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A model including severa1 scalar fields rotating under the same symmetry group is studied. 
It suggests that the same pliysics can be described by different field parametrizations. One 
consequence is that a given symmetry will take different representations depending on the 
field basis where it is developed. 

Scalar fields are regarded, at least formally, as the 
most primitive manifestation of matter. A modern 
framework to characterize such an abundance of scalar 
excitations would be through superstring-inspired mod- 
els. The appearance of families of scalars in addition 
to the charged matter scalars is a feature of models 
derived from superstrings upon compactification on 6- 
dimensional Calabi-Yau spacesl. These models display 
in their spectrum the so called dilaton field (a scalar 
present in the supergravity multiplet) along with fur- 
ther scalars, known as moduli fields, that account for 
the shape of the compact interna1 ~ ~ a c e [ ' > ~ ] .  

The fact is that there is an experimental reality ex- 
pressing the existence of various scalar particles. This 
evidence is always challenging the creation of theoret- 
ical models to  describe it. In this way, the main ef- 
fort in this text is to  organize such a variety of scalar 
flavours in a model based on the invariance under cer- 
tain global transformations. It means to consider the 
presence of different flavours rotating under the same 
group through the following global transformation: 

@, i @[>á = eiLYqa @a. 

It yields the following Lagrangian 

L = @+o@ - @+m2@, 

that reproduces the historical meson-r 

@+ = (7r+,r0,7r-). 

(1.2) 

case3 for 

(1.3) 

Nevertheless there is a more general possibility 
which is to  consider a global phase rotation involving 
different fields 

where Q is an N-dimensional charge matrix, not neces- 
sarily diagonal. It yields a more general global invari- 
ant Lagrangian which includes non-diagonal kinetic and 
mass terrns, 

where cp is an N-dimensional vector. From the reality 
condition, one concludes that K and M 2  must be N- 
dimensional Hermitean matrices. Thus it yields a total 
of N(N+l) parameters involved in eq. (1.5). Calculat- 
ing the corresponding canonical momenta 

one concludes that when K is invertible there are N dy- 
namical fields, i. e., the velocities +i can be written in 
terms of the canonical momenta r p i .  

For global gauge invariance to be achieved, the fol- 
lowing relationships must hold: 

However the interesting fact is that Lagrangeans 
(1.5) and (1.2) are related. For this, let us define the 
following R transformation between fields 

which yields 
RtI<R = I ,  

~ 2 '  M2C2 = m2(diagonal). (1.9) 

Notice from (1.9) that R is not necessarily unitary (un- 
less the kinetic vector is a multiple of the identity). I 

Substituting (1.8) in (1.1)) one also gets 

where Q is the diagonal charge expressed in (1.1) 
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Consequent1:r tr ansformations (I. 8) - (1.10) are showing 
that Lagrangians (1.2) and (1.5) are just different pa- 
rameterizations that describe the kinematics of a same 
family of scalar quanta. In order to differentiate them, 
fields <p with non diagonal terrns in the Lagrangian are 
entitled cons ;ructor fields, while fields Q are considered 
as the physical fields. 

In the following section, an extended scalar model 
which inc1udc:s interaction is proposed. Section I11 stud- 
ies the properties of a R matrix which is responsable 
for rotations on the field basis. Finally section IV deals 
with initial steps for a future renormalization program 
to be developed. Two appendices are left for comple- 
menting the text. 

11. Generakized Scalar Model 

For artic~.lating the model the next task should be 
to calculate the R matrix which relates the diagonal 
and non-diagonal parameterizations. We will follow a 
constructive :?rocesS. This means by starting in (1.5) to 
define (1.2). So the first step is to diagonalize the ki- 
netic term, niatrix I<. Considering that it is hermitean 
there is an uiiitary transformation S such that 

- 
where we assume that the eigenvalues Ifi are a11 non- 
zero. Then rewriting the Lagrangian, one obtains a 
mass term 

which is also hermitean and then can be diagonalized 
by another u litary transformation 

Thus one derives 

One should nstice that in order to perform the R calcu- 
lation it is ne2essary to use algebraic computation tech- 
niques which depend on the number of involved fieldl4]. 

Taking th: equations of motion one notices that this 
N scalar complex model contains N-Klein Gordon equa- 
tions. For Q-basis they are 

Using (1.8) and (I.9), we have 

Thus, from (11.5) and (I.l), one concludes that a defined 
mass and charge are associated to every field Qi(x). 
Now it is mo-*e clear why they were defined as physical 
fields, while ~ ) i ( x )  will be called as original or construc- 
tor fields. Considering Yukawa interpretation, Qi can 

be identified as the meson fields associated to a corre- 
spondent nuclear source, pi = giS(T?). Thus, equation 
(11.5) is representing the usual situation where particles 
have a mass mii, and the field is significant in size only 
out to a range of force r l/mii.  

Analysing the associated conserved currents 

a Pi + 
- + div Si = 0, 
a t  

where the probability P i ( T ,  t)  and the current S i (y ,  t )  
are described as 

We see that the old question about negative probability 
still exists, as expected. But the important fact to be 
noticed here is that by changing the parameterization 
system the relative sign question remains unchanged. 
Physics should not change under R rotation. 

Now let us explore some consistencies of this scalar 
extended model. For this we have to study some basic 
aspects as a positive free Hamiltonian as the presence of 
tachyons. We know that in order to undertake the per- 
turbation theory program, a first condition is to have a 
positive Hamiltonian corresponding to the free sector. 
Then, deriving the generalized energy-momentum ten- 
sor through the method of coupling with gravitation, it 
gives 

Expressing the corresponding Hamiltonian in terrns of 
canonical momenta, 

However eq. (11.10) does not give information about the 
Harniltonian positivity. So, as a first advantage of being 
able to express the physical model under different pa- 
rameterizations it appears that by rotating to the well 
known Q-basis we get the information that the scalar 
Harniltonian is positively defined. 

For analysing the possible presence of tachyons we 
are going to take as an example a case involving just 
two fields 

It gives the following physical masses, 
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wliere 

Consequently eq. (11.12) sliows that by para.metrizing 
the free coefficients given by matrices I< and Ril elements 
space-like poles could be avoided. 

After tliese two very minimal conditions are 
achieved, one can switcli on tlie interaction part. For 
tlie <P-basis, it 

and for cp-basis 

Thus eqs. (11.13) and (11.14) will correspond to the 
so-called generalized scalar model wliich this work an- 
alyze. 

111. R Matrix 

Section I1 provides us with the information that a 
Lagrangian containing N scalar flavours can be rewrit- 
ten through different fieId parameterizations. Then, an 
R - matrix naturally emerges. It contains N ( N + l )  pa- 
rameters. Its task is to  connect the various parame- 
terization descriptions. Nevertheless, for tlie validity of 
such R-matrix it will be necessary to prove that pliysics 
does not depend on it. This is tlie effort of tliis section. 

Thus, R is basically an abstract entity coordinating 
the field transformations. Eqs. (1.9) are the first expres- 
sion relating an R existence. Subsequently, through a 
constructive analysis, an explicit expression was devel- 
oped in eq. (11.4). Tlien it follows two basic properties 
for R which are that it is not generally unitary ( un- 
less kinetic terms are diagonal ) and tliat tlie set of 
R's do not forni a group. Being a matrix it contains 
the identity and associative properties; the condition 
for being in~ertible is obtained by avoiding zero eigen- 
values for li' niatrix in (11.1); however eq. (11.4) does 
not allow the closure property. Nevertheless, although 
R does not constitute a group, it should be noted that 
its transformations generate tensors. 

The first two basic theoretical entities preserved by 
R are the S-matrix and the number of degrees of free- 
dom. ~ o r s c h e r [ ~ ]  states that any S-matrix is preserved 
under field parameterizations which does not violate 
locality, a statement that eq. (1.7) satisfies. The condi- 
tion for the number of degrees of freedom be preserved 
is the ICmatrix be non singular, as eq. (1.6) says. 

Putting into a quantum field theory tlie physical 
fields and their conjugate momenta must satisfy equal 
time commutation relations: 

Then, considering that 

ír, = (R-1)t7rs, (111.3) 

one obtains, 

[cpZ(X), P.7 (y)lzo=,o = [a,, ( 4 ,  a,, (~)lxo=yo = o, 
(111.4) 

[pz(x),  w,,(y)l,o=,o = iSZ,h(Z - 7'). (111.5) 

Observe tliat (111.5) is consistent with (1.8) in (111.2). 
Analysing from the kinematics viewpoint, tlie mini- 

mal action principle is also preserved under R transfor- 

which is confirmed by working out tlie Euler Lagrange 
equation 

Thus such change on field basis does not affect the 
on-sliell information. This information can also be ob- 
tained from Hamilton's canonical form, 

SH , = -  
h ~ ,  ' 

ír, = 
hH -- 
h,, 

whicli gives under Q transformation 

Thus an iinportant aspect tliat eqs. (111.2) and 
(III.5), (111.8) and (111.9) are showing is that the pro- 
posed R rotation is a canonical transformation. 

As a next step we should study tlie symmetry prop- 
erties under R transformations. For this we will prefer 
first to understand the interna1 symmetries. Given a 
global symmetry the corresponding conserved current 

Similarly for the p-basis, 
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Substituting (1.8) in (111.10) one obtains, 

a consistent result to the fact that to every symmetry in 
the Lagrangian must be associated only one conserved 
current. The difference here is that this current can be 
written through different functional formulae. 

Assumin: that the symmetry takes the form 

wher e 
u + ~ = 1 ,  (111.14) 

a charge Qa follows, 

with tlie folhwing properties 

Thus the appearance of these charges and their as- 
sociated curi.ents is an important consequence of sym- 
metry. It is the basis for physical states to  be prepared. 
Therefore it is important to understand how far such 
symmetry property is preserved under field parameter- 
izations. 

Substituting (1.8) in (III.13), one obtains a new 
transformatitm 

'P/ = T ( ~ ) P ,  (111.19) 

where T(a)  are new N x N matrices given by 

with 
a U H a  = o a a t a  fi-l. (111.21) 

Then, (111.21) in (111.14) gives the general condition 

which shows that a same symmetry can be represented 
by a unitary matrix in some field parameterization and 
by a non-uniíary matrix in another field basis. In terms 
of generators it is expressed as 

and 
H" # Ha+.  (111.23) 

Observe that when the kinetic matrix is a multiple of 
identity H a  is herrnitean. 

Considering tlie above classical transformations as 
acting on field operators, the transformations now read: 

with the corresponding infinitesimal transformations 

and 
Sp = iaa[Ha,  p] = i aaHap.  (111.25) 

Thus, although these field parameterizations change 
the generators shape it is important to show that the 
symmetry message is not lost under these transforma- 
tions. In order to analyse this crucial question we have 
to study tlie generators and their algebra, and the cor- 
responding maximum Abelian set. The observables def- 
initions must be the same. 

Under such field parameterization the number of 
generators is obviously preserved, and also the corre- 
sponding Lie algebra 

From the invariance of Lagrangian (11.14) under (111.19) 
follow the relationships 

where the above equations are not imposed. 
Working on the p-basis, we get 

and 

[&a [pIi [&b [P]] = ifabc[Ge [PJ, (111.29) 

which are also indicative that the charges algebra is in- 
dependent on fi transformation. This result can be con- 
firmed by remembering from (111.12) that the Hilbert 
operators Qa[pJ and Qa[p] are equal 

Qa[@l = Ga[pl. (111.30) 

Eq. (111.29) reaffirrns that the canonical commutation 
rules are preserved under fields parameterizations. 

More explicitly, calculating the conserved charges 
corresponding to for the physical and original basis, we 

g e t 
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and 

Then, the determination of how eqs. (111.31) and 
(111.32) act on fields and cpi respectively, yields that 
eqs. (111.17) and (111.28) are reproduced. Similarly for 
eqs. (111.18) and (111.29). 

Finally we have to understand the consequences of 
C2 rotations on the physical states. Observables must 
belong to a maximum Abelian set derived from the al- 
gebra of charges. Considering as example the SU(3) 
group, we can take f3s0 = O the Q3 and Q8 genera- 
tors are adopted as members of this maximum Abelian 
z t .  Consequently one derives that the corresponding 
Q3 and Qs generator will also commute. This shows 
that from S2 invariance for charges algebra we have 
that observables are independent under field parame- 
terizations. Concluding, we would note that symmetry 
can change shape ( generators expressions ) and type 
( be unitary or not ) but their physics preserved. For 
this we have studied how the Lie algebra, currents and 
charges, current algebra and the Cartan subalgebra, are 
invariants under S2 transformations. Thus, through the 
introduction of more fields in a same group one can 
learn that symmetry expression can change but this fact 
does not mean that the involved quantum numbers for 
preparing the physical states will change. 

As for space-time transformations, the R matrix 
is more transparent to them than to internal symme- 
tries. From literaturei6] the corresponding conservation 
laws for the scdar case are for translational invariance, 
Lorentz rotations, dilation transformations, conformal 
boosts, respectively: 

with 

with 
L;, = X , B ~ [ Q > ]  - x,o~u[Q>] , (111.34) 

with 

and 
dW,,[Q>] = O 

with 
I(,"[@] = X"'D[<P] + xX~x,,[@], 

where 
V[@] = xPOp,[Q>] (111.36) 

and O:[@] , LY,[Q>], V,[@], I<,,[@] are respectively the 
improved energy-momentum tensor, angular momen- 
tum tensor, dilation current, and the conserved tensor 
associated to the special conformal transformation. 

Considering the p-basis, we have 

and 

Then, substituting eq. (I.8), yields 

and 
DP[@] = D"y]. (111.40) 

Thus a11 space-time charges are preserved under R 
transformation. 

Deriving these charges explicitly for this extended 
scalar model (11.13) yields the expression in (11.9) and 
the subsequent relations. Calculating the dilation cur- 
rent and considering that the scalar case has dimension 
L = -1, one gets for the massless case 

For the massive case, we have the expected scale invari- 
ance breakdown 

0: = m:@i2. (111.42) 

The main object of a quantum field theory are the 
quanta. Thus, the most relevant aspect for a R ma- 
trix to be accepted is to prove the quanta invariance 
under its rotations. Considering that a given quanta is 
characterized through entities such as spin, mass, and 
charges (space-time, internal, discrete), the task here 
should be to  prove that a11 these entities are preserved 
under (1.8) transformation. 

~ h è  tensor spin d e n ~ i t ~ [ ~ ] ,  

is obviously an invariant for the scalar case. 
For the physical masses, the similarity transforma- 

tion 
C~-'(I<-'M~)R = m2,  (111.44) 

show that the poles are preserved under a R rotation. 
The space-time charges invariances were already 

proved in (111.33) - (111.40). Then we get that the 
Harniltonian, linear and angular momentum can be 
equally described by any parameterization system satis- 
fying Borscher theorem. The instruction is that a given 
Lie Algebra for the Poincaré, Weyl, Conforma1 group 
will be preserved under R transformations. 
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A next d.scussion is on the interna1 charges that la- 
bel the quanta. We will study just cases with global 
invariance. rhey are the possibilities U(N), [U(1)IN1 
U(N - M) 1% [u(l)IM, and U(N1) 8 . . . 8 U(NM) 8 
[u(l)IP. Considering the physical 

(i) For U(N) : U(a) = eiwata 
The conditicns are 

yielding the following conserved current 

(ii) For ,U(l)IN : U(a) = eiaiyl . . . e icucvy~ where 
yi are the cliarges associated to  different U(1)'s. The 
conditions are 

associated to N conserved currents 

(iii) FOI U(N - M )  8 [u(l)IM : [U(CY) = 
eiwata e iw-ye . The conditions are a mix between above 
cases. Similxly there are the (N-  M)  currents JL, and 
M currents . T a .  

(iv) For U(N1) 8 . . . 8 U(NM) @ [u(l)IP, with 
Nl + N2 + . . . + Np = N .  The conditions are physical 
masses with degeneracy N l l  . . . , NM and P differents 
masses. 

Discrete symmetries under different field basis also 
need be studied. Parity will be the first case to be con- 
sidered. FOI simplicity, one should first analyse it on 
the diagonal basis 

which reproduces the usual Klein Gordon situation. 
Then, transforming into cp-basis we have 

P - 
cp(x) t-, cpl(xl , t l )  = Pp(-3?, t ) ,  (111.50) 

where the ir.atrix P which represents space inversions 

with 

Notice that the 
intrinsic parities 
mains unbroken. 

The charge invariance is 

with 
(Vc)ij = % & j .  (111.52) 

Then, 

c p ( 4  H cpC(x) = Ccp* I 

where 
C = R ~ ~ ( R - ~ ) *  . (111.53) 

Time inversion is 

which one reads on cp-basis as 

where 
7 = fi*17TR-1. (111.55) 

Now taking (III.51), (III.53), (111.55) transformations 
in the cp-basis Lagrangean one can explicitly show that 
the kinetic, mass, and interaction terms preserve such 
invariances separately. Consequently no constraints on 
matrices K ,  M2,  X are necessary. It is important 
to note that every discrete symmetry when analysed in 
terms of @i fields is well-defined. Because of this precise 
aspect they can be called physical fields. 

Considering that the Lagrangean is local, Her- 
mitean, and invariant under restrict Poincaré group we 
obtain the expected CPT invariance 

and 
CPT 

$LI(.) - pl(xl) = N$LI*(x), 

The currents associated to  this extended scalar 
model transform 

and 

j," [ P I - ~ ~ ~  - A' [VI. (111.59) 

Eqs. (111.58) and (111.59) show that i2 transformation 
also preserve the particle-antiparticle description. 

A final aspect would be to  analyse the annhilation 
P = Q ~ ~ R - ~ ,  and creation operators in terrns of R transformations. 

For the physical basis, fields @i(x) are Hermitean oper- 
ators whose Fourier expansion may be writen 

P = P-l .  (111.51) 

fields cpi and cpj can have different 1 d3 

and the Lagrangian P-invariance re- [Ai (k)e-ikx + A; (k)eikx] 
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expression the physicity question cannot be interpreted 
so easily. Thus, in order to derive the degrees of free- 
dom associatzd to  the physical excitations, we have to 
decouple the propagators in terms of N simple poles. 
This procedure brings about another way of expressing 
R(P) : 

Thus the xsidue matrix, R@), corresponding to  ev- 
ery single pole is 

One expects that the information on degrees of freedom 
and on the p~esence of ghosts can be read off from the 
eigenvalues of R@). For this, we should explore its prop- 
erties. Obserling the LHS of (IV.6) , one notes that the 
matrices R(" are syrnmetric which ensures that their 
respective eigmvalues are real. Thus there are only pos- 
itive, negative and zero eigenvalues to inform about the 
physical conditions. 

Consideririg that physics does not depend on field 
parameterization, we should study about d. f. and 
ghosts in the 30-called physical basis, @i .  There, it fol- 
lows that theie are N d.  f. and it also says that for the 
norm of a state to be positive (negative), it depends 
whether the ltinetic term has a positive (negative) sign. 
Therefore, a given physical state carrying just one d. f. 
is defined as 

Then, since physics does not change under R param- 
eterization, it is expected from d. f. arguments that 
(N-1) eigenva'ues of R(P) must be zero and only one 
will assume a real value. It  is also expected that physi- 
cal quanta, gfosts and non-dynamical quanta will cor- 
respond to  pcsitive, negative and zero eigenvalues re- 
spectively. 

Thus, it is still necessary to express R@) more prop- 
erly. Since tlie propagator in both parameterization 
basis are related by R 

one gets 

i.e., for a ppole  the associated residue matrix is 

without summing over p. 
In this way, based on the fact that tlie kinetic ma- 

trix is positive-definite, one arrives a t  eq. (IV.12) which 
shows that the residue matrix can be formulated as a 
tensorial product of a vector by itself. I t  yields 

where v(p) is the p-th. row of the matrix R. Then, fi- 
nally we have arrived in a expression to  study the eigen- 
vahes. Defining 

one gets 
LR. (~ )  = ,(P),(P) 
i =J 2 3 '  (IV.15) 

working out Lhe secular equation 

det ( d p )  - Xn) = O ,  (IV.16) 

it gives, 

which shows: 

A = O , ( N - 1 ) t '  imes 
2 

X = ~ lv (~ ) l l  > O . (IV.18) 

Concluding, eq. (IV.18) says that each residue matrix 
inforrns that it is associated to one only d. f. and 
the ghost question is controlled by having a K matrix 
positive-definite. 

A necessary relationship for deriving the power 
counting analysis is to compare eqs. (IV.3) and (IV. 11). 
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Notice that the sign in the above expression is positive 
or negative depending whether the number of physical 
masses is even or odd respectively. 

We should now understand the condition for the co- 
efficient B!!) to be zero. For BU) = O , one gets a sin- a? 
gular matrix R. However the non diagonal propa.gators 
can be modulated because their highest term in numer- 
ator, B!;') , can be taken to be zero without violating 
the model physicity. Thus the asymptotic behaviours 
of the involved propagators are 

where dij > 1 . Thus tlie corresponding superficial di- 
vergence for this extended scalar model described by 
eq. (11.14) is 

E,, and I,,,j are the externa1 and interna1 lines of the 
corresponding graph. 

An interesting consequence derived from gauge 
models which include more than one field rotating in the 
same group is the possibility of modulating the theory 
infinities. Then, considering the classical sector one has 
to  study the Pauli-Jordan correlation functions (in con- 
figuration space) and the asymptotic behaviour of the 
propagators (in momentum space). Switching on the 
interactions, we would have to  understand the quan- 
tum corrections to the counter terrns and tlie vanishing 
of some p-functions. This work has only classical pur- 
poses. 

In field theory, the singularities are independent of 
the Lagrangian. The field is an operator-valued distri- 
bution which carries singularities, detected in the Pauli- 
Jordan commutator functions and in the consequent 
propagator expression. Thus, for this extended scalar 
model, one has to  calculate in the physical parameteri- 
zation basis the following expression 

where z p  = (x - y ) p  and D(z, m:) is the Pauli- Jordan 
correlation function associated to a scalar field @i(x) . 
From [7], 

Eq. (IV.23) shows that there are two types of singular- 
ities in the light-cone. Rotating for the p-basis we get 
X(N  2 + 1) correlation functions 

(IV .24) 

Thus, eq. (IV.24) confirms eq. (11.19). Both show 
that only off-diagonal propagators can be modulated. 

A11 the ca.nonica1 information is in tlie Pauli-Jordan 
expression. The microcausality is preserved 

For the cp-basis, the microcausality property be- 
tween the fields is mantained, but the commutation 
rules change 

The two-point Green functions are 

Observe that a11 singularities lie on the light-cone. Ro- 
tating, we get 

which confirms the asymptotic behaviour in (IV.23). 
Concluding, we notice that the introduction of more 
fields does not change the structure of infinities of tlie 
theory, as expected. However it allows to modulate the 
infinities in a certain basis-cp. 

V. Conclusion 

Gauge tlieory's argument is symmetry, from which 
theoretical tools and experimental predictions are de- 
veloped. Therefore a natural road in the context of 
such theories is to look for new possibilities on extend- 
ing symmetries. Thus the effort in this work was to 
observe the consequences on syrnrnetry considerations 
from a scalar model which includes severa1 fields in a 
same group. 

Lagrangians (11.13) and (11.14) show the existence of 
different field parameterizations that describe the same 
N scalar quanta. This fact generates a R matrix whose 
properties were studied at chapter 111. It creates scalars 
and tensors under field rotations. An interesting conse- 
quence from such change on field basis is that symmetry 
also can change its shape. This means that depend- 
ing on the field basis, there appear different represen- 
tations for a same symmetry. This fact is noticed in 
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eqs. (111.13) and (111.19) where the respective genera- 
tors t a  and j'I, preserve the Lie Algebra but H, is not 
necessarily unitary. 

Another consequence of the introduction of more 
fields in a saine group is that the infinities can be mod- 
ulated. Section I11 has analysed not only a health spec- 
troscopy wh ch avoids tachyons and ghosts, but also 
about a partia1 theory finiteness which can be modu- 
lated by mar:oeuvring the free coefficients organized in 
the initial L~grangian. 

Finally we should discuss about some advantages of 
working witli different parameterization system. The 
standard tas? is to consider the @-basis as eq. (11.13). 
However the existence of a Lagrangian (11.14) describ- 
ing the samr physics, opens a panorama that C[@] 
does not o f h .  This means that while C[@] kinetic 
part is build up by N mass parameter C[cp] will have 
N ( N  + 1)/2 Consequently a same symmetry can be 
studied in more detail in the original 9-basis. Thus, as 
general conclusion, we would observe that a change on 
field basis c a l  be more propitious for detecting physics 
under more primitive coefficients. 
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Appendix A. A Practical Example 

Consider the following Lagrangian involving just 
two fields 

where 

(A and A are non negative parameters.) 
Working out the diagonal Lagrangian, it yields 

and 

The physical masses are 

The interaction parameter w is 

A next aspect is to study the behaviour of a cer- 
tain symmetry under reparameterization. For this we 
will choose the SU(2) group. Imposing that our diago- 
nalized model has this syrnrnetry we liave the following 
restrictions to the free parameters 

and 
2 m = 2yllzx2. ( A 4  

Tlius under the above conditions (A.2) is invariant un- 
der the rotations 

where t a  are the Pauli-matrices. Calculating, as exam- 
ple, the corresponding conserved current J l [@] associ- 
ated to t2: 

Jl[@] = -{(dp@*,)@l - (dP@;)@z-@*,dp@l+@;dp@2}.  

(A.7) 
Now we should calculate one of the proposals of this 

work which is to observe modifications on the syrnrnetry 
shape under field parameterizations. Applying (A.3) in 
eq. (III.21), one gets 

Thus (A.8) shows how generators can change but pre- 
serving the Lie algebra. Notice that this example is a 
very particular case where the i2 matrix are unitary. 
Calculating the conserved current J l  [v] related to H2 

J2tcpI = - ~ ~ ~ ( d p ~ ; ) ~ 2 + ( ~ p ~ ; ) 9 1 - ~ ; a p ~ 2  -cp;dP'p~} 
(A.9) 

(A.9) is showing another expression for SU(2) symme- 
try. 

Considering the discrete transformations 
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(A.11) 
Another case is to considere a U(1) global transforma- 
tion for 

Applying eq.(III.21) we have a non diagonal expression 

Appendix  B. Propagator  Expressions 

The propagator expressions depend on the proper- 
ties of the kinetic matrix K. Considering that Ií' is Her- 
mitean it can be diagonalized by a 

Substituting the above expresssions in (I.5), we get 

where 
M 2 = S M ~ S ~ .  P . 3 )  

In components, 

Thus, there are three situations for tlie propagator 
expressions to be analysed. They depend on the cases 
where the kinetic matrix I< is positive-definite, invert- 
ible but non-positive-definite, and singular. 

I. I( > o 
Defining 

and normalizing tlie fields 

where 
9 = A-lG2A-l, 

(B.7) 
A 

As M~ is symrnetric it can be diagonalized througli 

which finally yields 

Then, (B.9) shows that ghosts are avoided due to the 
fact that a11 kinetic terms have the same canonical sign. 
Tachyons will exist for rn? < 0. 

II. 
K < O 

It is the case where the eigenvalues are posi- 
tive and negative. This means p positive eigenval- 
ues: X1 , . . . , A p  ; and (N-p) negative eigenvalues: 
&+i , . . .  , A N .  

Normalizing fields as in (B.6), 

(B.lO) 
it yields 
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where Calculating the propagators 

(T@iFj) = 6, 

i, 1 - - 
G2 = A - ~ R M ~ R ~ A - 1  (B.11) (T@.^..) 2% = --(o k + m2)6, 

MhN 
The diffei ence when positive and negative eigenval- 

ues are included is that the kinetic and mass terms will where the pele structure given by 

not be diagor alized simultaneously. Therefore (B.ll) A is - 1 
the final- exp .ession. A particular case is when I( and 
when M matrices cornrnute. 

pl. (B.17) 

To study this case we are going to exemplify with References 
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