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We consider a spinor particle in the background spacetime generated by a cosmic string.
Some physical effects associated with the non-trivial conical topology of this spacetime are

investigated.

Topological defects of spacetime can be charac-
terized by a spacetime metric with null Riemann-
Christoffel curvature tensor everywhere except on the
defects, that is, by conic type of curvature singularities.
Recent attempts to marry the grand unified theories of
particle physics with general relativistic models of the
early evolution of the universe have predicted the exis-
tente of such topological defects. One example of these
topological defects are the cosmic strings!* which ap-
pear naturally in gauge theories with spontaneous sym-
metry breaking.

Cosmic strings are expected to be created during the
phase transitions. Some may still exist and may even
be observable; others may have collapsed long ago, and
have served as the seeds of the galaxies2. Straight
cosmic strings are long and exceedingly fine objects.
Their thickness is comparable to the Compton wave-
length %/m (in units ¢ = 1) of typical particles when
the string wasformed and their tension were enormous,
numerically equal to their linear mass density timesthe
square of the speed o light. The tension, for example,
for grand unified strings with mass per unit length on
the order of 10%?g/cm would be 10*3 dynes.

The line element of the spacetime described by an
infinite, straight and static cylindrically symmetric cos-
mic stringl?, lying along the z-axis, is given by[?

ds? = dt? — dp? — o?p?dyp® — d2?, (1)

inacylindrical coordinate system (t,p, ¢, z) withp > O
and 0 < ¢ < 2, the hypersurface ¢y = O and ¢ = 27
being identified. The parameter a is related to the lin-
ear mass density g of thestring by a =1 — 4u. This
metric describes the spacetime which is locally flat (for
p # 0) but has conelike singularity at p = 0 with the
angle deficit 8xu. Then, the spacetime around an in-
finite straight and static cosmic string is localy flat
but of course not globally flat; it does not differ from
Minkowski spacetime locally, it does differ globally. The

local flatness of the spacetime surrounding a straight
cosrnic string means that there is no local gravity due
to the string. There is no Newtonian gravitational po-
tencial around the string and consequently a particle
placed at rest in the spacetime of a cosmic string will
not be attracted to it, even though the string may
have a linear mass density on the order of 10%*g/cm.
There is no Newtonian gravitational potential around
the string, however we have some very interesting grav-
itational effects associated with the non-trivial topol-
ogy of the space-like sections around the cosrnic string.
Among these effects, a cosrnic string can act as agrav-
itational lens(?l and can induce a repulsive force on an
electric charge at rest!!. Others effects include pair
production by a high energy photon when it is placed
in the spacetime around a cosmic stringl® and a grav-
itational analoguel® of the electromagnetic Aharonov-
Bohm effect!”). Clearly all those gravitational effects of
a cosmic string are due to global (topological) features
o this spacetime.

In this paper we study some effects of the global
features of the spacetime o a straight cosmic string on
a spinor particle. To do this we use the Dirac equation
in covariant form.

Let us consider a spinor quantum particle imbed-
ded in a classical background gravitational field. Its
behavior is described by the covariant Dirac equation

. ) )

iy (@) g — (@) u(@)| ¥(2) = my(z),  (2)
where y#(z) are the generalized Dirac matrices and are
given in terms of the standard flat spacetime gammas

~(%) by the relation

(@) = el (211, (3)

where eé‘a)(x) are vierbeins defined by the relations
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eéta)egb)n(a)(b) = g'"'_ (4)

The product y#T", that appears in the Dirac equa-
tion can be written asl®!

7#I‘“ = 7(a)(A(a)($u) + i')’(s)B(a)(mu))’ (5)

where 7(®) == iy(Dy(Dy(Dy(®) and A,y and B, are
given by

l 4
Agy=19 (st %)Fﬁu) ) (6)
and 1
b a
Bla) = €@y @y el e, (7)

where eaysyeyay is the completely antisymmetric
fourth-order unit tensor and the comma denotes 8/8z*.

For the nietric corresponding to a cosmic string we
shall use the following vierbeins:

1 .
eloy = 00, efyy = cosp 8 ~ potl e 6,

(8)

1
(2) = singp 5(1) —cosgo 65, e (3) = 6%,

which yields the proper fIat spacetime limit (o = 1).
Using Egs. (5), (6), (7) and the above set of vierbeins
we get

Fo = Pl = Fg =0
and 1

= Z(1 = a)v(H~®

5 (1= )y, (9)

and consequently, the following Dirac equation

(B _m)

(i[—(6p+2—1,,)+a1-,;(f+%)]

The general solutions of the above eguations are
given by

wi(p) = Oy M- (A0) + CE2 Nivai-1yy(Ae), (14)

where i = 1,2, A2 = E?2 — m? andy:“; ;’

C(l) and CS,,) are constant two-component spinors and
J[V—f—(z 11 (Ap) and Ny, -1y ((Xp) are Bessel functions
of the first and second kind, respectively.
The equations of this section are similar to the ob-
tained in the analysis of the (2F 1)- dimensional casel®].
Let us brirfly study the dependence of on a. This

i[(0+ %) + 2 ¢+ 3) ) ( viim “1)=0-

—(E+tm)
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st -4 (52

+iy<“’)6¢ + 73, — m} ¥ =0,
ap
(10)

where v(?) = cosp 71 + sinp v and 4y =
—sin 7D  cosp v,

To exploit the symmetry of the string under z trans-
lation, we use the following representation of the Dirac

matrices:
)
a_ [ o 0 .
Y - ( 0 --i0'2 );

3
(0) . g 0 .
Y - ( 0 _0,3 )y
(3) _ 0 1

;1
(2 _ [ —io 0 )
Y - ( 0 iO'I ) 3
(11)

Since there is no z termin Dirac equation, it separates
into two independent equations for two-component
spinors.

The spacetime corresponding to a cosmic string is
time independent, so the time dependence of the wave
function that solves Eq.(2) may be separated as e~5
and one is led to a stationary problem at fixed energy
E. Moreover, rotational invariance of the metric alow
us to separate the ¢ dependence. In view of these we
choose the solutions of Eq.(2) in the form

vVE+m Uy . .
P = ( iE—m uz(p()pe)“” )exp(—zEt—i—zE(p). (12)

The equations of motion become

!

dependence can be see also from the expression for the
rnean energy density (< H >= [d3rJ¢tHy) of a par-
ticle in a state with wave function #%. In the expres-
sion for < H >,J is the Jacobian and is given by

= \/det g;; = ap and

? . .
0 i Oy, — iy Oy B g; 4 4O (14)

is the Harniltonian.
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From the expressions for H and < H > it is easy
to see that the energy levels will depend strongly on a
and thus they will be different from the Minkowski case
by this parameter.

Now, let us compute the current, which is defined,
as

3* = dytep. (15)
If ¢ is a massive field, j# can be written as
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. 1 1 _ e
= o= (o )+ g Or y

+Z%'9b([7,)\)\,7u] + I YA

i
[ T H
o0l T, (16)
which represents the Gordon decomposition of the
Dirac probability current j#.
In the spacetime of a cosmic string, we have

9 1/1
A 01 = 2 (0 (p). [A A0 =0 AI‘ =2{2_1 ©).(p).
] PUSARA 7 =05 (v, Ty v p(a PAR A (17a)
1
A7 =07 = [P Ta v T = 0 0), 78 = ~Wh(‘), at (170)
75 = 2P Tt = — (= — 1) b, 4@, (17¢)
b) B 3 ap2 a 3 3
1397 = =B, 3L 7@ = 0, Ty 2] = o= (= = 1) [, 90 (174)
SA ap > 3 H DN 3 , 2p . 3 .
; .
o® = S[1%71 = Oy,

T2

092 = L(00,(9), 503 _ ;(0),(3).

ap
ot = 5%[7(1), YO o1 = %[7(”)7(3)];
o3 = Q_j;;[.),(w) (3)];
y*T, = _2_15 (é - 1) ~P)

Then, using Eq. (16) and the resultsin (17a-d), we obtain,

7° =V . P+ peonvective, (18a)
with
](p) = _atP(p) + (V X M)(p) +j(p), convective: (18b)
. . 1/1—-«
Iy = —0: Py + (V X M) + J(g), convective + p ( - ) M, (18¢)
and
.7(1) = —atP(z) + (V X M)(z) + j(z), convectives (18d)
l
where the convective parts are derived from ,
sgtr)  9x ¥. The polarization densities are given P,y = 5551137(0)7(,))1#, (19a)

by

Ploy = 5110 Y(0) ¥ (196)
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Z _
O %iﬁ’)’(o)‘r(sﬂ/& (19¢)

and the corrponents of M are given by

P

My = —%l100), 719, (200)
7 -

Mgy = R¢[7(3):7(p)]1/)) (200)
7 -

Mey = -4yl (20¢)

The vector M has the meaning of a magnetization
current density if we consider to an external electro-
magnetic field.

Note the dependence of j#, thought the component
(), On the parameter a. Then, the current differsfrom
the Minkowski spacetime case by a term containing a
dependence c¢n a. So, thefact that the spacetime corre-
sponding to a cosmic string is locally flat but not glob-
aly isaso ccded into the probability current. Thereis
a physical efl'ect on the current relative to Minkowski
spacetime wliich comes out from the topological fea-
tures of the spacetime surrounding cosmic string.

A quantwn spinor particle in the background space-
time around a cosmic string is affected by the fact that
this spacetime is locally flat but not globally. This can
be seen from the dependence of the wave function and
the energy or the parameter «, as well as on the influ-
ente of the parameter a on the Dirac probability cur-
rent. All thes: interesting effects, codified into the wave
function, ene:gy and current, are due to a non-trivial
conical topolcgy of the spacetimegenerated by acosrnic
string.
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