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A class of randomly kicked systems is studied. It is shown that the kinetic energy is un- 
bounded and its expectation value grows "linearly" with the number of kicks, in spite of the 
stability of the periodic kicked case. The relation to the dynamical localization theory is 
briefly discussed. 

In this note we study a class of randomly kicked 

systems; we prove that, almost surely, the kinetic en- 

ergy is unbounded and that its expectation value grows 

"linearly" with the number of kicks. In order to un- 

derline the physical side of our results we begin with a 

brief exposition of some well-known results related to 

dynarnical localization. 

One of the niost important results obtained in the 

field of quantum chms is the dynamical localization 

phenomenon. It was discovered in Ref. [I] and its 

significance is the "absence, in some cases, of chaotic 

features i11 quantum mechanics." More precisely, in [I] 

the periodically kicked rotator (KR) was investigated 

from both classical and quantum points of view. The 

KR Hamiltonian is given by 

where T = R/Z is the unit circle. Integration of the 

classical Hamiltonian equations over one period 2rT of 

the externa1 perturbation yields 

This map is known as standard map, and it has a tran- 

sition to ~ h a o s [ ~ ~ ~ ] .  In the chaotic regime, numerical 

computations show that for typical parameter values 

the average kinetic energy grows linearly with the num- 

ber of kicks. 

When compared to the quantum mechanics of (I), 

the nunierical siniulations have shown a surprise: the 

kinetic energy is bounded; it follows the classical lin- 

ear growth for a short number of kicks and then stops 

growing[113]. This quantum absence of classical insta- 

bility is the dynamical localization phenomenon. This 

phenomenon has also been invoked to explain some fea- 

tures in the realistic case of ionization of Rydberg Hy- 

drogen atoms interacting with a microwave field[4]. 

The temi dynamical localization comes from a 

formal analogy between the quantum suppression of 

classical diffusion of energy just described, and the 

one-dimensional Anderson localization in solid-state 

physics[51. In Ref. [5] a map, the so- called Maryland 

construction, was obtained associating tight-binding 

models with pseudo-random potentials to kicked sys- 

tems. For truly random potentials the one-dimensional 

Anderson localization has been rigorously proved[6] for 

a large class of distributions, but this is not the case for 

dynamical localization yet. 

The situation is in fact more involved. Recently, 

a disordered model (random dimer model) has been 



proposed tha? exhibit localization-delocalization transi- 

tions even in one din~ension[~l. It was rigorously sliown 

in ref. [8] that for a generic choice of periods (although 

of zero Lebei,gue measure) the quantum periodic KR 

presents unbounded energy (in fact, in ref. [8] it was 

proved that the KR-Floquet operatot has a continuous 

component ir the spectrum; see the Appendix). There 

are also othei. cases of interest: quasi-periodic k i ~ k s [ ~ ] ,  

disorder induced by substitution sequences[lO], Hamil- 

tonians on quzsi-periodic lattices[11~121, etc. These cases 

constitute active areas of research, where most of the re- 

sults are relafed to specific examples, showing the lack 

of a general t heory. 

Despite of the numerical simulations indicating sta- 

bility for the quantum periodic KR, in ref. [I31 it 

was proved that the randomness in the time depen- 

dente of the kicks implies quantum instability for that 

model. That instability would sound at least not intu- 

itive were the dynamical localization for the KR rigor- 

ously proved. This fact is accentuated if we recall the 

Maryland construction and that the Anderson localiza- 

tion has been rigorously proved. Here we exhibit a class 

of stable periodically kicked systems that become un- 

stable as soori as the kicks are randomly distributed; 

this is the content of the theorem presented in the next 

Section. Unfo-tunately, the physical reason for this be- 

havior is not clear yet; nevertheless, it tells us that a 

small uncertainty about the value of the period of the 

externa1 pertiirbation is enough to cease localization 

and to estab1i:ih instabilities. 

11. Statemer;.t of t h e  Resul ts  

We study the kicked system represented by eq.(4) 

that is stable if periodically kicked, and show that it 

becomes unst,ible when the kicks are randomly dis- 

tributed. Th: simplicity of the system we consider 

permits us to get rather explicit results for quite gen- 

eral potentials and distribution functions, so it is in- 

teresting enough to be mentioned. It is known that 

stable systerns can become unstable if the perturbation 

is randomly depending on time (see[14115] for the case of 

the Schrodinger equation depending on time by some 

Markov processes), but it seems that so far there were 

no rigorous results for kicked systerns. 

For quantum time-periodic systems a suitable to01 

for the study of the quantum behavior is the Floquet 

~ ~ e r a t o r [ ~ ~ ~ ~ J ] ,  i.e. the quantum time evolution operator 

U(T)  between the time O and the period T. The main 

information on the longtime behavior of the system is 

contained in the spectral properties of the Floquet op- 

erator: states in the continuous spectral subspace of 

U(T)  exhibit some diffusive behavior in phase space 

and states in the point spectral subspace of U(T) cor- 

respond to a regular quantum behavior. In the case of 

random or quasi-periodic time driving forces there is 

no Floquet operator and the instability in the quantum 

dynamics is usually related to a growth of the expecta- 

tion value of the energy. For convenience of the reader 

we present an Appendix with a discussion on the rela- 

tion between spectral type of U(T)  and kinetic energy 

growth with time. 

As already mentioned, the KR model has been ex- 

tensively studied; nevertheless, there are few rigorous 

r e ~ u l t s [ ~ ~ ~ ~ ~ ]  for that model. In Section I of Ref. [16] 

the kicked system 

H = -ia/ax + U(X) b(t - ZnnT), x E T, (3) 
n E X  

was considered. For a large class of potentials u it was 

proved that there exists a set M C R of zero Lebesgue 

measure (M depends on u) such that, if O < T E R/M 

the spectrum of the corresponding Floquet operator is 

pure point, so (3) can be considered a stable system. 

In this paper we study the system given by the Hamil- 

tonian 

where the gaps between two consecutive kicks are inde- 

pendent random variables. In the Theorem presented 
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below it is shown that if the kicks are randomly dis- 

tributed according to some laws, then there is an "av- 

erage linear growth" (diffusion in momentum) of the 

expectation value of the kinetic energy. 

If two consecutive kicks occur at 2atn and 2atn+1, 

respectively, the unitary operator U,%+i that connects 

the state $ at 2a(tn + O) to $ at 2a(tntl + O) is 

We take (5) as the definition of the time-evolution. 

If 2atn, n E N, are the instants at which kicks occur, 

set rl = t l  and r, = (t, for n > 1, and assume 

that r, are independent non negative random variables 

distributed according to a common probability distribu- 

tion function F ( r ) .  Denote the characteristic function 

of the variable r at s by P,: 

J o  

Setting $N(2) for the wave function $ E L2(T) at 

the instant immediately after the N-th kick, the aver- 

age kinetic energy 

2n 

I )  = ( 2 )  lid$N/dx12dx (7) 

is defined for $ E dom(A) C L'(T), where A = 

(-d2/dx2) is the kinetic energy operator. 

THEOREM A) Suppose the kicks in (5) are in- 

dependent randomly distributed according to the dis- 

tribution function F .  If IP,( < 1 for O # s E Z 

and limsuplsl,,lPSI < 1, then for u E dom(A) with 

[[u'I[ # O there exist y > O and M > O such that 

for N > 2 and any $0 = $  E dom(A),II$II = 1. 

B) Let F as above, u E donz(A) with u' # O a.e. 

and $ E dom(A). Then, the sequence {I{($N)}z=o is 

unbounded with full probability. 

COROLLARY: If the probability distribution func- 

tion F is absolutely continuous (with respect to 

Lebesgue measure) and IP,[ < 1 for O # s E Z, then 

the conclusions of the above Theorem hold. 

Proof The proof is a simple application of the 

Riemann-Lebesgue lemma. O 

It is clear from the theorem that we have got results 

for quite general potentials u and distribution functions 

F. Notice the different conditions on u' from parts A 

and B above. The proofs are presented in Section 11. 

In Section I11 we work out some simple examples. 

A natural question is about the behavior of the clas- 

sical analogue of the random kicked system (4), which 

is given by the map (in correspondence to  (2)) 

N-1 By iteration we get p~ = po - ul(xi), and it 

is not difficult to see that 

N-1 

(UN ... Ul)*p(U N...&) = po - C u'(xi). 
i = O  

Hence the classical and quantum energy growth are 

essentially identical. 

111. Proof of the Theorem 

Proof of Part A 

For $ E dom(A), 

with the convention: (TN+TN) = TN and (TN+I +TN) = 

0. 

It is possible to assume that < u >:= 
J:" u(r)d(x/2n) = 0. Indeed, if < u ># O, we have 
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and the phas: factor ei<"> does not change the average 

kinetic energ y. 

Let us f i ~ s t  consider vectors of the form $ J k ( x )  = 

eikx, k E Z. I3y (9) we have 

and the average kinetic energy is given by 

To evaluate 

2a 

Ali := 1 d(x/2n)u1(x - 2 n ( ~ i + ~  + ... + T N ) )  

U ' ( X  - 2s(rj+i + ,.. + T N ) ) ,  (13) 

we expand u' in Fourier series, ul(x)  = ~ s E Z a S e i s x  

(ao = 0, since < u >= O ) ,  and get 

with b l j  = 2n[(ri+i + ... + T N )  - (q+i  + ... + TN)]. 

- - E [a, l2eiSbri + ( I / % )  C asa-, e i rb i j  ( e i 2 ~ ( s - ~ )  - I ) / ( ~ ( s  - r ) )  = 
s E %  s#rEZ 

I 

Thus, I ( ( ? ,  )* = k2 + +c,~~c,"~.I lasl 2 e i s h , ) ,  The expectation value of the kinetic energy is 

Since bij =: O if I = j ,  we get 

N 
= + { ( +  e i s b i )  I a s 2 ]  1 where Bs := ~ j # i = ,  eis*" . E ( B s )  is found to  be 

S E %  j#l=l 

N N  

E@,) = E (P!-'+' + P!;'") = (since lP, 1 < 1 and N > 2) = 
1=2 j=1 

= 2(N - l )Re[Ps/( l  - P,)] - 2 ~ e [ ( ~ :  + ... + ~ ; ) / ( 1  - P,)] = 
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Denote 

g(s) = 2Re[PS/(1 - P,)] and h(s, N )  = -2Re[PS/(1 - P,) + (P: - pYC1)/(1 - P,)~] .  (19) 

Claiiii 2 There exist Q,  q > 
(1 + g(s)) > q for any s E Z\{O). 

(20) 

> O sucli that 

0 ,  such that Q 2 

Claim 1 as well as the existence of Q > O such that 

Q 2 (1 + g(s)) in Claim 2 follow easily from the hy- 

potheses of the Theorem. If for some s E Z\{O}, (1 + 
g(s)) < O ,  we get 

where r, = Re(P,) and m, = Im(P,); the above ex- 

pression is equivalent to 

but IP,I < 1 for s E Z\{O) and lim sup IP,I < 1 ,  which 

imply the existence of such q > O. This proves Claim 2. 

By (20) and Claims 1 and 2 we obtain 

with convergent series. 

Thus, Part A of the Theoren~ is proved for gk with 

O < y := C s E e ( a s ( 2 ( 1  +g(s))  and M := D E z E Z  laSl2. 

Since : k E E} is a basis for L2(7T), 4 E dom(A), 

( ( $ 1 1  = 1, can be written $ = CkEZ~k$k, and by 

(21) the expectation of the average kinetic energy 

E(KGN) = C,,, \ck 1 2 ~ ( ~ - $ N )  satisfies 

Proof of Part B The proof of Part B is reduced to prov- 

ing Claim 3. Since we shall follow Ref. [13] closely, we 

shall not go into some details. 

Claim 3 Let $ E L2(T). There exists a subsequence 

{$,vk} of {$,v) which converges weakly to  zero with 

full probability. 

For E dom(A), K$N = CkEZ k21 < 4 k l $ ~  > 1' 
is finite. Suppose, per absurdum, that the sequence 

{ K $ N )  is bounded, so it belongs to  a compact set in 

L2(T) and, with full probability, a convergent subse- 

quence { S i j }  (of {$,v,)) exists. By Claim 3 { l i j }  con- 

verges to the nu11 vector, which contradicts the unitar- 

ity of UN. Therefore, is unbounded with full 

probability. 

Now we turn to  the proof of Claim 3. Let $,$ E 

L2(T), 4 = CkEZ rkgk, $ = CkcZ~k$K and eiu = 
EkE, ~ ~ 4 ~ .  After a little algebra we get 
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and 

with a11 indic1:s running from -oo to +oo. 

By using of Fourier series the vectors S,, 4 can 

be represented by elements of the space H of square 

summable sequences, 4 =j R = {rk )  and S, ==+ Q = 

{qk); thus 

< d l $ ~  > 1 ' )  = [(R* 8 R ) ,  ( v c ) ~ ( Q *  8Q)I  (24) 

where the inr er product [., .] is in H2 := H @ H ,  i.e., 

the space of double sequences a = ( a i j )  such that 

Cij IaijI2 < t o .  The unitary operator V and the con- 

traction C (i.(:., IICall 5 IIaII) are defined by 

(Va)km = C ~k-icm-~ai j  and (Ca)x,  = P(x-,,)ai, 
i j  

(25) 

In order tliat ,í3 E H2 be such that IIVCPII = IIPllit 

is necessary that p E R = { a  E H' : f f km  = 0 if 

k # m}. Let 6 3  E Q;  although (C@) E R, (Vb) E R. In- 

deed under th: identification of H' with L2(T)@ L'(T), 

an element /3 E R can be represented by a function of 

the form f (x  .- y) E L ~ ( T )  8 L 2 ( Q  and, from the defi- 

nition of V, (Ir@) E Q can be represented by g ( z  - Y), 

i.e. 

, i ~ ( z ) , - i u ( y )  f (x - y) = g(x - y )  (26) 

Therefore, for any z E 

Taking into account that u'(.) # O a.e., from (26) and 

(27) we see that f(.) = O a.e. Thus VC acts as a uni- 

tary operator only on the trivial subspace and we can 

conclude that the minimal unitary dilation of V C  has 

absolutely coc tinuous spectrum. Therefore, 

for any 4, qb E L2 (T). 

Hence there exists a subsequence { l i N k )  of { g N )  

such that < 4 J $ N k  > converges to  zero with full prob- 

ability. An argument about nested subsequences con- 

cludes Claim 3. 

IV. Some part icular  systems 

Now we briefly discuss some examples. 

a) Even though in the case of uniform distribution 

over (0 , l )  we can apply the Corollary of the The- 

orem, it is worth working it out. In this case for 

O # s E Z Ps = J: eiZTTsdt = O.  Then from (20) we get 

E(II'$&) = k2 + N CsEZ las12 and, for S, E dom(A), 

b) Let us consider u ( x )  = C cos x, O # C E R. We 

notice that this is the potential of the KR model stud- 

ied in Ref. [13]. Following the proof of the Theorem of 

Section I we get 

If IPl I # 1, we can apply the Theorem and the expecta- 

tion value of the energy "grows linearly" with the num- 

ber of kicks N. If jPII = 1 a direct calculation shows 
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that E(Ii'$JN) grows quadratically with N.  Shis ex- n and o C$ 0; we take the potential u be such 

ample has straightforward generalization to potentials that COZsEE /as ( 2 / ( s i n 2 ( ~ ~ x ) )  < m, where ut(x) = 

~ ( o )  = C:=_, bseiSx. COZsEZ useisx (we can suppose a general diophantine- 

c )  In this last example the consider the case like condition on o ,  namely, COf S Ê ~ - ~ ( ? T S X )  < 0;)). 

in which the gaps between two consecutive kicks In this case we can not apply the Theorem presented 

are symmetric distributed over a positive integer in Section I, since we have 

F ( r )  = (1/2)(6,,, + 6 ,,,, ), Ps = eiTsX cos(wsx) 

and lim suplsl,,lPs] = 1. 

For O # s E Z we have g(s) = g(o, n ;  s) = O and 

h(s, N)  = 142, n; s,  N) = 2[cos2(wso) - ~ o s ( ~ ~ ' ) ( . r r s o )  cos(ns(N - l)x]/sin2(mx). 

From (20) we obtain 

E(K>IN) = (I<+) + ~ ( l u ' l / ~  + 2 /as 1' tan2(rso)[l  - ~ o s ( ~ - ~ ) ( n s x )  cos(ns(N - l)x)] (32) 

Since the last term in the r.h.s. of (31) is positive 

(and finite), we are assumed that (31) grows at least 

"linearly" with N. 

Acknowledgement s 

The author thanks the hospitality of the Como 

Branch of Milan University (Italy), and the financia1 

support by Fundação de Amparo à Pesquisa do Estado 

de São Paulo (Brazil) under Grant 9110455-7. 

Appendix 

In this appendix we present a short discussion on 

the relation between spectral type and energy growth 

behavior. For simplicity we shall not be concerned with 
I 

technical questions involving domains of unbounded op- 

erators. The main role is played by the point (associ- 

ated to stable vectors) and continuous (unstable vectors) 

spectra. 

Let U(T) : L2(T) -i L2(T) be the Floquet operator 

associated to some time-periodic Hamiltonian. If the 

state vector cp belongs to the subspace spanned by the 

eigenvectors of U(T) (the so-called point subspace 'Hp) ,  

U(T)p, = eiAnp,, we have 

j 

and at t = NT, N E Z, 

U ( T ) ~ ~  = C ajeiN*jW (A2) 
j 

From (Al) and (A2) one obtains 
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which is a bo mded quasi-periodic function of N .  More 

details can bci found, e.g. in ref. [17]. 

Now pick .;O # O in the continuous subspace of U(T), 

i.e. $ is orthogonal to 'H,. Bellow it is argued that 

< U ( T ) ~ $ J ~ ~ U ( T ) ~ $  > is an unbounded function of 

time N [I6]. Let $ k ( ~ )  = eiLx, k E Z, be the eigenvec- 

tors of the mcmentum operator p. Since ($7 is a basis 

of L2(T), we can write 

We shall make use of the following corollary 

of the RAGE theorem[18116]. Set rn(N,bj) = 

& C:=;' lbj ( s )  12. Then 

lim m(N, bj) = O V j  Z 
Y-+m 

(A5) 

By using of (AQ) we get < $ N l p 2 $ ~  >= C j  j 21b j (~ ) I2 .  

Let r E N; by :A5) we can take N large enough so that 

m(N, bj) is very small for j = O,  f l , - t2 ,  ..., f ( r  - I ) ,  

thus Clj12r m:N>bj) I1Si1l2. 

Therefore 

Since r s arbitrary the average value of 

< 4 ~ ( p ' $ ~  ;> is unbounded, so is < $ N ( ~ ~ $ N  > as 

well. It is left to the interested reader the translation 

of the above argument to a rigorous one, which can be 

found in ref. [16]. 

To concludt:, let us mention that the above discus- 

sion is not restricted to the operator p 2 ,  but it holds for 

any unbounded positive operator with discrete spec- 

trum, for exaniple, the absolute value of momentum, 

which plays th: role of unperturbed energy in model 

(4). 
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