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We evaluate the one pion exchange contribution due to the AN« vertex to the isospin one

55, and 3Px AN amplitudes, and discuss the effect of its addition to the short-range part of
the A N interaction which was evaluated previoudy from an analysis of nd elastic scattering.

|. Introduction

In a series of papers!*=3] we were able to show that
the inclusion of a residual AN interaction yields sub-
stantial and very specific improvements in the results of
Faddeev calculations!! for nd elastic scattering. These
contributions lead to an almost perfect description of
all measured observablesin this process. The extracted
valuesfor these parts of the AN amplitudesshow a very
smooth energy dependence and can be well described by
reasonable potentials!®). However, our extraction of the
parameters of the AN interaction is based on theoret-
ical calculations of Faddeev typeldl, which include the
ANnN-vertex via the = N scattering amplitude, contri-
butions o which are already included in the background
amplitude, and thusthe A N interaction parameters ex-
tracted through our procedure are only the residua
ones. We must be aware that a large contribution of
the ANn-vertex would interfere non-linearly with the
residual interaction. This would not be of large impor-
tance for the overall description of the elastic #d data,
since the main contribution to it is given by the simple
impulse approximation, and the A N interaction is only
a correction to that, but it may influence the extracted
parameter values severely.

In the present note we evaluate the one-pion-

exchange graph containing the AN vertex shown in
fig. 1, and project out the two A N partial waves whose
contributions have been shown to be decisive in the
analysis of nd elastic scattering, namely the isospin
I =1,5S, and 3P; waves.
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Figure 1: One pion exchange diagram for the AN interac-
tion due to the A N #-vertex.

It ishereimportant to recall the question o the def-
mmition of the scattering amplitude for unstable states.
The A instability manifests itself in singularities of
the Born term on the physical sheet. The denomi-
graph,
1/(u = m2 + ic), where u is the squared 4-momentum
transfer from the initial A to the final nucleon, may

nator in the propagator of the n-exchange

vanish, thus leading to an imaginary part for the Born
amplitude.
We have dealt with this problem in two different

ways:
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1) - We just ignore the imaginary part of the Born
amplitude and proceed with the rea part only. Then
the real part of the partial wave amplitude still shows
logarithmic singularities in the energy, but these
disppear as cne smears over the mass of the A, taking
into account its finite width.

2) - We give the resonance mass a value below the
N a thresholtl.
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Although being independent in principle, these two
methods lead to similar results for the amplitudes, in
the range of momenta of our interest.

II. Born Amplitude and Partial Waves

The Born amplitude corresponding to the diagram
o fig. 1for the AN interaction in the | = 1 stateis
given by

1

(_1/3)g2AN7r aN(A’)u(N) ’ (AI - N)P (A _ N/)Z —~m2 + ie

(N)u’ (A)A = N, (®)(27)*(-1)§(N' + A" = N — A) . (1)

Here A,A', A', N' denote the four-momenta of thein
and outgoing A-resonance and nucleon respectively and
my IS the pion mass. @#(A) and u(N) are respectively
the Rarita-S:hwinger and Dirac spinors and gan« IS
the At+pat coupling constant, with g2 y. /47 = 20.4
GeV~2. The factor (=1) is due to the exchange of the
A' and N’ ir thefinal state.

We are interested in the amplitudes at cm momenta
below 0.4 G¢V, so that we may keep only the leading
non-relativistic terms. Furthermore, for the cases of our
interest (the S, and *P: AN partial waves), we only
consider statrs with total spin S= 2, hence the A and
N spins can be aligned, and we obtain for the S= 2
part of the amplitude I ,defined through

M :i(Qﬂ_)4T.64(A+N—A' —N,) , (2)
the expressicn
T(S’:Z) - (_1/3) ngNﬂ-ej.ﬂ(A')NﬂNéei(A)
1
(3)

B —yp* —2p%p- P
Here 7 and i’ are the A and A' momenta, respectively,

in the AN cm frame,

5 =p = {(s T m} - mQ)? - 4sm¥}/4s | (4

with
p=p/lol
v =ma/my +my/ma (5)
and
B=(ma—-—my)?—m2+ic . (6)

In the denominator in eq.(3), we have kept only terrns
of lowest order in (p?/m?). We remark that v > 2
identically, and for the physical masses ma = 1.211,
my = 0.94, its value y = 2.06 is only dslightly larger
than 2.

In a nonrelativistic approximation the polarization
four vector €#{A) can be expressed through the polar-
ization vector Eof the A in its rest framein the form

1
i (= = 2
G(A)—(f p——A,e) . (7
We then obtain, with

Py n

€& p= \/%;Yu(ﬁ) ; (8)

the expression for the amplitude is written as
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_ 47 m Nk g m N E A
TE=) = —2ghnap® { S Yn()Ya () + = Yu@) V@)
9 ma ma
b IR GYE) + VYR 1 )
ma " WS B =0~ 2 )
In order to facilitate the angular projection, we use the identity
1 N e . NE - 2 ANE (ol
— = (1) / da exp(ia(B — 1)) 47 Y (=) je(200%) - Yem (B) Vi () (10)
B—p* - 2p%(p-F') 0 o
This yields the convenient expression
(5=2) AT, 2 [ ; 2
T = Z?QANWP/ da exp(ia(8 — vp*)) X
0
(4m) Y (=) 3e(200°) Yo (B)Yiim (3') X
&m
m RN ANk g
{m_NYII(P)Yn(P) + = Y (5)Y11(F)
A ma
2
m ~ * (= o * fn
+ IV BV () + Y)Y ()} (11)
a

We now perform the angular projection of the 7(5=2) amplitude, to build the Tlf’s partial amplitudes for the

53, and 5 Ps states, respectively, through
T = [ TN Yin )0
= i(4ﬂ/9)giwwp2/ da exp(ic(f — vp°)) x
4]

2"nN . 2 .. 2 mZA'*'m%V
{ — Jo(2ap®) — i1 (20p%) m (12)

and

T2 (s) = /T(Szz)yﬁ(ﬁ)Yu(ﬁ')dQﬁdQﬁ'

Il

i(47r/9)g2AN,rp2/0 da exp(ia(B ~ 7p?)) X

A2my 2 m]2V . 2 . 2 m?\f 9
{—z 5 mA]l(QaP Y+ m2 Jo(2ap”) — j2(20p®) 5m2 + 3 (13)

The integrations over a give

2y = in? [ exoliald — o)) i (2ap?) dor = L1n P21 = 2P
Iiip*)=1ip /0 exp(ia(B — vp*))jo(2ap®) do = 4lnﬁ—7p2 npl (14)
2y — 2 °° . 2\\ ; 2 1
L) =0 [ explia(s - 19%)i(20r?) da= Blo+ 5 (15)
and -
L") =i [ explin(f = v ia(2ar?) da = 5(1- 38 = 3B (16)
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where

B 7
B = 5% T2 (17)
These quantities ;(p?) may develop imaginary parts as determined by
2 1 B—vp*=20> 1 |B—p* -2
L(p®) = sho—tH—rsy=— e
4 -yt +2p* 4 B—yp*+2p
o, .
+ 5 [sign(8 ~ vp* — 2°) — sign(8 — vp* + 2")] } (18)

-

As mentioned in the introduction, we deal with thein-
stability problem in two ways. In one procedure, we
ignore the existence of the imaginary part of the Born
amplitude, while in the other one we displace the A-
resonance mass to a value below the =N threshold so

that 8 — yp? + 2p? < 8 < 0, in which case there is no
imaginary part to begin with (we recall that v > 2).

The explicit forms taken by the real partsof the two
partial wave amplitudes are, for both cases,

47 1 1, |B—vp®— 2p?
ReT2%(s) = —ga4 ,,—{—ln————«——
og (5) 9 IANToE \ 4 | B = vt + 27
X [4mNmA + 2 (-2% — %) (mjzv + mz)} "*‘m%\l + mQA} (19)
and
ReT3(s) = oo, 5 [l |B-v’-2%"
1 T 9 ANTIOmI |4 |8 - PP + 2°
B 7\ g v
+4myma + = (m% + 6mk) A (20)
N 202 2)[°

For the case B > (v — 2)p?, the amplitudes show
logarithmic s ngularitiesfor (y t 2)p? > 8. If wetake
into account the mass spread of the A-resonance and
integrate the amplitude over the ma-mass, we obtain
regular results for any value of 8. We thus evaluate in
this case the averaged amplitudes

Re’fd’s(s) = dmARer’S(mA,s)
my
r/(2n)
— , 21
(ma —mp)?2+12/4 (1)

with s fixed, mg = 1.211 GeV and T' = 0.11 GeV.
Near the AN threshold, the finite mass spread of

the A-resonance influences strongly the value of {p], and
we use the same procedure as employed in the analysis
o the data: we evaluate |p]? using the complex mass
mg tiT/2in eq. (4) and identifying |p] with |\/p2|.

In Table 1 we present numerical values for 7,42 and
T3*, both for ma = 1.211 GeV and for aficticious sta-
ble A with mass value ma = my + m, x (1- 10-6).
In the latter case the expressions have been evaluated
for the same values o p? (thus not the same values of
s) as used for the experimental mass case. In the same
table we also present the values of the phases obtained
for the two cases.
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Table 1. Born amplitudes of the one pion exchange diagram for the S, and 5 P states. The unprimed quantities
are evaluated with central mass values ma = 1.211 GeV, and amplitudes smeared over the physical finite width of
the A, while the primed quantities are evaluated using aficticious value ma = my + m. (1= 1079) for the A mass.
In the last two columns we give the total AN phases for these waves, i.e. the combination of the residual phases of
ref.[3] and an interpolation of the 6; and §; values. It should be emphasized that for the S-wave this value should
only serve as a rough estimate, since in this case an addition of the phases is not justified.

9 X 50 66 61 6{ 68°t 6%0':

(degrees)

0101 6 12 15 14 31 30
0101 8 14 20 18 3% 30
0.106 12 19 32 26 42 33
0109 17 23 41 33 51 33
0111 21 26 44 39 53 33
0112 25 30 43 45 5 32
0113 28 32 39 50 57 30
0.114 31 34 34 55 58 25

\/5 4”92N«X 47“9%wa 4”921\!")( ATIANT
Gev] Re T Re 7¥ Re 7" Re 7,
2.15 0.422 0.102 0.822
2.16 0.444 0.118 0.820
2.18 0.498 0.134 0.817
2.20 0.573 0.136 0.813
2.22 0.620 0.125 0.813
2.24 0.663 0.108 0.812
2.26 0.693 0.089 0.811
2.28 0.705 0.071 0.811

The evaluated amplitudes are related to the Argand
amplitudes through

exp(2i6]) — 1
21

Pl mn-ma s
87 myrma O

il

J
Ty

so that the phases are given by

S I s s}

§l =1
¢ an 872 my + ma

ITI. Discussion and Comments

The Swave amplitude is, except for very small
values of p?, dominated by the large constant term
(m%+m3)/2m% = 0.8, whilein the p-wave amplitudes
we have for the constant term the value 3[16myma —

v(m?% T 6m%)]/40m4 ~ —0.06, which is an order of
]

THFR) = T4

m} +mi
AN 2
9 i 8mj

magnitude smaller. These constant terms disappear if
a AN form factor isintroduced. Introducing a param-
eter p, with dimensions o mass, to replace the AN #-
vertex gay~ by

—_———— 24
gAwau_p2+i61 ( )
where u = (A' = N)2, we can incorporate this modifi-
cation analytically in the evaluation of the amplitudes.

In the approximation m2 < p?, we have

1 pt 1
u—m2 +ie (u—p?+ic)? = u—m2 4+ ie
(25)
1 , 0 1
T u—pttic W(u—pz-#ie)

and the S-wave amplitude with AN = form factor then
becomes, in the place of eg. (19),

(o

B — vp® — 2p°
B~ vp? + 2p?

_ 2 __ 2 _ 2 42
_|fzp e 2p] P } (26)

B —vp* — p* + 2p?

We have also neglected (ma — my)? compared to
p%. An analogous expression can be easily written for
the pwave.

As mentioned at the beginning, the contributions of

SV e

the AN7 vertex must be added to our (short range)
residual amplitudes in order to describe the full inter-
action. For the 3Pz wave, both the residual amplitudes

and the m-exchange amplitude gre small enough in qr-
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der to justify a simple addition of the phases. There is
another pararnetrization!® of the A N interaction based
on a two channel analysis of the NN, AN system.
The phases there obtained are, in the limit of weak
NN — A N iiiteraction, thefull AN scattering phases.
Theinclusion of the contribution of one pion exchange
increases sliglitly the difference between our phases!®!
and those of 1€f. 6.

Thesituation is more involved in the case of the 555
channel. Her: the Born term is large and there is no
justification for just adding the phases. However the
gualitative result is clear, namely that the contribution
of the AN« certex is attractive. Hence the full phases
should be stronger than the residual ones.

In order to obtain a more qualitative insight in the
influence of the ANr-vertex on the 35S, channel, we
may construct a potential local in the distance r, rep-
resenting the contribution of diagram 1 to this wave.
Identifying the Born term in potential scattering with
the result obtained above we have

+o0
2V = 52 [ T ) exa(2ien) £
(forr#£0). (27)
The dominant. part in the expression for 75%FF
last term of e. (26), which leads to the potential

is the

. 1 m2, + m?
2,2,FF - —-pr
Voo (r) = o gzzst _—J\éMg 8 p% e, (28)
where we hav: taken v = 2 and neglected # compared

to p?%.

The other terms in the expression for 7q5> are small
and negative itnd could be treated perturbatively.

The globa! picture that we obtain for the contribu-
tion of the A« vertex to the AN 55, potential is thus
the following: there is a weak long range repulsion and
astronger short range attraction, the range of the latter
being deterrnined by the AN = form factor.
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Summarizing, we note that we get reliable full
phasesfor the ® Px channel and some qualitative insights
for the ®S2 channel. We empliasizc, however, tliat a
more consistent determination of the AN %S, inter-
action must start with a background amplitude which
should not include contributions due to virtual pion ex-
change at all.
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