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We use mean-field techniques to obtain the global phase diagrams for a classical Heisen- 
berg model in the presence of random uniaxial single-ion anisotropic terms. For a diluted 
anisotropy, the phase diagrams do not display an oblique phase. As in the pure case, the 
Ising and XY ordered phases are separated by a first-order line which ends at a bicritical 
point. For a competitive and symmetric double-delta distribution, the phase diagrams dis- 
play an oblique phase and the possibility of two distinct multicritical points. Introducing 
n replicas of the short-range model, we perform some preliminary renormalization-group 
calculations to  first order in E = 4 - d. In the n -t O limit, however, there is only a single 
stable fixed point which cannot be reached from physically acceptable conditions. 

I. Introduction quenched random variables, identically distributed ac- 

The therrnodynamic behavior of many insulating an- cording to a given probability density P(Di).  

tiferromagnetic compounds can be described by a uni- As we are mainly interested in the general features 

axial Heisenberg model, given by the spin Hamiltonian of the multicritical behavior, it is easier to look at 
the anisotropy-temperature phase diagram of the cor- 

N N responding ferromagnetic models in zero field. Thus, 

= J 2; si . sj - )' - H s:, (1.1) we consider in this publication the ferromagnetic spin 
(i,:') i=l i=l Hamiltonian 

where J > 0, D is the parameter of anisotropy, H is N 

the applied field along the easy axis, the first sum is X = -J  Si Sj - c D~ (s:)', 
i= l  

(1.3) 
over nearest neighbors of a crystal lattice, and Si is ( i d  

a classical three-dimensional vector on site i. There with two types of double-delta distributions, 
are some experiments on quenched random mixtures of 
isomorphous antiferromagnets with distinct rnagnetic p ~ ( D i )  = p6(Di - D) + (1 - p) b(Di), 
orderings. F3r instance, mixtures of MnBrz.4H20 and 

(1.4) 

~ ~ ~ 1 ~ . 4 ~ ~ ~ i [ ~ ' ~ l  s t a  keep the same crystafine struc- which describes a diluted a n i s o t r o ~ ~ ,  and 

ture, although the atoms of chlorine and bromine are 
assigned a t  rsndom to the lattice positions. As the easy 
axes of the pure compounds are approximately paral- 
lel, the field-temperature phase diagram of the mix- 
ture still displays a flop line which ends a t  a bicriti- . ~ 

cal point. Another interesting example are mixtures 
of FeCl2.2H20 and C O C I ~ . ~ H ~ O [ ~ ~ ~ ] .  In this case, the 
easy axes of ihe pure compounds are almost perpendic- 
ular. The phsse diagrams of the mixtures can then dis- 
play an oblique intermediate phase and a tetracritical 
point. As a 8rst approximation, the critica1 behavior of 
these mixed compounds can be understood in terms of 
a random-an .sotropy Hamiltonian, 

which corresponds to a competition between aniso- 
tropies of opposite sign. We hope to gain some insight 
to consider the more relevant antiferromagnetic models 
in a future work. 

We have also been motivated by many theoretical 
efforts to analyze a more complex class of models, given 
by the spin Hamiltonian 

where Si is an m-component classical vector, and 5; 
is a unit vector of random direction, which were in- 
troduced to describe amorphous rare earth transition- 
metal a l l ~ ~ s [ ~ ] .  For finite m, the mean-field phase di- 

where (Di; i = 1,. ..,i?) is a set of independent, agram of the Random anisotropy axis model (RAM), 
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given by eq. (1.6), displays an ordered, ferromagnetic 
structure, and a disordered, paramagnetic s t ruc t~re[~I .  
In the m -t ca limit, however, there is a pathological 
spin-glass phase. Momentum-space renormalization- 
group calculations in the spherical limit of infinite m 
yield an ordinary stable ferromagnetic fixed point that 
cannot be reached below four d imen~ ions [~~~] .  This 
lack of stability may be interpreted as a runaway of 
the flow lines, giving rise to a fluctuation-induced first- 
order transition. Some authors, however, give argu- 
ments to  associate this instability with the occurrence 
of a spin-glass phase[g]. In the present publication, we 
use mean-field and momentum-space renormalization- 
group methods to  analyze a simpler class of random 
models, given by the spin Hamiltonian (1.3), with a 

where J > 0, and Si is a three-dimensional classical 
vector of modulus S on the site i of a crystal lattice. 
The canonical partition function is written as 

where p = (kBT)-l, T is the absolute temperature, 
and the angle variables cp; and 8; are associated with 
the spin S i .  Using the Gaussian identity 

. . 
fixed axis of anisotropy. The mean-field phase dia- 

and performing the angle integrations, we have 
grams, which can be obtained in full detail, do not dis- 
play a spin-glass phase. Also, it is relatively easy to ac- 
count for spin fluctuations through a momentum-space z = (?).i2 J d3m e - ~ ~ e ( m )  , 
renormalization-group calculation in d dimensions, up 

(2.4) 

to first order terms in the parameter E = 4 - d. As in 
where the mean-field Gibbs free-energy functional per 

the case of the random axis models, it seems difficult to site, in units of kBT1 is given by 
reconcile the mean-field and the renormalization-group 
analyses. 1 

The layout of this paper is as follows. Although it ps = - 2 (GS + %;)t 

is known, in Section I1 we introduce the Curie-Weiss 
version of the pure model and analyze the main fea- 

- l n [ l '  
<y e z 2  lo(fii1 Jm) COS~(&()]  , (2.5) 

tures of the phase diagram. The first-order boundary 
between ordered Ising and XY phases, at  D = 0, ends 
at a stable bicritical point. In Section 111, we present 
the mean-field results for the random models. Sec- 
tions 1II.A to 1II.C refer to the probability distribution 
Pl(Di). For all values of p, there is only a bicritical 
point. Sections 1II.D to 1II.G refer to the probability 
distribution Pz(Di),  with competing anisotropies. Be- 
sides the XY and Ising phases, there is also a Heisen- 
berg phase in the ordered region of the mean-field phase 
diagram. Depending on p, the phase diagram may dis- 
play more complex features, with a bicritical and a 
tetracritical point. In section IV, we present some pre- 
l iminar~  momentum-space renormalization-group cal- 
culations. In d dimensions, introducing n replicas of 
the original system, we obtain a set of recursion rela- 
tions up to  terms of order E = 4 - d ,  In the n + O 
limit, there is only a stable fixed point which cannot be 
reached from physically acceptable initial conditions. 
Higher-order calculations have to be performed to check 
the occurrence of fluctuation-induced first-order transi- 
tions. Some conclusions are presented in Section V. 

- 
where t r ( B J s ~ ) - ~ ,  d D / J ,  d d/t = PDS2,  
fiil z mi/t,  and f i z  E mz/t. The new variables m l  z 

m: + m2 and mz E m, can be associated with the Ji. 
transverse and the longitudinal reduced magnetizations 
per site, and I,, is the nth-order modified Bessel function 
of the first kind. 

In the thermodynamic limit, N -+ cal the Gibbs free 
energy per site can be obtained by the usual procedure 
of minimizing the mean-field Gibbs free-energy func- 
tional per site with respect to  m l  and m2. The station- 
ary conditions lead to  the self-consistent equations of 
state, 

1 ,  

11. Mean-field solut ion for  the p u r e  case I d( edc2 ( lO(Gil d m )  sinh(fii2() 
mz = m2t = 1 ,  

The long-range, Curie-Weiss, version of the Heisen- 
berg ferromagnet in a uniaxial crystal field is given by d( edEz I ~ ( G ~ ~ J ~ )  cosh(fii2() 

the Hamiltonian (2.7) 

J N N  h' 

X =  --xx s i . s i -  D ~ ( s : ) ~ ,  (2.1) Given the parameters of the model, if there are multiple 
2N i= i  j=i i= l  solutions, we choose the values of m l  and mz associated 
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with the al~solute minimum of the Gibbs free-energy 
functional. 

A. Analysis of the multicritical point 

The criticd behavior in the neighborhood of the para- 
magnetic lines comes from an expansion about the triv- 
ial paramagnetic saddle point solution, ml  = m2 = 0, 

where the ccnefficients are given by 

in terms of the integrais 

The location of the paramagnetic second-order criti- 
cal lines is givm by rl = O and r 2  = O, respectively. The 
mukicritical ~ o i n t  is given by r1 = r 2  = O. For TI  and 
r 2  given by eqs. (2.9) and (2.10), the multicritical point 
is located a t  I ' ,  = and dc = O. Although these re- 
sults are exaci for the long-range, Curie-Weiss version 
of the model, a Landau-type phenomenological anal- 
ysis based on general symmetry arguments also leads 
to the same kind of expansion. A general mathemati- 
cal stability ar alysis of the asymptotic solutions in the 
neighborhood of the multicritical point indicates two 
possibilities[lO]. In one case, there are only two distinct 
ordered phase: near to the multicritical point. There 
is a pure per~endicularly ordered, or XY-bike phase, 
with r n ~  # O and r n z  = 0, and a pure parallel ordered 
or Ising-like phase, with m l  = O and m2 # O. These 
pure phases are separated by a first-order transition line 
(a flop line), which ends a t  a bicriticab point (where 
also meet the two second-order critica1 lines associated 
with the transitions from the paramagnetic phase). In 
the other case, the competition between the two types 
of ordering leals to the appearence of a third, inter- 
mediate, obliqiie, Heisenberg-bike ordered phase, with 
m l  # O and m l  # O. In this case, the first-order flop 
line splits into two second-order critica1 lines, separat- 
ing the intermediate phase and each of the two pure or- 
dered phases. Yhe multicritical point at  which all the 

four second-order critica1 lines meet together is then 
termed a tetracritical point. 

The mathematical stability analysis of eq. (2.8) yields 
the following asymptotic solutions and corresponding 
free-energy densities : 

o Paramagnetic solution (%i = %2 = 0) 

0 XY-like solution (Gil # O, %2 = 0) 

o Ising-like solution (Gil = 0, f iz  # O) 

Heisenberg-like solution ( 6 1  # O,  6 2  # O) 

To decide among these solutions, we have to  look at 
the associated free energies. As the coefficients of the 
quartic terms, vi and vz, are positive in the vicinity of 
the multicritical point, the sign of the difference vS2 - 
viv2 determines whether the point is bicritical (if v:, 2 
v1v2) or tetracritical (if v:, < vlvz). Furthermore, the 
asymptotic solutions must vanish as we approach the 
multicritical point[lO]. 

In the vicinity of the multicritical point we have 

and 

where 
1 

r r t - t  C - t- - .  - 
3 

(2.26) 

Inserting these expansions into eqs. (2.20) and (2.21), 
we see that, in the particular case under consideration, 
the Heisenberg phase cannot exist in the neighborhood 
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of the multicritical point. Hence, the multicritical point whose magnetization densities are given by the non- 
of the pure system is of a bicritical nature. trivial solutions of the integral equations 

B. Analysis of the ground state cite5' d m ~ ~ ( ~ ~  J m )  
ml  = mlt  = J 0  

The ground state can be obtained from the zero tern- 1 

perature limit of the equations of state and the free- I' d( &(i31 \/-) 
energy density. We have the following possibilities. 

o XY-like phase (ml # O, mz = 0) 

J iJ 

for ri < O and d < 0. (2.34) 

1 
for r2 < O and d > O. (2.35) 

From numerical and analytical (for (4 -t oo) anal- 
d 

where O(x) is the usual Heaviside step function, yses, we see that v1 > &, for < 0, 212 > A, for 
> 0, and v12 > O, V f ,  and thus show that the 

0, f o r x < O ,  second-ordn boundaries are completely stable, extend- 
O(%) = 

1, f o r x > O .  (2-29) ing up to + oo. 
On the basis of the preceding results, we obtain the 

o Ising-like phase (ml = O, ma # 0) 

- 
phase diagram of Fig. (1). As in the usual mean-field 
approxirnations, the second-order phase boundaries do 
not meet tangentially a t  the bicritical point. 

m2 = @ ( d +  i), (2.30) 

As there are no solutions with ml  # O and m2 # 0, the 
Heisenberg phase does not exist even at zero tempera- 
ture. 

From eqs. (2.28) and (2.31) we have gxy > gr, for 
d > 0, and gxy  < g ~ ,  for d < O. Hence, the special 
point d = t = O belongs to  a line of first-order transi- 
tions between the XY and Ising phases. 

C. Global phase diagram 

Along the d = O line, for t < 9 ,  the XY and Ising 
phases have the same free energies, as for an isotropic 
model. On the other hand, performing an exp@on 
of the coefficients of the quartic terms about d = 0, 
and inserting them into the asymptotic expressions of 
the free-energy densities for the XY and Ising phases, 
given by eqs. (2.17) and (2.19), we obtain 

Ising phase 

XY phase 
Paramagnetic \ PJUI.~ 

Figure 1: Mean-field phase diagram, in the anisotropy- 
ternperature plane, of the uniaxial Heisenberg fer- 
romagnet. , Solid lines represent second-order phase 
boundaries, whereas the dashed line represents a first- 
order boundary. 

45 - 2  3 
,f3gxlf = - ln Ao - -r2 - d r  + O(dr , d r ) ,  (2.32) 

A z 

45 - 2 -2 111. Mean-field solut ion fo r  t h e  r a n d o m  cases 
,f3gI = -InAo - - ~ ~ + 2 d ? - + O ( d r  , d  r). (2.33) 

4 The long-range, Curie-Weiss, version of the Heisen- 
berg ferromagnet in a random uniaxial crystal field is 

As r < O in the ordered region, for d > O the Ising 
given by the Hamiltonian 

phase has the lowest free energy, whereas, for d < 0, 
the XY phase is associated with the lowest free energy. 

J N N  N 
Thus the line d = 0, for t < t, = 5, corresponds to a x = - - C C S ~ . S ~ - C D ~ ( S ; ) ~ ,  (3.1) 
first-order boundary between the XY and Ising phases, 2 N .  t = l  j = l  i= l  
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where J > O, Si is a three-dimensional classical-vector 
of modulus S on the site i, and {Di; i = 1, . . . , N )  is 
a set of quenched, independent, identically distributed, 
random variables associated with a probability distri- 
bution P (E i ) .  

As the calculations are very similar to  the pure case, 
we give the main results only. The Gibbs free energy 
has to  be avtzaged over the single-site random variables. 
For this seKaveraging problem, we do not need to use 
the replica trick as in spin glasses. 

In the thermodynamic limit, N 4 m, by the strong 
law of large numbers, the mean-field Gibbs free-energy 
functional pcr site, in units of kBT, is given by 

where y e  us,: the same notation as in the pure case 
(with di = ,!IDiS2), and the averaging over the ran- 
domness is dcnoted by ( e  a )  = dDi - P(D;). From 
the stationar;? conditions, the transverse and the lon- 
gitudinal rediiced magnetizations per site, m l  and ma, 
satisfy the self-eonsistent equations of state, 

As in the pure case, we obtain a standard Landau ex- 
pansion, 

where the coefficients, for a fixed configuration {Di) 
(before the ave1.3~in~), are given by eqs. (2.9) to (2.14), - ... 
replacing d by a'i. 

The analysis of Sections 1I.A-1I.C can be repeated 
for the random iase. In particular, let us consider two 
types of double- lelta probability distributions, 

corresponding to a dilution of the anisotropy, and 

corresponding to a competition between two types of 
anisotropy. 

For the probability distribution Pl(Di) there is 
only one multicritical point, as the paramagnetic 
second-order critical lines, defined by the conditions 

(r1(&)) = O and ~ ~ ( d i )  = O,  intercept only once at ( - )  
the same multicritical point of the pure case. However, 
for the probability distribution P2 (Di), besides the mul- 
ticritical point corresponding to the pure case, which is 
always present (except for the special case p = i), the 
phase diagram displays another multicritical point for 

< p < g. As the main features of the phase diagram 
for the two cases are distinct, it is convenient to present 
separate analyses. 

A. Analysis of the multicritical point for the probability 
distribution Pi(Di) 

In the vicinity of the multicritical point we have 

and 

Inserting these expansions into the generalization of 
eqs. (2.20) and (2.21), we see that there is no possibil- 
ity of existente of a Heisenberg phase in the neighbor- 
hood of the multicritical point. Hence, the multicritical 
point associated with this diluted distribution is always 
bicritical. 

B. Analysis of the ground state for the probability dis- 
tribution Pl(Di) 

As in the pure case, it is not difiicult to analyze the 
ground state for the probability distribution Pl(Di). 
Considering the zero temperature limit of the equations 
of state and the free-energy density, we have the follow- 
ing possibilities. 

e XY-like phase (ml # O, m2 = 0) 
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Ising-like phase (ml = O, mz # O) 

As there are no solutions with m l  # O and mz # 0, the 
Heisenberg phase does not exist even a t  zero tempera- 
ture. 

Ftom eqs. (3.11) and (3.13) we have gxy > gr, for 
d > 0, and gxy < gr, for d < O. Hence, the special 
point d = t = O belongs to a line of first-order transi- 
tions between X Y  and Ising phases. 

C. Global phase diagram for the probability distribu- 
tion Pi ( D i )  

Along the d = O line, for t < i, the XY and Ising 
phases have the same free energies, as for an isotropic 
model. On the other hand, performing an expansion 
of the coefficients of the quartic terms about d = 0, 
and inserting them into the asymptotic expressions of 
the free-energy densities for the X Y  and Ising phases, 
given by the generalization of eqs. (2.17) and (2.19), we 
obtain 

(3.14) 
- 45 

Pgl  = -p ln Ao (d) - -7' + 2pd7 + 0(pd7~,  pã2r). 
4 

In analogy to  the pure case, for d > O the Ising phase 
has the lowest free energy, whereas, for d < 0, the XY 
phase is associated with the lowest free energy. Thus, 
the dilution of the crystalline anisotropy does not alter 
the nature of the multicritical point, which remains bi- 
critical. The line d = 0, for t < t, = 5, corresponds 
to  a first-order boundary between the XY and Ising 
phases, whose magnetization densities are given by the 
non-trivial solutions of the integral equations 

1 ,  

/I d( edE2 

( sinh(%z() - 
m 2 = m z t = p  + (1 - P) 1 d( e%' cosh(i&() 

for (rz(&)) < O and d > O,  (3.17) 

where 
1 

L (x) E cothx - - 
x 

(3.18) 

is the Langevin function. 
The phase diagram is topologically similar to  the 

pure case. The only difference is the retraction of 
the asymptotes of the second-order phase boundaries, 
which get closer to the bicritical temperature as the 
value of the distribution parameter p is reduced. Vary- 
ing this parameter, the asymptotic temperatures of the 
second-order boundaries between the paramagnetic and 
the Ising and XY phases aIe respectively shifted to 

and 

The stabiiity analysis also indicates that the lines of 
second-order transitions are completely stable, extend- 
ing up to  14 -+ oo. 

D. Analyses of the multicritical points for the probabil- 
ity distribution P2(Di) 

For the probability distribution P2(Di), besides the 
trivial multicritícal point located a t  12) = i and dLi) = 
0, the phase diagrams can display, for i < p < (ex- 
cept for p = i), another multicritical point, located a t  

t(2) = 3 and d(2) # O. 

D.1. Analysis of the trivial multicritical point, ti1) = i 
and dil) = O 

In the vicinity of the trivial multicritical point we 
have 

and 

+ (1 - p) L(Gi) ,  for (ri(&)) < O and d < 0, (3.16) Inserting these expansions into the generaliaation of 
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eqs. (2.20) and (2.21), we see that there is no possibility 
of existencc: of a Heisenberg phase in the neighborhood 
of the triv:al multicritical point. For the special case 
p = i, we obtain 

contradictiiig our initial assumption that m l  and m2 
vanish at  t1.e multicritical point. Hence, the trivial mul- 
ticritical point is always bicritical. 

D.2. Ana1 ysis of the non-trivial multicritical point, 
t?) = an'i  # O 

For i < p < 5 (except for the special case p = i), 
the paramagnetic second-order critica1 lines, defined by 

the conditions (ri(&)) = O and rz(di) = 0, inter- ( - )  
cept more i,han once. Besides the trivial multicritical 
point, there is a non-trivial multicritical point, located 
a t  i?() = m d  d O  # 0, whose coordinate d o  is given 

I 

e XY-Iike phase (ml # O, m2 = 0) 

by the solution of the equation 

As d(2) cannot be obtained in closed form, we must 
rely on numerical results. In particular, we can verify 
that the solution dp ) ,  for a given value of p, always 

2 
satisfies the tetracriticality eondition, (vlz(d)) - 

( v ) )  ( v ) )  < O. Hence, whenever it exists, the 

non-trivial multicritical point is always tetracritical. 

E. Analysis of the ground state for the probability dis- 
tribution Pz(Di) 

As in the pure case, it is not difficult to analyze the 
ground state for the probability distribution Pz(Di). 
Considering the zero temperature limit of the equations 
of state and the free-energy density, we have the follow- 
ing possibilities. 

e ~eisenber~;-Iike phase (mi # O, mz # O) 

ml  = pcos4+(1-p)cos$ ,  (3.30) 

m2 = psin 4 + (1 - p) sin 4, (3.31) 

where the aiigles 4 and 4 are defined by the relations 

d 

p [ JT] , (3.33) 
sin 4 = - sin 4 1 + sgn(d) 1 + - 

sin 4 = - 
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From the expressions for the free-energy densities, it 
follows that, whenever the Heisenberg phase exists, for 

the associated free energy is lower than for the XY and 
the Ising phases. On the other hand, the free energies 
for the XY and Ising phases satisfy the relations 

1 1  
gxu > g ~ ,  for (1 - 2p)d < O and d E [-- -1, (3.38) 

2 ' 2  

Hence, the special point d = t = O belongs to a 
line of first-order transitions between the XY and Ising 
phases, and the points d = f lzp - 1 1 ,  t = 0, belong 
to lines of second-order transitions between the Heisen- 
berg and the XY and the Ising phases. 

F. Analysis of the second-order boundaries in the or- 
dered region for the probability distribution Pz(Di) 

As the analyses of the non-trivial multicritical point 
and the ground state reveal the existente of a Heisen- 

J 

berg phase, we should find the lines of second-order 
transitions between this phase and the XY and the 
Ising phases. These second-order boundaries can be 
obtained from the expansion of the free-energy density 
in terms of the critica1 magnetization density, 

1 
P, = Pgr + 2 (Ti(&)) + (*L(&))%: + O(%:) 

(3.40) 
1 

= Pg,, + 5 (Til (Z)) m: + ( v , ,  (Z)) m; + O(%), 
(3.41) 

where the regular parts of the free-energy density are 
given by 

(3.43) 

and the coefficients of the expansion, for a fked config- 
uration {Di) (before the averaging), are given by 

Notice that these coefficients depend on the non-critical 
magnetization densities, which come from the station- 
ary conditions, agl/aGl = O and agll/aG2 = O ,  re- 
spectively. 

Hence, the line of second-order transitions between 

the Heisenberg and XY phases is given by r l (d i )  = ( - )  
0, supplernented by the stability condition, (vi (&)) > 
0, while the lines of second-order transitions be- 
tween the Heisenberg and Ising phases are given by 

(rll(&)) = 0, supplemented by the stability condition, 

( v ( ) )  > O. We have performed numerical calcula- 

tions to locate these lines and to check the validity of 
the stability requirements. 

G .  Global phase diagram for the probability distribu- 
tion P2(Di) 

Along the d = O lhe, for t < i, the XY and Ising 
phases have the same free energies, as for an isotropic 
model. On the other hand, performing an expansion - of 
the coefficients of the quartic terms about d = 0, and 
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inserting tliem into the asymptotic expressions of the 
free-energy densities for the XY and Ising phases, given 
by the generalization of eqs. (2.17) and (2.19), we ob- 
tain 

Thus, for ( 1 - 2 ~ ) d <  0, the Ising phase has the lowest 
free energy, whereas, for (1 - 2p)d> 0, the XY phase is 
associated with the lowest free energy. Thus, the com- 
petitive and symmetric distribution Pz(Di) does not 
alter the nature of the trivial multicritical point, which 
remains bic ritical. 

I 

For p = i, we have to keep the expansions of the 

coefficients up to terms of second order in 4 

In the special case p = the transitions, and hence 2 '  
the multicritical points, disappear, as the Ising phase 
has always a lower free energy. 

For p # i, the line d = 0, for t < t ,  = i, corresponds 
to a first-order boundary between the XY and Ising 
phases, whose magnetization densities are given by the 
non-trivial solutions of the integral equations 

for (TI(&)) < O, and (1 - 2p)d > 0, with ~ l ( d ~ )  > 0, and ( - )  

for (T2(&)) < O, and (1 - 2p)d < 0, with (TI,(&)) > O. (3.53) 

Second-order boundaries separate these two phases 
from the Hiisenberg phase, whose magnetization den- 
sities are given by the simultaneous non-trivial solu- 
tions of the integral equations (3.3) and (3.4). These 

solutions exist when the conditions (rl(&)) > O or 

(rl1 ( 4 ) )  > O are not satisfied for the XY and the Ising 

phases, resp~xtively. 
On the besis of the preceding results, we obtain the 

phase diagrz~ms shown in Figs. (2) to (4). Due to the 
invariance by the changes p + (1 - p), d + -d, it is 
sufficient to obtain the phase diagrams for 5 p < 1. 

IV. Renorinalization-group treatment 

Despite the richness of the mean-field phase dia- 
grams, it is important to investigate whether these 
mean-field r:sults remain unchanged if we consider a 
realistic model with short-range interactions. To ac- 
count for th~: spin fluctuations, let us perform a renor- 
malization-group calculation for the short-range version 
of the model. In this case, the canonical partition func- 
tion, for a fi:ced configuration {Di}, is given by 

with 

(4.2) 
where i, j are sites on a d-dimensional hypercubic lat- 
tice, K is an N x N matrix with elements Ki j  = PJ > 0, 
if i and j are nearest neighbors, and Kij  = 0, otherwise, 
and the angle variables pi and, Bi are associated with 
the vector S i .  

Using the generalized Gaussian transformation, 
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Figure 2: Typical mean-field phase diagram for < 
p < 1 (this figure was drawn for p = 0.8), in the 
anisotropy-temperature plane, of the random uniax- 
ia1 Heisenberg ferromagnet for the probability distribu- 
tion P2(Di). Solid lines represent second-order phase 
boundaries, whereas the dashed line represents a first- 
order boundary. A Heisenberg phase is always present 
a t  lower temperatures and stronger anisotropies. 

Paramagnetic 
-0.5 - Heisenberg phme - 

p k e  

Figure 3: Typical mean-field phase diagram for < 
p < 5 (this figure was drawn for p = 0.51), in the 
anisotropy-temperature plane, of the random uniax- 
ia1 Heisenberg ferromagnet for the probability distribu- 
tion Pz(Di). Solid lines represent second-order phase 
boundaries, whereas the dashed line represents a first- 
order boundary. Notice that, besides the trivial bicrit- 
ical point, there is also a tetracritica1 point. 

we introduce a new three-dimensional spin field. Integrating over the angle variables, introducing n replicas and 
averaging over the randomness, we have 

where the index CK = 1, . . . , n labels distinct replicas. 
The suitable effective Hamiltonian to perform the 

renormalization-group calculations can be obtained ac- 
cording to the following steps : (i) an expansion of 
the integrand of (Z;) about the paramagnetic solu- 
tion up to  fourth-order terms in the new spin fields, 
u1 E (r,, uy) and E r, ; (ii) a d-dimensional 
Fourier transformation, 6(q) = C, a ( r )  e iq r  ; (iu) a 

1 

low-momentum expansion of the quadratic coeficients 
using the ferromagnetic nearest-neighbor interactions; 
(iv) a rescaling of the momentum-space spin fields to  
normalize the coefficients of the q 2  terms. 

Thus, in the continuum limit, the reduced effective 
Landau-Ginzburg-Wilson Hamiltonian in momentum- 
space, 3Cef = -/3X,f = + gP, is separated into a 
Gaussian term, 

and a quartic perturbation, 
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Figure 4: Mean-field phase diagram for the special case 2 
p = i, in the anisotropy-temperature plane, of the .Q 0.0 
random uniaxial Heisenberg ferromagnet for the prob- w I I 
ability distribution P2(D;).  The solid lines represent 

Heisenberg 
phase 

second-ordm phase boundaries. The XY phase is no 
-0.5 

longer present and the trivial bicritical and tetracriti- 
cal points tlisappear. 

where Jq i: J ddq denotes integration over the that l l b  < Iq/a/r < 1 ,  where a ia the lattice spacing. 
first Brillouin zone of a d-dimensional hypercubic lattice Ignoring irrelevant terms, we rescale the momenta q 
and the cosfficients can be ex~ressed in terms of the and the remaining spin variables, so that the renormal- 
original paiameters of the model. ized Hamiltonian can be written in the same form as in 

Accordin; to  the standard renormalization-group eqs. (4.5) and (4.6), but with new parameters. To first 
procedures, we choose a rescaling factor b > 1 and per- order in E = 4 - d, the renormalization-group recursion 
form a functional integratioq over spin variables such relations are given by 

I 

v2 - 12v& ln b (4u2 + 3212) - 8vS2 K~ 1n b , I 
where A = ; ~ * ( l -  b-2) (:)2 and K;' = 2d -1  d2 I? ( 2  ld ) a  
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In the pure case, for which u1 = u12 = u2 = 0, 
we recover the results obtained by Kosterlitz et ai.[''] 
in the study of multicritical points in anisotropic an- 
tiferromagnets. However, the full system of non-linear 
coupled equations, in the replica limit n --+ 0, has only 
one stable fixed point, located a t  

All the remaining fixed points are unstable, including 
that one which describes the pure system. As the gen- 
eralized Gaussian transformation allows the establish- 
ment of a contact with the original parameters of the 
model, we are able to check whether this stable fixed 
point can be reached from the physical parameter space. 
In the replica limit n --+ 0, the coefficients of the quar- 
tic isotropic terms in the replica space have well defined 
signs, whatever the probability distribution P(Di),  

The signs of the coordinates of the stable fixed point, 
which is fully isotropic in the replica space, are incom- 
patible with those fixed by eq. (4.16). Furthermore, 
these signs are preserved by the renormalization-group 
transformations, even when all the irrelevant operators 
are considered in the recursion r e l a t i o n ~ [ ~ ~ ~ ~ ~ I .  This sug- 
gests that the stable fixed point cannot be reached from 
any initial conditions, in disagreement with the mean- 
field results. As in the case of random Ising m o d e ~ s [ ~ ~ ] ,  
maybe there is a fixed point of order &. An investiga- 
tion of this possibility, however, requires the calculation 
of the recursion relations up to terms of second order 
in c. 

V. Conclusions 

We have presented a detailed mean-field analysis of a 
classical Heisenberg ferromagnet with the inclusion of 
random uniaxial single-ion anisotropic terms of the type 
-Di The diluted (Di = D,  with probability p, 
and Di = 0, with probability 1-p, for all sites i) and the 
pure (Di = D, for all i) models display the same kind 
of T-D phase diagram for all values of p. There are two 
ordered phases (of Ising and XY character) separated 
by a first-order l h e  which ends at a bicritical point. 
For a symmetric double-delta distribution (Di = D, 

with probability p, and Di = -D,  with probability 1 - 
p), there is also an oblique, Heisenberg ordered phase. 
Depending on the values of p, the T-D phase diagrams 
display two distinct multicritical points. 

We have also performed some momentum-space re- 
normalization-group calculations to  account for the 
spin fluctuations in the model with short-range inter- 
actions. Using the replica trick to  average out the 
quenched random variables, we have obtained a set of 
coupled non-linear recursion relations to first order in 
é = 4 - d. In the limit of zero replicas, there is only one 
stable fixed point, which cannot be reached from phys- 
ically acceptable initial conditions. Some higher-order 
calculations are still needed to check the mean-field pre- 
dictions. 
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