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A rule for aggregation growth from lattice gas, which includes competition between particles 
is proposed. The new aggregate present varying fractal dimension (from DLA value df N 1.7 
to df = I ) ,  depending on the (increasing) number of particles launched simultaneously. 

The DLA (diffusion limited aggregation), as pro- 
posed by VJitten and ~ander[ l I ,  is a model that simu- 
lates the process by which particles combine to form 
fractal objects presenting multi-branched forms that 
can be encountered on aerosol, dielectric breakdown, 
colloidal aild polymer science (see, for instance, ref- 
erences [2,:1,4]). The rules of this original model are 
simple: thc aggregate starts with a particle, hereafter 
called seed, that is put at the origin of the lattice. An- 
other partirle is then lauchend from the limit of the 
lattice, sup 3osed far away from the seed, and walk ran- 
dornly unti! reaching some site on the neighbourhood 
of the seed. When this occurs, the particle is incor- 
porated to the aggregate at this site and a new one 
is launched, randomly walks until reaching some site 
in the periineter of the aggregate, and is also incorpo- 
rated, and $;o forth. After a large number of repetitions 
of these s t e p  a very interesting multi-branched pattern 
is formed bxause  the tips of the cluster have a greater 
probability of growth than the inner part. Thus the 
particles arr captured mainly on the tips, forming the 
branches. The DLA is a fractal that,  for the lattice 
spatial dimc:nsion S = 2, is characterized by the fractal 
dimension tij N 1.71. Meakin and ~ a v l i n [ ~ ]  have sug- 
gested that the DLA is not a simple fractal but it has a 
multifractal structure. In ref.[8], a multifractal analysis 
of this aggregate is performed and the momenta D,, up 
to the order q = 32, present the same value. Accord- 
ingly, this aggregate would be a simple fractal. Despite 
of this disciission we will consider, in this paper, only 
the global fractal dimension df N 1.71 of DLAs grown 
by the above defined rules and compare it with our 
model defined below. 

A modiication in DLA rule can be introduced if 
not only one particle is launched but if an aggregate is 
grown in a attice gas of density n, [6,7,8]. In ref.[7] it 
is shown an interesting transition from the DLA to the 
Eden mode i91, when n, is increased. If we consider the 
aggregation process inside a lattice gas, severa1 parti- 
cles are diffusing at the same time. When a particle is 

aggregated, another one is launched but a11 the others 
remain diffusing. In the limit of low gas density, this 
new aggregate is similar to the DLA. 

Figure 1: Aggregate grown with X = 0.1 for AR = 10. 
It is evident the crossover between DLA for few parti- 
cles aggregated and the tendency to grow in a prefer- 
ential direction. 

In this work, we propose a new modification, by in- 
troducing competition between the particles in the lat- 
tice gas. The difference concerning the model quoted 
above is the following: when a particle reaches the ag- 
gregate, a11 the others are discarded, and a new set 
of particles is launched from points, choosen at ran- 
dom, in a circurnference centered on the seed which 
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radius is AR lattice parameters larger than the current 
aggregate radius. We lept the linear density X con- 
stant during the growth process and thus as soon as 
the aggregate radius increases, the number of walkers 
also increases in order to  keep constant the density of 
walkers around the outer circunference quoted above. 
We used a parallel dynamics, i.e., each particle is al- 
lowed to walk one lattice parameter by time (we used 
square lattice in our simulations). It is also allowed for 
two particles to  occupy the same site at the same time, 
on the lattice. According to this rule the particle that 
will be aggregated will be the one that reaches the ag- 
gregate with tlie lowest number of steps. In this sense 
we can say that "competition" between the particles is 
introduced. As in the Uhawa and ~ a i t o [ ~ l  work, a tran- 
sition in fractal dimension is observed, but now in the 
opposite direction. Our aggregates change to a linear 
form when more particles are launched simultaneously, 
as seen in fig. 1 and fig. 2, whereas in the ref.[7] the 
aggregate changes to a more compact form. 

Figure 2: Aggregate grown with X = 1 for AR = 10. 
This aggregate has a fractal dimension lower than the 
one shown in figure 1. 

It is easy to  understand this tendency to linear be- 
havior. As soon as a particle is aggregated, a preferen- 
tia1 direction of growth appears because, as the parti- 
cles are launched from the same distance from the seed, 
those launched from points, closer to the tips can reach 
the aggregate with a lower number of steps than the far- 
thest ones, reducing the shot noise. The point of max- 
imum probability is more sampled than in traditional 

DLA rule, therefore ff uctuations have been suppressed. 
The larger the number of particles launched simult ane- 
ously, the greater the probability of the particle that 
would be aggregated Ilave been launched from a region 
in the circumference that is closer to the preferential 
direction. 

Figure 3: Logarithm of number of boxes of size b con- 
taining one particle at least versus logarithm of size 
b (box counting method) for some values of X (A = 
0.0625(0), 0.125 (O), 0.25(0) and X = 0.5(A)). Rere 
AR = 10 for a11 plots. 

An example of "diffusion with competition" is tlie 
spermatozoa's race in a fecundation process. In this 
case, only the fasted spermatozoon reaches the ovule 
and a11 others are discarded. This is not a growth pro- 
cess but clearly a situation where competition is im- 
portant. The competition leads to  an anisotropy in 
the aggregates, if compared to the original DLAs. The 
anisotropy can occur in other processes where prefer- 
ential directions appear either during the growth pro- 
cess or are defined a priori. In this new aggregate the 
largest probability of growth in the tips with relation 
to the inner part is still enhanced. We can compare our 
results with other methods of noise enhancement, like 
introduction of counters or q-model in DBM (see for 
instance T. Vicsek in ref.[4] and references therein). In 
our model no underlying lattice is needed. This is the 
most important result presented in this paper. 
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Figure 4: Log-log plots of fractal dimension versus 
X(AR = 101:0),  20(0) and 80(A)). 

We havc: tried a modification in this rule taking 
into accouni, the change in the aggregate center-of-mass 
position du-ing the process. In this second rule, the 
circurnferenre from which the particles are launched 
is centered Dn the current center-of-mass position (no 
more on thl: seed), which is updated when each new 
particle is aggregated. This new procedure should min- 
imize the efècts of the preferential growth direction to  
be closed to the starting ring. Neverthless, for both 
versions we found the same results. We performed only 
on-lattice simulations, thus the center-of-mass changes 
only in disc.ete lattice parameters. If a new particle is 
aggregate ir the preferential growth direction this will 
change to tlie opposite, but along the same line. How- 
ever, this %i11 not cause any change in the aggregate 
form or dirr ensions, and only the position of the seed 
will be closc to the center-of-mass. 

In order to  extract more conclusive results, we 
grew severa1 aggregates for different numbers of par- 
ticles 1auche:d simultaneously and performed the frac- 
tal analysis, using both "sana? box" and "box counting" 
method[ll]. Similar results were found. Fig. 3 presents 
the log-log plots showing the fractal dimension for dif- 
ferent value:: of A ,  using the box counting routine. The 
value df I .70 found in our simulations for low density 
limit is in g ~ o d  aggreement with the previous one and 
it serves as i test for our routines. 

Figure 5: Data colapse of fractal dimension. The quan- 
tity to be preserved in order to reproduce the fractal 
dimension for different distances is AIAR. 

Fig. 4 shows how the fractal dimension varies with 
respect to  the linear density A .  The crossover between 
the DLA (low density) regime and a region where the 
fractal dimension decreases becomes evident. In the 
high density limit we always found df z 1. These curves 
point out that for large values of AR,  the DLA regime 
will stand for large values of A. This behavior was ex- 
pected because the particles perform Brownian motion. 
Hence, after some steps the density around the agreg- 
gate will be lower than the initial density in the starting 
ring. Finally in Fig. 5 we plot the fractal dimension ver- 
sus the density divided by AR. In this case we found 
the data collapse and thus we conclude that when the 
starting radius increases we must increase linearly the 
density and not the number of ~art ic les  in order to ob- 
tain the same global fractal dimension. 
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