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We extend acontinued matrix method, developed earlier. to solve finite size Peierls-Hubbard
Hamiltonians. In particular, ire solve tlie dimer case, compare witli existing results, aiid
discuss tlie advantages of tlie method presented: it can be generalized, in a straightforward
aiid systematic fashion, to larger systems; tlie method is amenable to tlic introduction of
small “fields”, necessary to breali symmetries in finite systems, therefore enabling us to
probe tlie stability of tlic various ordered states; furthermore it allows tlie computation of
observables in asimple aiid economic fashion; and tlie several approximations available for
infinite systeins can be tested and compared as function of tlie system’s size.

1. Introduction

Peierls-Hubbard Hamiltonians (PHH) consider tlie
interplay of electron- electron aiid electron- lattice in-
teractions, of relevance in a large variety of prob-
lems iii both condensed matter and molecular pliysics,
e.g., charge transfer, metal-insulator transitions, va
lente fluctuations. bond order and so on. As examples
we mention: numericall!™¥ variationall® and mean
field(® approaches to one and two dimensional PHH ,
all within the adiabatic approximationl”; and a non-
adiabatic effective medium approachl®. Also pertur-
bative methods have been utilized, as in refs {9, 10]
to deal witli organic ion-radical compounds and probe
their inicroscopic parameters via optical lineshape cal-
culations. General solutions for finite PHH are desir-
able not only to study energy transport aiid lineshapes
of molecular clusters, they also provide guidelines to
probe tlie validity of existing approximations for infi-
nite systeins, as tlie system size is increased. We de-
veloped a Green's Function Matrix Continued Fraction
Method for exciton-phonon interacting systemst*=41,
aiid apply it here to PHH (see also refs. [15-17] for
related methods).

IL. Peierls-Hubbard Hamiltonian

A cluster witli N sites, N electrons and Ny, lattice
modes is modeled with tlie Hamiltonian

H=Hg + Hpp, + Hep, (1)

with

H, = ZTij ch + Z Usjr CJC]TCI;CZ;

Hpp, = 3 wablba,

Hep = Y M ele; (0] +a),

where H, is tlie electroiiic, Hpy, tlielattice, and Hep
tlie electron-lattice contribution to H, respectively; i a
site (and spin) index (i < N'), a alattice mode index
(¢ < Nm). TlieT7s and U’s are transfer and Coulomb
repulsion terms respectively. Tlie w’s are tlie several
latticc modes (in tlie harmonic approximation) and tlie
Ms tlie (linear) electron-lattice interaction strength.
Tlie operator ¢ (b) destroys an electron (phonon) at site
i,spin o (mode d. Since tlie total number of electrons
N is a constant of the motion, tlie Hamiltonian can be
reduced to asimilar Hamiltonian Hy with renormalized
(T, U, w, MYs witli N, =1 modes plus a decoupled
displaced oscillator (mode B. frequency Q and strength
A), namely as:

H=Hy + 0813+ 281+ B). (2)

Now aiid throughout, our H will stand for tlie re-
duced Hy; solutions of tlie full Hamiltonian (1) are
necessary, for exainple, to compute the actual optical
lineshapes!'3).

Here we present tlie zero temperature, one mode
(Ny—1=1) case. For the general case approximations
have been developed'2-14191 Tlje exact solution is
obtained in several steps. as sketched below (see details
n [11’12]):

i) Solve for Hj and obtain a basis set |4;), j <
Ns, with N; tlie number of electronic states, in general
greater than N.

ii) Calculate the electron plionon interacting matrix
M witli components

Mij = (6] Y ML-IC;[.C: 16;)
Kl



Roberto E. Lagos

iii) Defin: tlie (retarded) Green’s Function Matrix
G(z) witli ccmponents

Gyl = =i | e (1) (6,01, (3)

witli Imz =+, (( ... )) denotes average over both tlie
electron and phonon vacuum and tlie time evolutioii of
[¢:(1)) is givtn by Hy. If tlie full solution is needed, G
must be replaced by G, a Poissonian convolution of G
witli tlie displaced decoupled oscillator20] given by

G(x)=e? Z 9 Gl —1 fﬂ - Z)QJ, (4)
1=0

witli g = (A/ )%, see equation (2).

iv) Defini tlie pure electronic Green’s Function
Gg(z), as in iii) but with tlie time evolution of |$(%))
given by H_j.

v) Define an auxiliary function D(z) satisfying a
Dyson Type zquation, see for examplel11—14]

D(z) lias matrix components, (n| D(z) |m), on tlieelec-
tronic Hilbert space (i,j < N,) and on tlie harmonic
oscillator Hilbert space ([n),|m);n,m = 1,2,..).
Tlirougliout this paper, we keep matrix notation for
tlie electronic part and display explicitly tlie oscillator's
coinponents.

Finally, tliesolution is G(z) = (0] D(z) |0}, with tlie
recursion reletions (see again, refs. [11-14])

(D) ) = Go(han + Co(IM () ),

where
O(z) = bTD(z +w)+0D(z — w).

The diagonal part can be solved via a continued
matrix algori:hm as

(n|D(2) )" = Gg'(2) = 0n(2), (7)
with

n+1
Gal(z ~w) —bpy1(z —w)

Op(z) == M

3

and n > 0. Nom, for N,, inodes with frequency w,
and interaction matrix M, with 1 < a < N,;,, asound
approximation!!1%1%] was found to be

On(z) = %‘M ntl
i _a-_—:_ } Gal(z”wa)"9n+l(z_wa) o

The inforination contained in G(z) is extracted via
expectation values and susceptibilities probing our sys-
tem witli small external fields. Any given operator A

195

may be decomposed asA = A.A, where A, is tlie
electroiiic, and A, tlie lattice part of A, respectively.
Let’s define tlie spectral density of sucli opcrator as

Im

Salz) =- ZTra.ceAe (0| D(z) |n) (n] A, |0).

(8)

If a small external static field # is introduced, by

adding to H tlie incremental AH = —0.5% B, with 13

tlie conjugate operator to 'H, and witli n(z) tlie spectral

density of tlie identity operator (tlie density of states

DOS), then tlie expectation value (( A(z))) aid tlie
susceptibility x3(z) can be cast. respectively as

T

(AR)Y) = —Si(()l
p) = gm UBDN

Tosolvefor G(z) is equivalent to find the normalized
eigenvectorsand eigenvalues [¢,,), €, of H, respectively.
This equivalence may be displayed as

((A(e) ) = (bul Alby) .

II1. Tlie Dimer Case

Consider a tivo site, two electron system (N = 2,
tlie smallest finite size counterpart to tlie lidf filled
band case), witli diagonal electron-lattice interaction
Mg = 592 and off-diagonal electron-lattice interac-
tion M2 = k. Periodic boundary conditions require
us to take botli sites and modes to be identical, a re-
striction to be lifted without further complications, if
we want tostudy for example, a lieteronuclear diatomic
molecule. From tlie two normal modes (frequency w),
conveniently written as

bi = /1/2 (b1 £ by),
tlie symmetric mode (+) is decouplecl when reducing
tlie Hamiltonian, asin equation (2), witli B = b,. Also
tlie only relevant Coulomb term is tlie intrasite repul-
sion U (all others’ eliminated via tlie constant of the
motion N into effectives T and U). Also we introduce
astaggered "electric" and “magnetic” field; i, and h,,
respectively, in order to study cliarge and spin trans-
fer states, precursor states for charge and spin density
waves in infinite systems. These fields are essential in
finite systems, as symmetry breaking devices.
Then, tlie reduced Hamiltonian H is

H=HgTH, (10)
with

Hel = ——05(’qu + hg’l’llo) - TB + U Z ’I’li‘]V'I’I,z‘l, (11)
g
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and
H = whlo_ + V5720 + xBI6L +02),  (12)
with
B = Z(CIUCZU +C;7610),
Q = Z(”la — ngg ),
ms = Z 0'(77,10 - 7120))

[+4

wliicli represeiit the boiid strength, cliarge transfer aiid
spin transfer operators, respectively. Tlie electronic ba-
sisset is |¢;), i =1 - 4, with

[$1,2) = \/fﬁ(cITcL + chgT) (0),

and
|$3,4) = \/I/—Q(CITCL + CZTCL) [0},

where {0} is the electronic vacuuin. The two remaining
triplet states have no inatrix elenients in the relevant
Hilbert space. Then, the electronic Green’s function
Gy is given by

z  hg 0 0
v A o2 0 er
Go@=\0q 0 s-v n |° @
0 9T hy z-U

Let us define tlie following auxiliary inatrix

0 a 00
0 0 b

T(a,b,¢) = g 00 ¢ (14)
0 b ¢ 0

Then, in tlie electronic basis, the bond strength, charge
transfer and spin transfer operators defined above are
represented by

Az =T(0,2,0), Ag=T(0,0,2), A,=T(2,0,0),

respectively, and the interacting matrix M is given by
M= VQSAQ + kApg.

V. Results

The dimer, for tlie diagonal case (ti = O), has
been solved in the adiabatic limit!?*! and via direct
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diagonalization!??=2%1 (ref. [26] considers tlie off -
diagonal phonon). In all tliese cases no spin suscepti-
bility was calculated, so tlie relevant basis set required
only tlietlireesinglet states |¢;) ,i = 2,3,4. We iieed to
increment tlie basis set in order to iiiclude tlie triplet
state with tlie z spin coinponent equal to zero (i=1);
thus we notice the first advantage of tlie method pre-
sented here: with a single stroke we incorporate both
cliarge (witli or without lattice deformatioii) and spiii
symmetry breaking devices, introducing tlie ”small”
fields. Our formalism alow us to classify in a natural
fadliion any state, say with energy ¢g, as being eitlier a
spin traiisfer (STS)or a cliarge transfer (QTS) state.
We do tliis by computing both tlie spin and cliarge
transfer susceptibilities, at equal strength fields. Tlie
STSis probed with tlie condition

Xa(gﬂ)

- 1. (15)
Xq(€o)
5
T30.5
= u=0.2
®
B A — ~7
= 5:0.0
wW=0.t
-5 1 - |
5
W
~ A
N A\
-5 1 | i
2
w
o MM

Figure 1: n(e)xq(e)andxs(e), for tlie parameter set T =
0.5, U =0.2,5=0.0and w=0.1.

Conversely tlie QTS is probed requiring p < 1. The

lattice deformation is quantified witli tlie bond strength
ratio

&=

( B(eo) )
W Boleo) )) l ’ (16)

wliere the subscript 0 in B means the expectation value
isevaluated at tlie null value for the lattice parameters
(S= & =w = 0). The sign of p, if no absolute value
was taken merely defines the parity of tlie state. For a
given set of parameters (T,U,S,k,w) the character of
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the system is defined according to tlie character of tlie
ground state. Any given state shows as a siinple pole
of the DOS r (). For computational and display pur-
poses we use a finite energy imaginary part 6, therefore
poles will be displayed as local maxima. A qualita-
tive classificasion for tlie STSor QTS character of tlie
system(21:23:24 _for tlie diagonal case (k = 0 and here-
after restrict to this case) is: tlie former occursin the
small S/T, large U/T regions of parameter space and
the latter (possibly accompanied by alattice distortion)
for large S/T, small U/T or small w/T. Tlierefore U
(Coulomb correlations) and S (electron lattice interac-
tions) compete to define tlie ST S or QT S character o
the system. Particular cases are (for infinite systems)
the insulating antiferromagnet (U > 7,5 <« U) and
the Peierls Instability ("band limit" with S, T > U).
We plot the L'OS and both susceptibilities, as function
of energy with an energy imaginary part § = 0.05 and
fieldshg = h, = 10~7 in dimensionless units. In Fig-
ures 1 and 2 we consider the pure electronic case (i.e.
S = 0) for two sets of values for T and U. In botli
cases tliesystem has a STScharacter, the transition to
QTSonly to »ccur exactly at U = 0 refs. [21, 23, 24].
As Siis increased (say for fixed U) tliere is a smooth
crossover to (OT'S ,in agreement with®-251. |n Fig-
ures 3 and 4, sor tlie same values of T and U, but with
S=0.5, aclear QTS regime is displayed. Notice that
excited states in both cases are STS, the effect more
pronounced for the case U > T. Furthermore Figures 5
and 6 with S:= 1.0 show the same trends as is tlie pre-
vious set of Figures, also highlighting the vast number
of excited statrs and their symmetries (parity) on both
their spin and charge attributes (given by tlie sign of
thesusceptibilities at the poles).The boundary between
STSand Q75 can be calculated in parameter space.
Let us remark that our spectral densities are, due to
tlie finite size >f our system, of the type

[e0)

SA(2) = D nlen) (Yul Alg) 6(z — e,

p=0

where tlie p i:; the eigenvalue index and %, the nor-
malized eigenvector as defined at the end of section II.
Therefore the spectral densities will be very sensitive
to the actual vaue of the energy's imaginary part 6,
both on the computed values for tlie poles (eigenval-
ues) and for tlie residues (expectation values) as well.
Thus, caution must be exercised as a “small” § is cho-
sen. Fortunately, this numerical inconvenience is easily
surmounted with afast analytic continuation algorithm
asin ref. [27]. In fact, only in order to determine tlie
ground state energy such caution should apply, all otlier
observables are ratios of spectral densities, the latter
found to be weakly dependent on the smallness of 4.
Notice that all matrix elements of G(z) are determined
in one stroke end that the diverse observables are ob-
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tained as the imaginary part of linear combinations of
the G(z)’s matrix eleinents.

Xgle)
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Figure 2. n(e), xg(e)andyxo(e), for tlie parameter set T =
02,0 =05,5=00and w=0.1,,
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Figure 3: n(e), xo(e), xo(£) (Seetext), for the parameter set
T=050U=025=05andw =01
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Figure 4. n(e), xq(e)andx-(€), for tlie parameter set T =
0.2, =0.5,§=05andw = 0.1.
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Figure 5: n(e), xo(e)andxs(e), for the parameter set T =
050 =02S=10andw =0.1
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Figure 6: n(e), xg(e)andxc(€), for tlie parameter set T =
02,0 =05,5=10and w =0.1.

Tlie “raw” results n(¢),xo(E), Xo(€) in Figures 1-
6 are a rather cumbersome picture of tlie results, if
we need to extract from them tlie actual sequeiice of
eigenvalues states and/or tlie actual weight of tlie sev-
eral deltafunctions. Tlie value 0.05 for tlie imaginary
part of tlie energy seems to be adequate for a pictorial
view, of course smaller values of 6 will improve tlie ac-
curacy but will generate also a scaling problem for tlie
several weights, also increasing the computing time. If
tliese “raw” results were needed then it is necessary to
appeal to devices such as tlie analytic continuation al-
gorithm mentioned abovel?”. We assert tliat tlie latter
procedure is not needed beyond the calculation of tlie
ground state, since as remarked above the Spin/Charge
diseriminator is a weak function of S. We notice too
tliat afinite value of 6 blurs out information, neverthe-
less by computing many observables this lossis partially
retrieved, namely: in Figures 1 and 2, there are 4 eigen-
states (see n(¢)), from tlie susceptibilities; in Figure 1,
eigenstates 2 and 3 are blurred into one state (tliey
have tlie same parity), in Figure 2 eigenstates 3 and
4 are blurred into one state on tlie spin susceptibility,
similarly eigenstates 1 and 2 on tlie cliarge susceptibil-
ity; so all three observables are needed to have a full
view of the results, for our choice of 6. In Figure 4
tlie peak near the origin for n(e) seems to be a sin-
gle heavy weiglit state (a much smaller § will show to
be two eigenstates closely arranged), tlie spin suscepti-
bility indicates this peak to be indeed two states with
opposite parity and the charge susceptibility indicates
tliese states to be clearly of the type STS. Therefore,
if some information is lost due to the finite value of &
(but making the results both ainenable to a pictorial
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view and computationally fast), tliis loss is retrieved
by computing other observables.

Finally in Figure 7 we present a Spin/Charge phase
diagram for tlie diagonal case {x = 0, see ref [28]).
We plot tlie Spin/Charge interphase curve projected
on tlie plane T+ U+ 5 = 1 (in suitable dimension-
less units) foc w = 01. Tlie C(S) label refer to tlie
Cliarge (Spin) phase, tlie transition is smooth at tlie
iiiterpliase. "lie interphase curve intersects tlie U — S
line at U = 1/3,5 = 2/3,T = 0, as predicted from
tlie small polaron transformation (see ref. [20] for ex-
act results at T = 0). These results were obtained for
§ = 0.001, an remain insensitive as § is decreased.

Figure 7: The $pin/Charge phase diagram projected on tlie
plane7 + U+ 5 =1 withw = 0.1,

V. Concluding Remarks

We preserted a general method to solve Finite
Peierls-Hubbard Systeins and particularized to tlie di-
agonal phonot dimer. Our conclusions are summarized
as follows:

i) our methoc proved to be advantageous over direct
diagonalization[?3=26] Qur calculations involved
4 X 4 matrices and up to 30 continued fractions
(in the probed region of parameter space). Direct
diagonalization!?*=26] inyolves typical 300 X 300
inatrices. To extend the latter metliod for the 3-
site 3-electron 1-mode cluster (tlie smallest cluster
to exhib t frustration and Jahn-Teller effects29],
with the same degree of accuracy involves 2000 x
2000 inatrices, for tlie 4-site 4-electron 1-mode
cluster (solved in tlie adiabatic limit®%) will in-
volve 7000 x 7000 matrices. Our method will deal
at most with 20 x 20 and 70 X 70 inatrices, re-
spectively. If all lattice modes are to be included
our metliod yields no increase in the matrices'
dimensionality, but direct diagonalization will re-
quire 20000 X 20000 and 700000 x 700000 matri-
ces, resp :ctively. Thus, by increasing tlie cluster
size t0 4,6,8 sites, the matrices involved in our
method sre within manageable dimensions, not
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sofor tlie direct diagonalization inetliod. Further-
more our method allows for tlie inclusion of more
than one mode via a tested approximation!t2=14,
and without any heavy increase of computational
time. Beyond one mode, tlie direct diagonaliza-

tion inetliod becomes proliibitive.

i) our susceptibilities allow, at tlie cost of little extra
coinputation, tlie study of tlie S7'S or QT S char-
acter of both tlie ground and tlie low lying excited
states, related but not identical to tlie lattice de-
formation probed by direct diagonalization!23~26],
In fact our bond strength parameter € (eq. (16))
plus our Spin/Charge discriminator p (eq.(15))
can completely probe both tlie ST'S/QT'S char-
acter and lattice deformation for our system(3!],
Clearly astrong lattice deforinatioii means a Q7'S
and tlie converse is true for no deforinatioii at all;
nevertheless it is not clear for wliat intermediate
lattice deformation value the system goes from a
charge to aspin regime. Our inetliod provides an
unambiguous answerl3l,

iii) our inetliod when appliecl to clusters of increased
size, will provide a systematic tool to probe tlie
diverse approximations available for infinite sys-
tems, such as tlie adiabatic and mean field ap-
proximations.

iv) tlie diiner case, is not a coinpletely solved case,
neither an uninteresting one (see for examplel®J,
wliere solely electronic correlatioiis were consid-
ered), it stands as a particularly simple case
displaying il full power tlie aclvantages of tlie
metliod presented liere.

v) as for work in progress, we are probing tlie
dimer with both diagonal and off-diagonal
electron-lattice interactions for a full system
characterizationt®!,

vi) as a final comment, we remark that our method
might reminisce other methods hinging on con-
tinued fractions tecliniques. recurrence relations
and the like (for example, Lanczos’ Method,
Mori’s Approach, Haydock’s Representation and
so forth(!™)), nevertlieless tlie present formalism
should not be confused with the former ones,
our’s being substantially different and inuch more
powerful, because even in the zeroth approxima-
tion (absence of phonon degrees of freedoin) all
fermionic correlations are accounted for.
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