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The quantum approach to the electric and magnetic fluxes is reconsideredI1]. These quanti- 
ties are treated as operators, and we discuss how this approach takes care of the magnetic 
flux quantization and of the magnetoresistance phenomena. We adso discuss the derivation 
of tlie electromagnetic flux quantization, and make it compatible with Gauss' law. We also 
claim that this quantization rule can be found from an elementary analysis of an electric 
oscillator: the L-C circuit. 

I. Introduction 

The research in magnetic flux quantization ( M.F.Q) 
appeared in tlie 50's, with a comment of Londoii about 
the properties of the wave function phase[2]. It led 
to the experimental discovery of the M.F.Q [3)4]. The 
usual way to understand it makes use of the fact that 
the wave function phase is given by an integration of 
the vector potential along a path with arbitrary initial 
point, and end point exactly where we have the argu- 
ment of the wave func t i~n[~I .  In a ring this approach 
gives the magnetic flux quantization 

There are many phenomena where the M.F.Q acts as a 
head-stone. The most inquisitive one is the Aharonov- 
Bohm effecd6], where two-slit interference patterns of 
electrons show the action of the electromagnetic field 
in regions where it is apparently absent. The clear 
interpretation of this phenomenon was controversial, 
although it was evident that it furnishes us, at least, 
two choices; to  accept the "reality" of the vector 
potential[710r to be challenged by the non local char- 
acter of the electromagnetic i n t e r a c t i ~ n [ ~ ~ ~ ] .  

Another class of phenomena built upon the M.F.Q is 
the magnetic resistivity oscillations, where we have ob- 
servation of oscillations in the resistance of a multiply 
connected conductor, with period determined by the 
magnetic quantum flux through it. There have been an 
increasing interest in magnetoresistance since the obser- 
vation of oscillations with period of just one quantum 
flux, in one dimensional rings where the ratio of the ring 
diameter to  width is large[g~lO]. This discovery, for nor- 
mal conductors, revives the problem of interpretation 
~f M.F.Q[~~] .  

Another phenomenum where the M.F.Q also plays 
an important role is the quantum Hall effect. In this 

case note that the Laughlin argument claims just for 
the quantization of rnagnetic flux[12]. 

By what have been said, there are no doubt that 
the study of M.F.Q has been important by at least two 
reasons. At first, its understanding can shed light on 
fundamental aspects of the electromagnetic field quan- 
tization, lilte the function of the vector potential, or its 
non local nature. Also, it can be helpful in the under- 
standing and designing of experiments and devices, like 
the ones related to magnetoresistance. 

We will begin this paper by facing a fundamental 
question: what can be the meaning of equation (I)? 
Since the M.F.Q acts as a rule that assign the possible 
numbers of quantum flux in a supercondutor ring, it 
resembles an eigenvalue problem in quantum mecham 
ics, in which the spectrum of an operator is given as a 
multiple of a fundamental state. So we are led to guess: 
there could be a magnetic flux operator that acting in 
a Hilbert space, with the appropriated boundary con- 
ditions, affords equation (1) as its eigenvalues? This 
approach was defended in recent w ~ r k s , [ ~ ~ ~ ~ ~ ~ ~ ] w h i c h  
adopt the point of view that the electromagnetic flux 
quantization is a natural consequence of the principles 
of quantum electrodynamics. It was suggested that the 
magnetic flux may be considered as  an operator Ja, 
whose canonical pair is the electric flux 4 E ,  and that 
both are linked in a ring by the commutation rule 

Using this equation and applying a boundary condition 
on $E that reflects the charge quantization one arrives 
at Eq. (I)[']. 

We divide this paper into two sections. In the first 
one we show how to derive equation (2) from the quan- 
tization of a classical electric oscillator. In doing so, 
we try to avoid the immediate question concerning the 
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interpretation of this relation in terms of quantum elec- 
trodynamicri, wliich is left to  the second section. We 
also develop, in the first section, aspects of the phe- 
nomenology implied by (2), in such a way to obtain 
a scope of t,le applicability of the electromagnetic flux 
quantizatior (E.F.Q). In the second section we derive 
the E.F.Q fiom quantum electrodynamics. 

11. Formul.ition of the Problem 

A - The L- C circuit 

Consider a closed electrical device which can be an- 
alyzed in terms of capacitive and inductive elements, 
such as the lassical L-C circuit. When we separate the 
capacitive C and tlie inductive L elements of the device 
we can say that tlie energy stored in C is given by 

where Q is tlie charge in the capacitor. But as we know, 
Q = where $E is tlie electric flux in the capaci- 
tor, and E is the dielectric constant characterizing the 
capacitor medium. Therefore, 

In the same way, the energy stored in L is given by 

However, from $B = L.i, where i is the current in the 
circuit, we h iive 

Adding (4) t , ~  (6), we get the total energy stored in the 
device 

Using the enxgy conservation we are led to 

which can be solved by 

This implies ;hat the system described by (7) is Harnil- 

tonian, and the variables 4E and q5B form a canonical 
pair. Since tliey have, in this system, a role analogous 
to  the (p, q )  kariables in classical mechanics. Therefore, 
the quantization of this system requires 

where q5E ancl $B are respectively the electric and mag- 
netic flux operators. So, in fact, the quantization of the 
L-C circuit is consistent with the E.F.Q. 

B - The E.F.Q in a superconductor ringI15] 

We intend to use and apply heie the E.F.Q pre- 
sented above before showing how it develops from quan- 
tum electrodynarnics. We think that its "deduction" 
from the quantization of a L-C circuit is convincing 
enough to carry out an immediate study of its applica- 
tions. 

From equation (10) we will build up an approach of 
the E.??.& in which the states will be described in the 
electric flux representation. That means that the wave 
function will be given by 

and, in order to  satisfy equation (10), we make 

In this formulation, makes sense the question about 
tlie eigenstates and eigenvalues of the magnetic flux op- 
erator that is; what is the solution of the equation 

Althougtli this equation is similar in form to the 
equation that gives the momentum eigenstates in quan- 
tum mechanics, in at least one aspect the two equations 
are not equal. The electric flux c j E  is not arbitrary, like 
the position x of a particle in a free space. Given a sur- 
face S ,  the electric flux through it is not arbitrary; in a 
static situation it must reflect the charge quantization. 
To solve equation (13), under this condition, we must 
improve our approach with some considerations about 
the circuit in which the magnetic flux was measured. 

Take a superconductor ring that it is described by 
the limit of the equation (7) when E -+ O. It means 
that there is not a capacitor in the circuit, which is 
solely inductive. Suppose also that there is just one 
free particle in the device[16]. In this situation we can 
say, using Gauss law, that the electric flux through one 
transversal section of the apparatus is in the interval 

With this condition on 4E, and writing the solution 
of equation (13) as 

we can assert that the situations in which 4E = -5 
and dE = i must be indistinguishable. They repre- 
sent infinitesimal displacements of the free particle at 
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the right and at the left of the surface S. Therefore we 
have (%I;) = (-:I - :), which yields: 

where y is an arbitrary phase. So (16) applied to (15) 
furnishes 

e i + ~ e  = 1, (17) 

where we made y = O. The solutions of (17) are 

2lr 
$B = -.p w h e r e  p = O,Ifi1,&2, ... (18) 

e  

So, the E.F.Q is able to reproduce the magnetic flux 
quantization. But in this formuIation the magnetic flux 
$B  appears as an operator and the known result, equa- 
tion ( I ) ,  gives its possible eigenvalues. Furthermore we 
have now its canonical pair, the electric flux J E .  

A fundamental aspect of this formulation is that 
we have a wave function characterizing the electromag- 
netic flux state, which is indexed by an integer number 
p. That is, putting (18) into (15) we get 

where the constant A was determined using the normal- 
ization condition (plp') = A*A J!, d 4 E e i F ( ~ - ~ ' ) @ ~  = - 

L 

6p,p1. So, the electromagnetic Aux state is given once we 
have determined the number of the magnetic quantum 
fluxes crossing the ring. 

Much more can be learned about this system using 
this wave function. We can be interested, for example, 
in the average values of the electric flux in the ring. 
When the system is in an eigenstate of the magnetic 
flux, it is easy to  see that 

This is not a surprising result if we remember the 
superconductor nature of the ring. The current in the 
ring must be in a steady state. Therefore there can 
not be an electric field in the ring. However if one can 
form a mixed state ( below we will discuss how it can 
be done) given by 

subjected to the normalization condition 

we have 

and therefore 

It follows from equation (23) that the non ndllity of 
the electric flux requires the mixture of, at  least, two 
magnetic states. The maximum of ( J E )  happens when 
a = 6. Using (22) we have (dE) = 2 at equal two leve1 
mixture. 

In general, if we construct a state given by 

I$) = ~ ~ P I P ) ,  (24) 
P 

it is easy to show that 

(25) 

with A = p - p' 
These expressions give us t,l1: relations among tbe 

physical states of the operators and 4, but we do 
not know how to describe the dynarnics of these opera- 
tors. So given a physical situation with electromagnetic 
fluxes as observables, how are the quantities connected 
among thernselves and with the external conditions im- 
posed to the ring? To answer this question we look for 
a Harniltonian describing the interaction between the 
electric and magnetic fluxes. If we can write i t ,  we will 
understand and calculate how the states can be mixed, 
like the ones described by equation (24). I t  was postu- 
latedI1]that the Hamiltonian 

describes the interaction of an external magnetic b and 
eIectrica1 f, fields with the system described by equa- 
tion (7), and Si is the area of the device exposed to the 
external magnetic field b. 

Let us calculate the magnetic flux tied to the ring 
as function of the magnetic field imposed to the sys- 
tem. Take again the limit E -+ O as above, and consider 
the Hamiltonian of a superconductor ring in a magnetic 
field as - 1 -2  b.Sl - 

H' = -4, - - 
2 L L (27) 

The first point to be noted is that this Harniltonian 
commutes with the J B  operator. So, their eigenstates 
are also eigenstates of J B .  Using (13) and (18) we see 
that the energy of (27) is 

But 
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and the ground state of this system is characterized by 
the integer p given by 

where {x) ;tands for the nearest integer contained in 
x. 

From ecuation (29) we see that as we change b we 
do not necesarily change p. As p is an integer number, 
it is not a cctntinuous function of b. It is easy to see that 
it changes forming electromagnetic flux plateaus. One 
can note that the positions of the plateaus are exactly in 
the positioris that they were experimentally observed. 
Like in the rxperiment, the plateau transitions happen 
just when :k.b.Sl assumes a semi-integer value. But 
in the expeiiment, as was noted by Do11 et al.L4] , there 
are no discontinuity between a plateau and another one. 
It was observed a very steeped, but continuous, curve 
joining a p ateau to  the next one. Most exactaly it 
was observed points in the region between the plateaus. 
Taking the words of Deaver et "Near the transi- 
tion ... the fluctuations in the data are greater, and in 
addition points lie between the steps." 

To understant how that can happens we remember 
that the liniit E -+ O taken above does not mean that 
the term f, .JE of equation (26) must be zero. If we 
assume tha,  this term is present in the Harniltonian, 
with a very small f,, we see that 

does not c o m u t e  with the operator JB. The states 
lp), in equation (19), are no more eigenstates of (30). 
So, the high definite plateaus of figure 1 are not exact; 
they are srr.oothed by the term feJE of (30). To see 
that let 

and determine ap in such a way that Ia) is an eigenstate 
of H" 

~ " I f f )  = ~1.). (32) 
/' 

Using (25) we obtain an equation for ol,, given by 

with H; = (plH1lp). 

To solve this equation we will truncate the series 
(31), and use only the terrns that are close to the ground 
state of (28), because we admit f , $ ~  acting as a pertur- 
bative term. Furthermore, we will take just two'terms 
to diagonalize (33); the ground state Ip) of (28), and the 
nearest state I p  + j ) ,  where j = 1 or j = -1 according 
the nearest state is Ip - 1) or I p  + 1). Calling 

we arrive at 

where E is given by the ground state solution of the 
determinantal equation 

The mixture of states is obvious from equations 
(35a-b), but it can be much more appraised from Fig. 
1, where we see that in the plateaus transition region 
we have not a definite flux in the ring. It is a mixture of 
flux eigenstates. When that happens, we see by equa- 
tion (25), that we have a non zero electric flux ($E) 

in the superconductor. Odd as it is, this result can be 
easily understood by a semi-classical argument. When 
we have a magnetic fiux plateau we have a constant 
current in the ring, therefore there are no difference of 
electric potential between any two of its points. When 
the magnetic flux raises from a plateau t o  another, it 
must occur an increasing in the current moving around 
the ring. During this transition the electric flux must 
be different of zero. 
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EXTERNAL MAGNETIC FLUX i 
Figure 1: Magnetic flux and Electric flux in the ring de- 
scribed by equation (30), as we change the externa1 field, 
we have used f, = 0.01. 

C - Magnetoresis t ivi ty  

Of course, from the first experiments in which the 
magnetic flux quantization was measured we had no 
data connected to the electric flux; the purpose of these 
experiments was just to show the magnetic flux quanti- 
zation. We show in the following ( $ E )  can be measured 
in a physical experiment. Indeed we will show that it 
is related to  the magnetoresistivity.[9~10~11] 

Consider the following circuit. Passing by the point 
pl an electric current is splited into two identical paths 
Cl  and C2, with lenght L, which are joined again in the 
point pg. These two paths lace a hole, where we have 

-+ + + 
a magnetic flux 4B = S B .d S , with B being an ex- 
terna1 magnetic field, and the integral cover the hole's 
surface. 

Our aim is to  show how the quantization of the elec- 
tromagnetic flux can give us information on the electric 
properties of the circuit between the points pl and p2. 

If there was no magnetic flux cPB through the hole, 
the electric identity of Cl and C2 would warranty the 
equality of i l  and i2. The magnetic flux causes the 

difference between them, because 

and therefore 

--+ 
The canonical momentum P of a particle with charge 
e in an electromagnetic field is given by 

when 7 is the kinetic momentum and i? is the vector 
potential. 

A straightforward calculation shows that 

If we now use the fact that the electric current ar- 
riving at p2 is the sum of the currents travelling along 
Cl and C2 pat hs 

i = i l  + i 2 ,  (41) 

it follows that 

and hence the net electrical resistance at each branch 
are different. By imposition, the potential gap between 
the points pi and p2 independs on the path. This de- 
fines the electric field between pl and p2 as: 

We can decompose this electric field in two terrns. 
The first comes from the variation of the magnetic field 
in the hole, which induces an electric field, and the other 

-? 
one comes from the electric field E imposed to the sys- 
tem by the battery. So, 

where is an unitary vector in the direction of the 
electric field in the circuit, and S is the transversal area 
of the ring's wire. Therefore, along Cl  we have 

In the same way we write 

V = ~ + < P E .  (46) 

Putting (42), (45) and (46) together we arrive at 
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which are the electric resistance along Cl and C2. The 
total resistiince satisfies 

and 

where r = is the electric resistance of the circuit 
when we heve no magnetic fl ux in the hole. 

Some olxervations must be made: a) when we have 
a magnetic plateau we know that ( J E )  w O so R = r; 
the resistan:e in the circuit is the normal resistance. b) 
in the points where are the plateau transitions we have 
no more (6 .7 )  w 0, and in the first order in d E  we see 
that 

PE 'PB 
R = r { l +  (V)( i 1 1 1  (50) 

which gives a peak in R once we pass through a plateau 
transition p i n t .  These peaks are measured, for exam- 
ple, in reference (8). 

111. The EIectromagnetic Flux Quantization 

We will r,how here how equation (2) can be deduced 
from the principies of quantum eletrodynamics. Let us 
take the usu a1 electromagnetic Lagrangian 

with F,, = 9,A, - &A,,, from which we immediately 
get 

d L  dL  
TO = - = O and 1 ~ k  = - = Fok = Ek (52) 

aA0 aAk 

The quantization of the temporal term will not concern 
us here. The spacial quantization rule is given by 

[I?;(.' t ) ,  Âj (2, t)] = i&,js3(.' - y). (53) 

We will take the ring shown in figure 2, and define the 

electric flux and magnetic flux J B  operators by 

and 

where l i ,  Si and Sz are respectively the path and the 
surfaces shomx in figure 2. 

Figure 2: Ring where can be measured the eletromagnetic 
flux quantization. 

Using equation (53) and the geometry of figure 1, 
we obtain 

where we adopted the repeated index sum rule conven- 
tion. A comment must be made about this deduction. 

When we try to quantize any system using equation 
(53) we must be aware that it is incompatible with tlie 
vacuum condition 

Usually the in~om~at ib i l i ty  between (53) and (56) is 
not a serious problem. In the electromagnetic quan- 
tization we impose cornrnutation relations upon a non 
physical field A,, . Their derivatives are physical mea- 
surable quantities, so the vector potential posseses more 
degrees of freedom than necessary and we have a gauge 
theory. Equation (56) is just a condition - restriction - 
imposed upon the non physical with excess of degrees 
of freedom, states constructed with the rule (53). But 
the same cannot be said about $E and 4 ~ .  One can 
easily see that they are gauge independent. Their states 
have no additional degrees of freedom to be eliminated 
with a condition like (56). So, our main purpose now 
is to show whether the equation (55) makes no sense 
because of incompatibility with Gauss law or whether, 
by a subtle way that is still not clear, it incorporates 
the condition (56). 

The cornrnutation relation (53) is not compatible 
with the Gauss' law in a region free of charges. To 
solve this problem we change the cornrnutation relation 
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(53) in such a way that we have cornpatibility with (56). 
We take as usual[17] 

3 where CiZ1 &6:>(2 - 7 )  = 0, which makes the 
commutation rule (57) compatible to the Gauss' law. 
Note tliat when we substitute (53) by (57) we are mak- 
ing the change 

isi,j b3 (3 - 7) -+ ib$ (2 - yf) = (58) 

which makes Eq. (57) compatible with Eq. (56) 
Using the expression (57) in the commutator 

[JE, JL(] we arrive at 

where the integrals are over the surface S2 and the curve 
11 shown in figure 2. 

To solve this integral we observe that  

Thus, if one could show that 

then equations (59) and (55) are equivalent. In this way 
note that 

because 

Therefore 

which is exactly the equation that we have set up in 
(10), but now compatible with the Gauss' law, eq. (56) 
and furthermore, it comes straightly from the principles 
of quantum electrodynamics. We can now understand 
the contrast between the change in the local commuta- 
tion rule, after imposition of Gauss's law, and the non 
changing in the flux's commutation relation, eq. (63). 
It is the flux non local character that turn into zero 
eq. (62). Note that this result comes from the integra- 

+ 
tion d 1 l(y) around the ring. So we can say that the 
compatibility of (53) with Gauss' law stresses the non 
locality of the electromagnetic flux quantization. 

IV. Conclusion 

We have studied the electromagnetic flux quantiza- 
tion, and shown that it comes directly from quantum 

electrodynamics, but with an elementary reasoning we 
can understand it also from the grounds of quantum 
mechanics. The magnetic and electric fluxes operators 
are our main objects of interest. Using them we have 
constructed a quantum version of Faraday's law. We 
have shown how it can afford the magnetic qirantiza- 
tion and magnetoresistance. We emphasize the non 
local nature of these phenomena and remember that 
this is the character of the presented formulation. So, 
we claim that the electromagnetic flux quantization is 
suitable to study non local aspects of electrodynamics. 
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