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1% exteiid a coiitinued matrix inetliod, developed earlier. to solve finite size Peierls-IIubl~ard 
IIamiltoiiiaiis. In par~iciilar, ire solve tlie tlinier case, compare witli esistiiig results, aiid 
discuss tlie ndvaiitages of tlie iiietliod presented it cai1 be gencralized, in a straiglitforward 
aiid systcinatic fashion, to larger çysteii~s: tlie metliod is aniciia1)le to  tlic iiltroduction o i  
small "íields", necessary lo brealí symmetries iii Gniie sysierns, tliereforc enabling ris to 
probe tlie stability of tlic various ordered states; furiliermore it allows tlie coinputatioii of 
observal~les in a siniple aiid econoniic fasliion; and tlie several approximations available for 
iiifinite systeins can be tested and con~pared as function of tlie system's size. 

Peierls-IIubbard IIamiltonians ( P H H )  coiisider tlie 
interplay of electron- electron aiid electron- lattice iil- 
tersctioils, of relevante iii a Iarge variety of prob- 
lems iii both condensed inatter and ii~olecular pliysics, 
e.g., cliarge transfer, metal-iilsulator trailsitioiis, va- 
lente flrictuatioiis. bond order and so on. As esainples 
we ineiition: i iu i~ier ica l [~-~] ,  variatioiial[" and inean 
fieldrG] approaclies to one and two diniensional P H H ,  
a11 witliiii the  adiabatic approsimation[7~; and a iion- 
adiabatic effective mediiml approacli["]. Also pertur- 
Intive methods liave been utilized, as in refs [9, 101 
to deal witli organic ioii-radical compoiiiids and probe 
tlieir inicroscopic parameters via optical linesliape cal- 
culatioils. General solutioiis for fiiiitc PHH are dcsir- 
able not only to  study eiiergy transport aiid liiiesliapcs 
of molecular clusters, tliey also provide guideliiies to 
probe tlie validity of esistiiig approximations for infi- 
iiite systeins, as tlie system size is increased. We de- 
veloped a Green's h i ic t io i i  Matrix Coiiti~iued Fraction 
Metliod for esciton-plionon interacting ~ y s t e i n s [ ~ ~ - ~ " ~ ,  
aiid apply it here to  P H H  (see also refs. [15-171 for 
related methods). 

11. P e i e r l s - H u b b a r d  Haini l to i i ian  

A cliister witli N sites, N electrons aild ATIl1 lattice 
modes is modelcd with tlie IIarniltonian 

~vhere  Hel is tlie electroiiic, Hpll tlie lattice, and H c p  
tlie electroii-lattice contributioli t o  H,  respectively; i a 
site (and spin) indes (i 5 ,V ), a a lattice mode indes 
(ct < Tlie T 's  ancl U ' s  are transfer ancl Couloml~ 
repulsioii terms respectively. Tlie w's are tlie several 
latticc modes (in tlie liarrnoiiic approsimation) and tlie 
M ' s  tlie (linear) electron-lattice interaction strength. 
Tlie operator c (b) destroys ali electron (plioiion) at  site 
i ,  spin ã (mode a). Since tlie total number of elect,rons 
N is a constant of tlle niotion, tlie IIainiltonian can be 
reduced to a siiiiilar IIamiltonian Hr with reiiormalized 
(T, U, w, iI4)'s witli A:,, - 1 modes plus a decottpled 
displaced oscillator (inode B. frequency Q and strength 
A), iiainely as: 

Now aiid tliroughout, our H will stand for tlie re- 
duced Hr; solutions of tlie full IIamiltoiiian (1) are 
necessary, for exainple, to compute the actual optical 
l i ~ ~ e s l i a ~ e s [ ~ ~ ] .  

Here we present tlie zero teiiiperature, one mode 
(N,,, - 1 = 1) case. For the  general case approsiriiations 
liave been d e ~ e l o ~ e c l [ ~ ~ - ~ ~ ~ ~ ~ I .  Tlie exact solution is 
obtaiiied iii several steps. as sl<etclied below (see details 
ill mJ21): 

i) Solve for H,] and obtain a basis set j 5 
i%, witl-i Ns tlie number of electronic states, in genera! 
greater thaii N. 

ii) Calculate the electron plionon interacting matris  
M witli componeiits 



iii) Defiii: tlie (retarded) Green's Fuiictioii Matrix 
G(z) witli cc mponents 

witli Imz = C +  , (( . . . ) )  denotes average over 110th tlie 
electron and p11011011 vacuum aiid tlie time evolutioii of 
I#i(t)) is givtn by Hr. If tlie fu11 solution is needed, G 
must 1x2 replsced by G, a Poissonian convolution of G 
witli tlie disylaced decoupled oscillator[20], given by 

witli g = (X/;t)2, see equation (2). 
iv) Defini tlie pure electronic Green's Fuiiction 

Go(z),  as in iii) but ivitli tlie time evolutioii of l$(t)) 
given by H,]. 

v) Define ali auxiliary function D(z) satisfying a 
Dyson Type qua t ion ,  see for exainl>le[ii-14] 

D(z) lias malrix components, (nl D(z)  Im), on tlie elec- 
tronic IIilbert space (i, j 5 N,) and on tlie liarnionic 
oscillator I-Iilbert space (11%) , lm) ; n, 17% = 1 ,2 ,  ...). 
Tlirougliout this paper, we keep matrix notatioii for 
tlie electronic part and display explicitly tlie oscillator's 
coinponents. 

Finally, tlie solution is G(z)  = (01 D(z) 10)) witli tlie 
recursion rel~.tions (see again, refs. [ll-141) 

Tlie diagonal part can be solved via a coiitinued 
matrix algori ,lim as 

and n > O. Nom, for N,, inodes with frequency w, 
aiid interaction matrix M a ,  with 1 5 a 5 N,, a sound 
approximatioii[13~14~1g] was found to  be 

The inforination contained ia G(z)  is extracted via 
expectation values aiid susceptibilities probing our sys- 
tem witli smrdl externa1 fields. Any given operator A 

may be decomposecl a.s A = A,Ap where A, is tlie 
electroiiic, antl A? tlie latt,ice part of A ,  respectively. 
Let's define tlie spectral deiisity of sucli opcrator a.s 

(8) 
If a snlaII externa1 static fieId 'H is introduced, by 

adding to  H tlie incremental AH = -0.5'H 13, with 13 
tlie conjugate operator to 'H, and witli n(z) tlie spectral 
density of tlie identity operator (tlie density of states 
D O S ) ,  tlieii tlie expectation value ((  A(%) )) aiid tlie 
susceptibility xIj(z) can be cast. respectively as 

To solve for G(z) is equivaleiit. to íind the norinalized 
eigenvectors and eigenvalues I$,,), E,, of H, respectively. 
Tliis equivalente may be displayed as 

111. Tlie D i m e r  Case 

Consider a tivo site, two electron system ( N  = 2, 
tlie smallest finite size couiiterpart to  tlie lialf filled 
band case), witli diagonal electroii-lattice iiiteractioii 
M,, = S1I2 and off-diagolia1 electron-lattice interac- 
tioli M12 = K .  Periodic boundary conditioiis require 
11s to  take botli sites aild niodes to be identical, a re- 
striction to  be lifted without furtlier complications, if 
we want to  study for example, a lieteronuclear diatomic 
molecule. From tlie two normal inodes (frequency w), 
cotlveniently written as 

tlie syinmetric mode (+) is decouplecl wlien reduciiig 
tlie IIamiltonian, as in equation (2), witli B = b+ . Also 
tlie oiily relevant Coulomb term is tlie intrasite repul- 
sion U (a11 otliers' eliminated via tlie constant of the 
inotion N into effectives T and U). Also we introduce 
a staggered "electric" and "niagiietic" field; hq and h,,  
respectively, i11 order t o  study cliarge and spin trans- 
fer states, precursor states for cliarge and spin density 
waves in infinite systems. Tliese fields are essential in 
finite systems, as syininetry breaking devices. 

Theii, tlie reduced Ilamiltonian H is 

H = Hel + H', (10) 

with 
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and 

with 

wliicli represeiit the boiid strength, cliarge transfer aiid 
spin transfer operators, respectively. Tlie electronic ba- 
sis set is 14i), i = 1 - 4, with 

t t  t t  
l41.2) = m (c,Tc21 I c ~ ~ c ~ ~ )  ( O )  , 

and 

where 10) is the electronic vacuuin. The two reniaining 
triplet states have no inatrix elenients in the relevant 
Wilbert s p c e .  Tlien, the elect,ronic Green's function 
Go is given by 

Let us define tlie following auxiliary inatrix 

Then, in tlie electronic basis, the boiid strength, charge 
transfer and spin transfer operators defined above are 
represented by 

A~ = r ( o ,  2, o), AQ = r (o ,  0,2), Ao = r (2 ,0 ,  o), 

respectively, and the interacting matrix M is given by 
M = J ~ S A ~ + K A ~ .  

IV. Results 

The dimer, for tlie diagoiial case (ti = O), has 
been solved in the adiabatic limitL2lI and via direct 

d i agona l i za t i~ i i [~~ -~~I  (ref. [2GJ considers tlie off - 
diagonal phoiion). In a11 tliese cases no spin suscepti- 
bility was calculated, so tlie relevant basis set required 
only tlie tliree singlet states I4i) , i = 2,3,4.  TVe iieed to 
iiicrement tlie basis set iii order to iiiclude tlie triplet 
state with tlie z spiii coinponent equal to zero (i=l);  
tlius we notice the first advantage of tlie method pre- 
sented here: with a single stroke we incorporate both 
cliarge (witli or without lattice deformatioii) and spiii 
symmetry breaking devices, introducing tlie "sinall" 
fields. Our formalism allow us to classify in a natural 
fasliion any state, say with eiiergy E O ,  as being eitlier a 
spin traiisfer (STS) or a cliarge transfer (QTS) state. 
We do tliis by computing botli tlie spin and cliarge 
transfer susceptibilities, at  equal strength fields. Tlie 
S T S  is probed with tlie condition 

Figure 1: n ( ~ ) ~ ~ ( ~ ) a n d x , ( ~ ) ,  for tlie parameter set T = 
0.5,U = 0.2,s = 0.0 and w = 0.1. 

Conversely tlie QTS  is probed requiring p < 1. The 
lattice deformation is quantified witli tlie bond strength 
ratio 

wliere the subscript O in i 3  means the expectation value 
is evaluated at tlie nu11 value for the lattice parameters 
(S = K = w = O). The sign of p,  if no absolute value 
was taken merely defines the parity of tlie state. For a 
given set of parameters (T, U, S, K ,  w )  the character of 
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the system is defined according to tlie character of tlie 
ground state. Any given state shows as a siinple pole 
of the DOS r ( E ) .  For computational and display pur- 
poses we use 2 finite energy imaginary part 6, therefore 
poles will be displayed as local maxima. A qualita- 
tive classifica,ion for tlie STS or Q T S  character of tlie 
system[21~23~2"l, for tlie diagonal case ( K  = O and here- 
after restrict to this case) is: tlie former occurs in the 
small S/T, large U/T regions of parameter space and 
the latter (por;sibly accompanied by a lattice distortion) 
for large S/T,  small U/T or small w/T. Tlierefore U 
(Coulomb correlations) and S (electron lattice interac- 
tions) compete to define tlie S T S  or Q T S  character of 
the system. Particular cases are (for infinite systems) 
the insulating antiferromagnet (U > TIS < U )  and 
the Peierls Instability ("band limit" with S,T > U). 
TVe plot the f 10s and both susceptibilities, as function 
of energy with an energy imaginary part S = 0.05 and 
fields hQ = h ,  = 10-7 in dimensionless units. In Fig- 
ures 1 and 2 lye consider the pure electronic case (i.e. 
S = 0) for two sets of values for T and U. In botli 
cases tlie systt3m has a STS character, the transition to 
QTS  only to xcu r  exactly at U = O refs. [21, 23, 241. 
As S is increased (say for fixed U) tliere is a smooth 
crossover to C)TS ,in agreement ~ i t l i [ ~ ~ - ' ~ ] .  In Fig- 
ures 3 and 4, fòr tlie same values of T and U, but with 
S = 0.5, a cle %r QTS  regime is displayed. Notice that 
excited states in both cases are STS, the effect more 
pronounced for the case U > T .  Furthermore Figures 5 
and 6 with S := 1.0 show the same trends as is tlie pre- 
vious set of Fjgures, also highlighting the vast number 
of excited statrs and their symmetries (parity) on both 
their spin and charge attributes (given by tlie sign of 
the susceptibilities at the poles).The boundary between 
STS and QT,i can be calculated in parameter space. 
Let us remark that our spectral densities are, due to 
tlie finite size ~f our system, of the type 

where tlie p i:; the eigenvalue index and +, the nor- 
malized eigenvector as defined at the end of section 11. 
Therefore the spectral densities will be very sensitive 
to  the actual value of the energy's imaginary part 6, 
both on the computed values for tlie poles (eigenval- 
ues) and for tlie residues (expectation values) as well. 
Thus, caution must be exercised as a "small" S is cho- 
sen. Fortunately, this numerical inconvenience is easily 
surmounted with a fast analytic continuation algorithm 
as in ref. [27]. In fact, only in order to determine tlie 
ground state eriergy such caution should apply, a11 otlier 
observables are ratios of spectral densities, the latter 
found to be wvakly dependent on the smallness of S. 
Notice that a11 matrix elements of G(z) are determined 
in one stroke m d  that the diverse observables are ob- 

tained as the imaginary part of linear combinations of 
the G(z)'s matrix eleinents. 

Figure 2: n(&), xQ(&)andx,(&), for tlie parameter set T = 
0.2, U = 0.5,s = 0.0 and w = 0.1., 

Figure 3: n ( ~ ) ,  xQ(e), xo(&) (see text), for the parameter set 
T = 0.5,U = 0.2,s = 0.5 and w = 0.1. 
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Figure 4: n ( ~ ) ,  xQ(&)and~, (&) ,  for tlie parameter set T = 
0.2,U = 0.5,s = 0.5 and w = 0.1. 

Figure 5: n ( ~ ) , ~ ~ ( ~ ) a n d x , ( ~ ) ,  for the parameter set T = 
0.5, U = 0.2, S = 1.0 and w = 0.1. 

Figure 6: n ( ~ ) , ~ ~ ( c ) a n d x , ( ~ ) ,  for tlie parameter set T = 
0.2, U = 0 .5 , s  = 1.0 and w = 0.1. 

Tlie "raw" results n ( ~ ) ,  (E), x/,(E) in Figures 1- 
G are a rather cumbersome picture of tlie results, i i  
we need t,o extract from tliem tlie actual sequeiice of 
eigenvalues states and/or tlie actual weiglit of tlie sev- 
era1 delta functions. Tlie value 0.05 for tlie imaginary 
part of tlie energy seems to be adequate for a pictorial 
view, of course smaller values of 6 will improve tlie ac- 
curacy but will generate also a scaling problem for tlie 
severa1 weiglits, also increasing the computing time. If 
tliese "raw" results were needed tlien it is necessary to 
appeal to devices such as tlie analytic continuation al- 
gorithni inentioned a b o ~ e [ ~ ~ ] .  TVe assert tliat tlie latter 
procedure is not iieedecl beyond the calculation of tlie 
ground state, since as reinarked above the Spin/Cliarge 
discriminator is a weak function of S. We notice too 
tliat a finite value of 5 blurs out information, neverthe- 
less by computing niany observables tliis loss is partially 
retrieved, namely: in Figures 1 and 2, there are 4 eigen- 
states (see n ( ~ ) ) ,  from tlie susceptibilities; in Figure 1, 
eigenstates 2 and 3 are blurred into one state (tliey 
liave tlie same parity), in Figure 2 eigenstates 3 and 
4 are blurred into one state on tlie spin susceptibility, 
similarly eigenstates 1 and 2 on tlie cliarge susceptibil- 
ity; so a11 tliree observables are needed to liave a full 
view of the results, for our clioice of 6. In Figure 4 
tlie peak near the origin for n ( ~ )  seems to be a siii- 
gle lieavy weiglit state (a mucli smaller 6 will sliow to 
be two eigenstates closely arranged), tlie spin suscepti- 
bility indicates this peak to be indeed two states with 
opposite parity and the charge susceptibility indicates 
tliese states to be clearly of the type STS. Therefore, 
if some information is lost due to the finite vaIue of S 
(but inaking the results both ainenable to  a pictorial 
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view and coiilpiltationally fast), tliis loss is retrieved 
by coinputini, other observables. 

Fiiially iii Figure 7 we preseiit a Spin/Cliarge pliase 
diagrain for tlie diagonal case ( K  = 0, see rei  [28]). 
We plot tlie Spin/Cliarge interphase curve projected 
on tlie plane T + U + S = 1 (in suitable dimensioii- 
less units) fop w = 0 1. Tlie C(S)  label refer to  tlie 
Cliarge (Spin) phase. tlie transition is smootli a t  tlie 
iiiterpliase. 'I lie iiiterpliase curve intersects tlie U - ,4 
line a t  U = 1 / 3 , S  = 2 / 3 . T  = O ,  as predicted from 
tlie sinal1 1101 x o n  transformation (see ref. [20] for ex- 
act resiilts a t  T = O ) .  These results were obtained for 
5 = 0.001, a1111 reinain iilseiisitive as S is decreased. 

Figure 7: Tlie Spiii/Cliarge pliase diagrarn projected oii tlie 
plane T + U + S = 1 witli w = 0.1. 

V. Coiicludiiig Reniaiks 

We presei ted a general rnetliod to solve Fiiiite 
Peierls-IIubbard Systeins and particularized t,o tlie di- 
agonal plionoi dimer. Our conclusions are sumniarized 
as follo~vs: 

i) our methotl proved to be advantageous over direct 
d i ago i i a~ i za t i on [~~-~~] .  Our calculations involved 
4 x 4 indrices and up to  30 continued fractions 
(in the probed regi011 of parameter space). Direct 
d i a g o n a l i z a t i o ~ i [ ~ ~ - ~ ~ ]  involves typical 300 x 300 
inatrices. To extend the latter metliod for the 3- 
site 3-electron 1-mode c!uster (tlie smallest cluster 
t.o exhib t frustration and Jalin-Teller e f f e c t ~ [ ~ ~ ] ] ,  
with the sarne degree of accuracy involves 2000 x 
2000 inatrices, for tlie 4-site 4-electron 1-mode 
cluster (solved in tlie adiabatic liinit[30]) will in- 
volve 7000 x 7000 matrices. Our nietliod will deal 
a t  inost with 20 x 20 and 70 x 70 inatrices, re- 
spectively. If a11 lattice modes are t o  be included 
our metliod yields no increase in the matrices' 
dimensionality, but direct diagonalization will re- 
quire 20000 x 20000 and 700000 x 700000 matri- 
ces, respxtively. Thus, by increasing tlie cluster 
size to  4,6,8 sites, the matrices irivolved iii our 
method sre witliin inanageable dimensions, not 

so for tlie direct diagonalization inetliod. Furtlier- 
more oiir inetliod allows for tlie iiiclusion of more 
tlian oiie inode via a tested approximatioii[12-11.1], 
and witliout any Iieavy increase of coniputatioiial 
time. Beyond one mocle, tlie direct diagonaliza- 
tion inetliod becomes proliibitive. 

ii) our susceptibilities allow, at tlie cost of little extra 
coinputation, tlie study of tlie STS or Q T S  cliar- 
acter of 110th tlie ground aiid tlie low lyiiig excited 
states, related but not ideiitical to tlie lattice de- 
forniation probed by direct diagoiializatioii["3-2G]. 
Iii fact our bond strengtli paraineter E (eq. (16)) 
plus our Spin/Cliarge discrimiilator p (eq.(15)) 
can completely probe botli tlie S T S I Q T S  char- 
acter and lattice deformation for our ~ ~ s t e i n [ ~ ~ ] .  
Clearly a strong lattice deforinatioii means a Q T S  
and tlie converse is true for no deforinatioii a t  all; 
nevertlieless it is not clear for wliat iiiterinediate 
lattice deforiuatioii value the system goes from a 
cliarge t o  a spiii regime. Our inetliod provides ali 
unainbiguous a n s ~ e r [ ~ ~ I .  

iii) our inetliod wlien appliecl to  clusters of increased 
size, will provide a systematic to01 t o  probe tlie 
diverse approxiinations available for infinite sys- 
tems, siicli as tlie adiabatic and inean field ap- 
prosiinatioiis. 

iv) tlie diiner case, is not a coinpletely solved case, 
neitlier ai1 uninteresting one (see for e ~ a i n ~ l e [ ' ~ J ,  
wliere solely electronic correlatioiis were coiisid- 
ered), it stands as a particularly siinple case 
displaying i11 full power tlie aclvantages of tlie 
metliod presented liere. 

v)  as for work iii progress, we are probing tlie 
dimer witli 110th diagonal aiid off-diagonal 
electroil-lattice iilteractions for a full system 
cl~aracterizatioil[~~I. 

vi) as a final cominent, we remark tliat our inetliod 
miglit reminisce other metliods liinging on con- 
tinued fractions tecliniques. recurrence relations 
and the like (for example, Lanczos' Melhod, 
Mori's Approach, IIaydock's Representatioli and 
so fortli[17]), nevertlieless tlie present formalisin 
sliould not be confused witli the former ones, 
our's being substantially different and inuch more 
powerful, because eveii in the zeroth approxima- 
tion (absence of plionon degrees of freedoin) a11 
ferrnionic correlations are accouiited for. 
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