition occurs at 

T, = e/(kB In 2). It  is also simple to write the analogous 

expression for the transfer matrix of the antiferroelec- 

tric F-model. In this case, however, the largest eigen- 

value is non-degenerate for a11 finite temperatures, and 

there is no phase transition. 

The transfer matrixfor the N x 2 eight-vertex model 

may be written in the form 

where 

IC3 = 2 exp (-@E - PRE) [1+ exp (-~PE)]-' , (6) 

= [exp ( - - ~ P E )  + exp (-2pnc)l [I + exp (-ZPE)I-l. 

(8) 
For n 5 2, as the largest eigenvalue of Ta is non- 

degenerate for a11 finite temperatures, there is no phase 

transition. However, for n > 2, as in the case of the 

ferroelectric KDP model, we have a transition temper- 

ature given by the equation 

exp (-Bnc) - 2exp (-DE) + 1 = 0. (9) 

The two-dimensional Baxter model displays a critica1 

temperature, for a11 values of n ,  given by an expression 

very similar to Eq. 9, the only difference being a change 

of sign in one of the terms. 

To use the real-space renormalization-group scheme, 

consider the transfer matrix T as a function of the set of 
3 

parameters K = (Kl, K2, ..., &). Also, suppose that 

we can write the relation 
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Figure 3: I'low lines and fixed points of the exact 
renormalization-group recursion relations for the K D P  
model on the N x 2 lattice. The stars indicate the fixed 
points, and t1.e heavy line represents the physical curve. 

+ + 
where A ( E ' )  is a regular function of I< , and I<' 

depends on :;lfl through the recursion relations 

Now we can use the standard renormalization-group 

scheme. The transformation R may be associated with 

a variety of fixed points. The only relevant fixed points 

should be rexhed from successive applications of R , 
+ 

beginning from a physically acceptable state I<o . If 

we start with the system a t  the transition temperature, 
-+ 

represented hy the state I<, , we must be led to a hy- 
---+ 

perbolic unstable fixed point I<* of R which cannot be 

reached othei.wise. 

For the KDP model, since the regular term 

[1+ exp (-2/1r)] can be factorized from the transfer ma- 

trix, the recursion relations are given by 

The analysis of these relations becomes easier if we ro- 

tate to the new set of variables xl = (Kl - K2) /fi 
and x2 = (I<:. + K2) /a. Thus we have 

Some flow lines, and the fixed points, (0,O) , (O, I/&), 

(llfi, O), and (I/&, 1/fi), of these recursion rela- 

tions are shown in Fig.(3). The initial values of I<l and 

K2 belong to the physical curve, 

which is obtained through the elimination of the factor 

exp(-,Bc) from Eqs. 3 and 4. In the physical region, 

O 5 K1 , 2K2 5 1, we can either flow to  infinity or to the 

fixed points (0, 0) and (I<; = 1 / a ,  I<; = 1 1 4 )  . The 

stable fixed point (0,O) is associated with the trivial 

behavior at zero temperature. The hyperbolic unstable 

fixed point can be reached from initial conditions such 

that 

2lI2x2 = K1 + IC2 = 1, (15) 

which already leads to the correct transition tempera- 

ture of the KDP model. In fact, from Eqs.14 and 15 we 

find the solutions K2 = 115, which gives the transition 

temperature, and K2 = 1, which is unphysical. 

A slightly more complicated set of recursion rela- 

tions can be written for the N x 2 eight-vertex model. 

As in the last paragraph, we work with a matrix V 
which is defined by T = [1+ exp (-2,Br)] V, where a 

regular term has been factorized from the transfer ma- 

trix. Now, if we factorize another regular term (1 + 1(32) 
at each iteration, it is easy to  write 

and 

In the physical region of the (K3, K4, K5) parame- 

ter space, there are two trivial stable fixed points, 

(0,0,0) and (1,0, O), and two hyperbolic unstable fixed 

points: (i) (0,1/2,1/2), which can be reached through 

the straight line I& = O and K4 + I(5 = 1, and 

(ii) (1,1, I),  which can be reached through the plane 

I(4 + K5 - K3 = 1. Since the parameters K3,K4, and 

K5 are not independent, the initial values lie on a phys- 

ical curve as in the case of the KDP model. This curve 

depends on the ratio n of the excited energy levels. For 

n 5 2, it is possible to show that we cannot reach the 

hyperbolic unstable fixed points. For n > 2, the hyper- 

bolic unstable fixed point (0,1/2,1/2) is still unaccessi- 

ble, but we can reach the fixed point (1,1,1). Thus, the 



transition temperature of the N x 2 eight-vertex model 

is given by the expression 

which is identical with the exact result obtained from 

Eq. 9. In the n + oo limit, as we regain the ferroelec- 

tric KDP model, the only relevant fixed point becomes 

(0,1/2,1/2) , which could not have been reached 0th- 

erwise. 

At this point, let us make some considerations on 

the N x M ferroelectric KDP model. The transfer ma- 

trix is block-diagonal, and we can as usual factorize 

the element of the 1 x 1 block. In principle, a11 blocks 

can be parametrized, and we can think about parame- 

ter spaces, flow lines, and fixed points for each of them 

separately. If we start at the transition temperature of 

the model, we may suppose that, by successive applica- 

tions of the renormalization-group transformations, the 

parameters of each block will flow, within their respec- 

tive parameter spaces, to the proper hyperbolic unsta- 

ble fixed points.Of course, except for the 1 x 1 block, the 

other blocks of the transfer matrix may be very com- 

plicated to deal with. Fortunately, the second largest 

block is an M x M cyclic matrix, with the elements of 

the first line given by 

I < ~  = exp (-MPE) [1+ exp (-MPE)I-' . (23) 

Since the square of a cyclic matrix is still a cyclic ma- 

trix, we can work in an M-dimensional space of pa- 

rameters, and write the corresponding M recursion re- 

lations. Indeed, these relations, which are a straight- 

forward generalization of Eq.12, can be written in the 

compact form 
4 

K I  = MK, (24) 

where the cyclic matrix M is the transpose of the 

M x M block of the original factorized transfer matrix. 

Now it is easy to use the properties of cyclic matrices 

to diagonalize the recursion relations for obtaining the 
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analogs of Eq.14. Thus, we have a set of relations of 

the type xi = x:, for i = 1, ..., M, where xi is a suitable 

linear combination of the elements I(i . In analogy with 

the case of the N x 2 KDP model, it is possible to show 

that the physically relevant fixed point is given by 

and x2 = 23 = ... - - ZM = O. It is remarkable 

that the transition temperature of the two-dimensional 

KDP model is indeed a solution of Eq. 25. Moreover, 

at this transition temperature, we have Ixil < 1, for 

i = 2,3, ..., M, which assures that one really flow to the 

hyperbolic unstable fixed point. Although it has been 

fortunate to obtain this result, we have not been able 

to go beyond the M x M block. The peculiar features 

of the thermodynamic behavior of the two-dimensional 

ferroelectric KDP model are not expected to be re- 

vealed unless we are able to deal with the innermost 

blocks of the transfer matrix. 

As a final remark, let us say that the N x 2 F- 
model can also be treated by this renormalization- 

group scheme. As the non-trivial fixed points can- 

not be reached, this antiferroelectric model does not 

exhibit a phase transition in one dimension.The same 

treatment of the last paragraph can be applied to the 

M x M block of the transfer matrix associated with the 

two-dimensional F-model. Again, there is no possibil- 

ity of flow to a hyperbolic unstable fixed point. This 

is an indication that the phase transition of the two- 

dimensional F-model is too subtle to be described by 

our renormalization-group treatment. 
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