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IJew methods for measuring the phase-dispersion of the third- and fifth-order susceptibilities 
cre reviewed. The measurements were based on the phenomenon of polarization beats which 
pras exploited in time-delayed wave-mixing e-xperiments with bichromatic beams. Applica- 
tions for semiconductor doped glasses are reported. 

I. Introduction 

Studies o r  the phase-dispersion of nonlinear optical 
susceptibiliti:~ have proved to be helpful to character- 
ize the naturr of the nonlinearity as well as to improve 
material's pr3perties along the past three decades[l12]. 
A variety of methods are presently available to deter- 
mine the phase of the second-order susceptibility, ~ ( ~ 1 ,  
through seccnd-harmonic and sum-frequency genera- 
tion spectroscopy[3-6~. The phase-dispersion of third- 
order suscep tibilities, ~ ( ~ 1 ,  has been measured, for 
example, in Four-wave-mixing experiments by investi- 
gating resonance interferences among the various X(3) 

c ~ n t r i b u t i o n s [ ~ ~ ~ ] ,  by producing interferences with the 
signal generated by a reference ~ a r n p l e [ ~ ~ ~ ]  or using in- 
terferometric and absorptive t e ~ h n i ~ u e s [ ~ ~ ~ .  In general 
these methods allow the study of degenerate (or quasi- 
degenerate) (3). On the other hand, the phase of non- 
degenerate X:3) may be deterrnined using a combina- 
tion of techniques which may provide values for l X ( 3 ) 1 ,  
~ e ~ ( ~ )  and in separate experiments. These 
measurement j have been performed in the past twenty 
years but were limited to frequency values which do 
not differ by i, large amount[3~7~10-12]. The situation is 
worse for higl: -order susceptibilities ( ~ ( ~ 1 ,  X(7) ,...) since 
no technique ò r  measuring phases has been reported in 
the past. 

Recently, the polarization beats phenomena[13-16] 
has been suxessfully exploited to  measure phases 
of nondegenerate X(3) and X(5) in a variety of 
c o n d i t i ~ n s [ ~ ~ - ~ ~ ] .  In principle, when combining these 
techniques with the "twc-color z-scan m e t h ~ d " [ ~ ~ ~ ' ~ ]  it 
is ~ossible  to  characterize the nondegenerate suscepti- 
bility of nonlinear materials in a large range of optical 
frequencies. These measurements may provide basic 
information cn the physical mechanisms contributing 
to  the optical susceptibility. From a practical point of 
view, knowletlge of nondegenerate susceptibility is of 
interest for di. al-wavelength all-optical switching appli- 

cations in which cross-phase modulation (XPM) plays 
an essential role. On the other hand, XPM processes 
may also allow beam profile manipulations in a variety 
of situations of fundamental interest (see for example 
refs. 123-261). 

In this paper we review our own recent work in this 
area and present further details that were not given in 
the previous publications. 

11. Interferometry based on the polarization 
beats phenomenon 

We describe in this section the observation of p~ 
larization beats induced via X(3) and X(5) and exploit 
this effect t o  measure the phases of both susceptibili- 
ties. The method presented here is quite general and 
can be applied for a large variety of materials for which 
forward-wave-mixing (self-diffraction) can be observed. 
To illustrate the method we measured the phases of 
X(3) and X(5) using samples of Cd(S, Se) doped glasses. 
We start by giving a theoretical description necessary 
to understand the experiments. 

a. Phase dispersion of X(3) 

First consider the beams geometry indicated in 
Fig.1 where each beam contains two frequencies, wl 
and w2, with electric fields given by ~ ( j ) ( ~ , t )  = 
E?) exp{i(ip) . r -  wit + B i ) } ,  i = 1,2,  with paral- 
lel polarizations. j = 1 , 2  refer to the beams directions. 
The fields that interact in the sample are a combina- 

tion of E:) and E:) such that diffracted beams can 
be emitted along both sides of the sample in various 
diffraction orders. Each emitted beam has frequency 
components w l  and wa. The si8nals along the direc- 
tions (2k(l) - i(')) and (2;(') - k(')) are due primarily 
to the third-order nonlinearity. 
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The phase $1 depends on the material susceptibili- 
ties, being determined by 

I ~ x ( ~ ) ( w I ,  wl, w2, -w2) = arc  tg 
Re x ( ~ ) ( ~ I ,  wl, w2, -w2) 

- a rc tg  
I ~ X ( ~ ) ( W I  ,wl ,wl, -wl) 

I 
Analogous calculations for I(wl) emitted along the di- -. 
rection (2$(2) -li(')) provide a rnodulated signal (+2&) 
out-of-phase with the signal indicated in Eq.(3). Con- 
sequently, if the signals in both directions are simul- 
taneously recorded in two independent detectors, the 
absolute value of $1 can be measured. Furthermore, if 
one chooses the appropriate laser wavelengths to cancel 
one of the terms on the right hand side of eq.(4), the 
value of the other term can be determined. As will be 
shown latter, this can be done, for example, by selecting 
one laser frequency to be far from resonances. 

Figure 1: Experimental arrangement. X/2 are half-wave 
plates and P are Glan-Thompson polanzers used in con- 
junction to adjust the laser power. A: apertures; BS: beam 
splitter; DM: dichroic mirror; VDL: variable delay line; L: 
convex lenses; M1 and M2 are 0.25m monochromators. The 
apertures are essential to reduce the background noise. 

The signal beam at frequency wl ernitted along 
(2k(l) - kJ2)) is generated by the nonlinear polarization 

P ( ~ ) ( w ~ )  = pY)(u1) + pg)(wl)  with 

x exp {i [(2Zi1) - p)) . F -  ~ l t  + W I T  + 011 } , 

and 

where T is the relative time delay between the two 
bichromatic beams. 

The signal intensity a t  frequency w l  is proportional 
to  ( P ( ~ ) ( w ~ ) ( ~  and is given by 

I (w~)  {a2 + b2 + 2ab [ a i  r+  U,T - m1] } , 
2 

(3) 
where a2 = J X ( 3 ) ( ~ 1 , ~ l , ~ ~ ,  -wl)] 1;; b2 = 

2 
I X ( 3 ) ( ~ 1 , ~ 1 , ~ 2 ,  -u2)(  11122; UM = ~ 1 -  w2 is the mod- 
ulation frequency which can be changed continuously 
and ak = (i$') - i;')) - - r?)). The signal mod- 
ulation depth can be adjusted by changing the lasers' 
relative intensities. 

For the signal component a t  frequency w2 it is pos- 
sible to obtain an expression for I(w2) emitted along 
(2i(') - z(2)) and (2;(') - ;(I)) directions using a pro- 
cedure analogous to the one described above. In this 
case the susceptibilities which contribute for the signal 
are X ( 3 ) ( ~ 2 ,  ~ 2 ,  w2, -WZ) and X(3) (~2 ,  WI , w2, -w1) and 
tlie corresponding phase of tlie signal is given by 

42 = arc tg I ~ x ( ~ ) ( w ~ ,  w1, w2, -1) 
Re ~ ( ~ ) ( w 2 ,  w 1 , ~ 2 ,  -1) 1 
~ m x ( ~ ) ( w a ,  w2, w2, -wa) 

- a rc tg  
Re X ( ~ ) ( W ~ ,  w2, w2, -w2) ] . (5) 

The experimental setup used is shown in Fig.1. The 
dye lasers employed consist of an oscillator plus one 
stage of amplification, transversely pumped by the sec- 
ond harmonic of a pulsed (5Hz) NdYAG laser, de- 
livering pulses of - l0nsec and 20kW peak power. 
The oscillators were operated with a grazing incidence 
grating in the range of 560-640nm with linewidths of 
N 0.5cm-l. The dye laser beams were spatially over- 
lapped by a dichroic mirror (DM) forming a bichro- 
matic beam of frequencies wl and w2. The bichromatic 
beam is split in two by a beam splitter (BS) and recom- 
bined through a lens (L) after being properly delayed 
to form a small (N 8 mrad) angle at the sample posi- 
tion. As indicated in Fig.1 the two parallel polarized 
beams qroduce a self-diffracte; signal in either direc- 
tion (2k(') - or (2z(2) - L(')). The lenses in front 
of the 0.25m monochromators collect the generated sig- 
nals and focus them in the entrance slits. The apertures 
along the beam path are essential to  reduce the back- 
ground noise due to the scattered light. Both signals 
were detected through monochromators equipped with 
photomultipliers and processed with a boxcar averager 
or a microcomputer. 

Cornrnercially available serniconductor doped 
glasses (SDG), manufactured by Corning Glaçs, were 
used in our experiments. 
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In a typical run, the signals in both directions were 
recorded a. the relative time delay between the two 
bichromatic bearns is changed using a variable delay 
line. The monochromators were used to select one 
of the frequency components. Fig.2 illustrates the 
diffracted signal intensity at frequency wl as a func- 
tion of the time delay. The N 19fs oscillation period 
corresponds to  the inverse of the frequency separation 
(wl - w2/2ír) of the lasers used. The behavior of the 
signal at frequency w2 is analogous. The relative phase 

Oi of the signals is a function of (2) , i = 1,2, where 

Eg is the SIIG energy gap which has a different value 
for each Cd,Ç,Se i-, sample composition. 

L 
TIME DELAY (fa) 

TIME DELAY (fs) 

Figure 2: Recorded diffracted intensities observed at fre- 
quency w i  veisus the time-delay for a bichromatic beam 
with wavelengths Ai = 532nm and A:! = 588nm : a) 
d1 - 2', sample CS 3-69: b) $1 - 33', sample: CS 3- 
67. The traces illustrrate the signals emitted along the two 
directions corrctsponding to 2Z(')-k(') and 2k(2)-k('). (The 
figures are ver1 ically displaced for clarity.) 

The CdS.,Sel-, doped glasses (3mm thickness) 
studied are ir.dicated in Table I with the relevant pa- 
rameters. The laser frequency w2 was smaller than 

the samples band gap frequencies as illustrated by the 
negative values of (w2 - wg)T2 For a11 those values 
~ r n ~ ( ~ ) ( w ~ ,  w2, w2,  -w2) = O as shown previously[8~g]. 

Two series of measurements were performed to 
measure dl and 4 2 ,  respectively. In the first one 
we observed the signal component at the frequency 
wl using Corning glass samples CS 3-69, CS 3- 
67 and CS 2-61. For a11 samples we expect that 
~ r n ~ ( ~ ) ( w ~  ,wl,  w2, -w2) = O because the absorption 
of Il should not be influenced by I2 whose frequency 
is smaller than wg. Then in this case 61 represents 
the phase of X ( 3 ) ( ~ 1 , ~ l , ~ 1 , - ~ 1 )  which depends on 
(wl - wg)T2 as indicated in Table I. For the glass CS 
3-69 the value 41 = 2' is in agreement with our ex- 
pectation since large frequency detunings of wl and w2 

from the energy gap were used. A similar result was 
obtained for the sample CS 2-61 when wl and w2 were 
simultaneously smaller than wg. On the other hand, 
changes of d1 were observed for the glasses CS 3-67 
and CS 2-61 corresponding to wl > wg and wi < wg. 
In the second set of measurements we observed the sig- 
na1 component at frequency w2 using samples CS 3-69, 
CS 3-67 and CS 3-66 in order to  rneasure $2. Since 
~ r n ~ ( ~ ) ( w ~ ,  w2 ,  w2, -w2) = 0, represents the phase 
of X(3 ) (w2 ,~ l ,  w2, -wl) as indicated in Table I. For the 
laser wavelengths employed we observed changes of 4 2  

that correspond to different values of (wl - wg) detun- 
ing. Unfortunately no previous results are available 
to make comparison with our measurements. How- 
ever, we attribute the observed frequency dependence 
of X ( 3 ) ( ~ 2 ,  wl, w2, -wl) to  the effect of the field at wl, 
which influences the transmission of the other frequency 
component and causes bandfilling in the conduction 
band or saturation of the trapping-states. This assump- 
tion is corroborated by other experiments with SDG. 
On the other hand, the observed frequency dispersion 
of the degenerate X(3) shows a qualitative agreement 
with the predictions of the electronic bandfilling model 
as in the previous e~~e r imen t s [ "~ ] .  

A comparison with the experimental methods of 
other authors is appropriate at this point. In refs. [8] 
and [9], Roussignol and co-workers measured the phase 
of degenerate X(3) in phase-conjugation experiments 
using a delicate technique that requires transform- 
limited pulses, a perfect control of the laser frequency 
chirp, and accurate inteniity measurements. Other re- 
searchers used interferometric methods to determine 
the phase of the degenerate nonlinear susceptibility 
(see ref.[l7] for previous work). I t  seems very diffi- 
cult to obtain information on the nondegenerate X(3) 

with those methods. We note' that, contrary to the 
other methods, the one reported herein does not re- 
quire an absolute measurement of beam intensities, and 
non-transform-limited pulses can also be used. Fur- 
thermore the present method does not require the use 
of a reference sample. One lirnitation of our method 
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Table i. Survey of the experimental parameters. wg is the optical frequency corresponding to 1% transmission and 
Eg is the corresponding energy. T2 is the dephasing time assumed to be 20 fs. The maximum error in the angles 
41 and 4 2  was estimated to be 2 ~ 5 ' .  

at the present stage results from the experimental ar- 
rangement that does not allow a larger accuracy, but 
an improvement in the electronic data processing will 
provide a significant reduction of the relative errors in 
future applications. 

b. Measurements  of tlie phase of X(5) 

For highly nonlinear media such as semiconduc- 
tors, polymers or special glasses, high-order nonlinear- 
ilies may also contribute at moderate intensity levels. 
For example, Maruani et al. have studied high-order 
nonlinearities in CuC! using self-diffraction in a non- 
phase-matched ~ c h e m e [ ~ ~ ] .  Acioli et al. reported di- 
rect measurements of 1 x ( 5 ) 1  and l X ( 7 ) 1  in serniconduc- 
tor doped glasses in a phase-matched multiwave-mixing 
~onf i~ura t ion[~"  ]. More recently, Charra et a1.[291 re- 
ported on non-degenerate multiwave mixing in poly- 
diacetylene through phase-conjugation with frequency 
conversion. Nevertheless, although a number of reports 

are concerned with the measurements of ( X ( n ) ( ,  n > 3, 
no technique has been developed to measure the phase 
of high-order susceptibilities. 

In this section, we show how the polarization beats 
spectroscopy can be used t o  measure the phase of X(5) 

in a solid and review our own results obtained using 
this new te~hni~ue[~ ' I .  

The principle of the experiment is similar to  the one 
introduced in Sec.1I.a. However, in this case we have 
to be carefull because of possible competing effects as 
discussed below. Although the intensity of the beam 
diffracted at the first-order is contributed primarily by 
~ ( ~ 1 ,  the second-order diffraction signal may include 
contributions from X ( 5 )  and cascade processes due to 
~ ( ~ 1 .  Let us assume here that the cascade contribution 
is negligible as compared to that of the direct fifth-order 
nonlinearity. T_hus, the signal beam at wi emitted along 
the direction 3k(l) - 2;(,) is generated by the polariza- 
tion P ( ~ ) ( u ~ )  = PT'(w1) + PC'(w1) + pF)(w1) with 
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where r is the relative time-delay between the two 
bichromatic beams. The signal intensity at w l ,  pro- 
portional to I P ( ~ ) ( U ~ ) ( ~ ,  is given by 

wher e 

a = 

+ 
b = 

C = 

and 

d = 
-+ 

Ak = 

U M  = s/l - w2 is the modulation frequency; 

4 s  = arc tan  11rn X$') /~e Xpi and $c 1 

+d . e o s ~ # ~ ~ ) ~  i (c sindz + d ~ i n C # J ~ ) ~ l  ' I 2  and 6' = 
arc s in [(c. si& + d . ~ i n 4 ~ ) / c ' ]  which is intensity de- 
pendent. 

Eq.(9) shcpws that the second-order diffraction sig- 
nals have Fourier components at w~ and 2wM. Analo- 
gous calculatims for I ( w l )  emitted along the direction 
3;(') - 2$(') provide a similar signal with Fourier com- 
ponents whick are (-241) and (-24') out-of-phase with 
the signals inc'icated in eq.(9). Consequently, if the sig- 
nals in both tlirections are simultaneously recorded in 
two independent detectors, one may obtain informa- 
tion on 4l an l 4' using the following steps. First, the 
relative amplitudes of b and c' can be determined by 
Fourier analyr,is. Then, 4i and 4' can be obtained by 
fitting the s h a ~ e s  of the modulated signals and the rela- 
tive phase-shij't between the signals at both directions. 
Using the ap~ropriate  laser wavelengths to cancel #A 
or $ B ,  the val le  of one of them can be calculated from 

in a manner which is similar to the determination 
of the phase o €  X ( 3 ) .  

To study the phase of X(5) in commercial SDG we 
first note that cascade contributions from the lower 
order nonlinecrities are negligible in comparision with 
that of the direct higher-order nonlinearity for the rea- 
sons discussed below. To estimate the contribution of 

the cascade process due to X ( 3 )  we have used the diffrac- 
tion theory developed by Klein and ~ o o k [ ~ ~ ] .  The equa- 
tion describing the amplitude of the diffracted optical 
fields is obtained from the optical wave equation, 

where the refractive index in the region where the 
beams overlap (O < z < L) is given by 

p(x) = po + p l  s in  ( k * ~ )  , (11) 

where k* = 2w/A is the wavenumber of the refractive 
grating and A = X,/2 sin 8, with A, being the wave- 
length of the pump beams. The basic equation is ob- 
tained from (10) and (11) introducing the electric field 

f 
-+ 

Ei = +,(I) exp i(wit - k, ,?) into the wave equa- 
n=-cu 

tion and neglecting second order terms which include 
V24,(2) and p!. Then, we obtain 

where Q = k * 2 ~ / p o k  with k*, L, po and k being the 
grating wavenumber, sample thickness, refractive in- 
dex and diffracted beam wavenumber. v = kpiL is 
the modulation depth and p l  is the first-order Fourier 
component of the refractive index. The parameter 
a = -(pok/k*)sinQ is a geometry dependent quantity 
where 0 is the half intersection angle between the in- 
cident beams. The self-diffraction case corresponds to 
cu = -112. Hence, once a is set, the diffraction effi- 
ciencies are determined by the parameter Q which rep- 
resents phase-mismatch, and the modulation depth v .  
For v < 1, we may solve eq.(12) by using the approxi- 
mation Idn+i 1 < 14,) for n > O and Idn-i 1 < 14,1 for 
n O. For the first-order self-diffracted beam intensity 
we have: 

where I. is the incident laser intensity. For the second- 
order diffraction beam we obtain 

Therefore, measuring the relative intensities of the zero 
and first-order diffracted beams, we may determine the 
cascade contribution using eqs.(13) and (14). Experi- 
mentally, one can measure the relative intensity of the 
second-order diffracted beam which has both contribu- 
tions from the direct fifth-order nonlinearity and the 
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cascade process. Thus, it is possible to  determine the 
relative contribution between X(5) and [ x ( ~ ) ] ~ .  In our 
experiments, we have measured those three relative in- 
tensities at different laser wavelengths (including de- 
generate and nondegenerate cases) and for different in- 
tensities used. The results show that the calculated 
cascade contributions are at least one order of magni- 
tude smaller than the measured second-order diffracted 
beam intensities. Also the results show that for the 
higher intensities used, the contribution from the di- 
rect fifth-order nonlinearity is increased. 

It should be pointed out that, when the contribution 
of the direct fifth-order nonlinearity is close to or even 
less than the cascade contribution, the phase-matched 
higher-order diffraction geometry should be used. For 
that geometry, the diffracted beams due to  the direct 
higher-order nonlinearity are the higher-order Bragg- 
reflections with phase-match, while cascade contribu- 
tions become negligible because of the phase-mismatch. 
This was considered in the ref. [31]. 

The experimental setup used was the same used for 
rneasuring the phase of X(3) (Fig. 1). 

The sample used was a Cd(S, Se) doped Corning 
glass CS 2-73 with energy gap of 2.17eV which cor- 
responds to 1% transmission. To perform the exper- 
iments we set WJ < Eg/h  because we expect that 

~ r n ~ f )  = O for a large frequency detuning from the 
band gap. 

Fig.3 shows the recorded signals in both directions 
as the relative time-delay between the two bichromatic 
beams was changed. Fig.S(a) and 3(b) show that, for 
the same laser frequencies, the signals are intensity de- 
pendent. Note that at  relatively low powers the signals 
in Fig.S(a) have Fourier components at WM and 2wM as 
predicted from eq.(9). For large powers, as in Fig.S(b), 
the component at 2wM is reduced and then the in- 
formation on the phase 41 is lost. This is explained 
using eqs.(6-9) which show that the Fourier compo- 
nent at 2wM becomes negligible if one of the products 
(PA Pcl and (PB Pcl is much larger than IPA PB I. For 

wz > w l ,  and Xg) will decrease with the increase 
of I(w2) due to  the optical switch e f f e ~ t [ ~ ~ ] .  However, 

Xg) is expected to decrease less than X $ )  so that the 
Fourier component at 2wM decreases as compared to 
the component at w ~ .  Meanwhile, this intensity de- 
pendent result may also be affected by higher-order 
nonlinearities at the intensities usedL2"]. For example, 
the second-order diffracted signals may include contri- 
butions due to  X(7) and thus the information on X ( 5 )  

could be masked. Therefore, one should work at rela- 
tively weak excitations so that X ( 5 )  plays a dominant 
role and the optical switch effect does not becomes im- 
portant. In the present experiment the 2wM component 
appears for the incident intensities indicated in Fig.S(a) 
and 

TIME DELAY (fs) 

TIME DELAY (fs) 

TIME DELAY (fs) 
Figure 3: The solid lines illustrate the recorded second- 
order diffracted signals as  a function of the time delay. The 
dashed lines were calculated from eq.(9) as explained in the 
text. (Sample: Corning glass CS 2-73, 3mm thickness). 
(a) tLul = 2.03eV, tLwz = 2.21eV, I(w1) = 0 . 3 M ~ / c m ~ ,  
I(w2) = 0.1MW/cm2; (b) the same frequencies used as 
in (a) but I(w1) = 12MW/cm2, I(w2) = 4MW/cm2; (c) 
hwl = 2.03eV, hw2 = 2.14eV, I(wi) = 0.2MW/cm2, 
I(w2) = 10KW/cm2. 

smaller values. Although the signals a t  these conditions 
are close to our detection limit, 41 could be deduced by 
fitting the experimental data with the formula given in 
eq.(9). The obtained value was 41 = 60' with ratio 
c1/b = 0.5. The fitting error is about 20'. Finally, as- 
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surning that I m  = O for (hwl -Eg) = -0.14eV, we 
(5) determined the phase of xB (wl ,wz, -w2,w2, -wa,wl) 

to be 60' f 20' after averaging severa1 measurements. 
Fig.S(c) corresponds to  the case where wl and w2 

are smaller i,han Eg/fi. In this case the value obtained 
for was 8' f 20' with the ratio c'/b = 0.35, which 
supports our assumption that I m  X ( 5 )  = O if a11 the 
related freqiiencies are smaller than E,/fi. Also in this 
case if we increase the laser intensities, the component 
a t  2wM disappears. 

TIME DEIAY (fs) 

Figure 4: Coniparison between the experimental data shown 
in Fig.3(a) and the theoretical predictions of eq.(9) for dif- 
ferent fitting parameters. (- e -) q51 = 9 - 20'; (-) 
91 = 9; (--) 41 = 9 + 20". 

In order to determine the limitations of the tech- 
nique in the measurement of 41, we present in Fig.4 
the results of the theoretical fitting of the modulated 
signal for diflèrent fit ting parame ters. 

We note t hat for relatively large changes of the the- 
oretical valucs for on the order of 20 degrees, there 
is not a very large change of the resulting fits. From this 
we concludec that this method is not as precise as in 
the previous Esse (Sec.1I.a) to determine the dispersion 
of the high-order nonlinear optical susceptibility. This 
problem is dt e to contribution of the first-order Fourier 
component iri the recorded modulation signals and can 
possibly be circunvented if better detection schemes are 
employed in order t o  use lower intensities in the inci- 
dent bearns. 

To undewtand the significance of the phase-angles 
obtained we have performed a calculation using the 
bandfilling r r ~ d e l [ ~ ]  assurning that the traps levels are 
saturated. While in ref.[9] X ( 3 )  was deduced from the 
slope of the total susceptibility x versus the laser in- 
tensity I at low excitation levels, in our case, since 

the effective polarization for the second-order diffrac- 
tion was intensity dependent, we considered that I = 
I. + Ilcos(Skx), where x is the ordinate along the 
grating direction and S i  = i(') - i(2). I. and 
Il(I0 2 I l )  are intensities of background and modu- 
lation, respectively. We could calculate the total x and 
the effective susceptibility responsible for the second- 
order diffraction signal was obtained frorn Xiz = 
-2- 2 1 ~  J ~ "  O x cos(26k.x) d(6k.x). 

The procedure to calculate the nonlinear suscepti- 
bility is described in what follows. The first step is to 
calculate the carrier density, n, created by the incident 
beams. This is done using a rate equation for n and 
the result in the case of a relaxation time that is fast 
as compared to the pulse duration is 

where a is the absorption coefficient, I is the laser in- 
tensity, and r is the pulse duration. From this result it 
is possible to calculate the position of the quasi-Fermi 
leve1 of the electrons in the conduction band. The occu- 
pation number of the holes can be neglected in the cal- 
culations due to the larger effective mass of the valence 
band. Assuming parabolic band-structure, the expres- 
sion for the nonlinear susceptibility ~ ( w ,  I )  is given by 

. , 

(16) 
where e is the electron charge, p,(lc) is the electron oc- 
cupation probability factor, r,, is the dipole moment 
of the valence to conduction band transition, assumed 
to be constant, w,,(k) = filc2/2m* + Eg, is the en- 
ergy separation of the optically connected states, r,, 
is the dephasing rate of the transition, and m* = 
(l/m, + l/m,)-l is the reduced m a s .  It has been 
introduced an ad hoc broadening of the transition line 
shape given by g ( k ) ,  following Roussignol et al.L9], and 
also proposed by Banyai and ~ o c h [ ~ ~ ] .  

Combining the results of eq. (16) for ~ ( w ,  I) with 
the one for X!;$ it is possible to obtain the ratio of the 
imaginary and real parts of this effective susceptibility, 
that is, its phase. The calculated phase-angle for the 
conditions of Fig.3(a) was 70' in agteement with the 
experiment. The theory also shows that: (i) for excita- 
tion levels close to  the values used in the experiment, 
the phase of X$\ is intensity dependent; (ii) for laser 
frequencies smaller than Eg/h the phase of the degen- 

(5 )  erate xe is close to 0'. 

111. Conclusions 

The method herein presented is quite general and 
can be readily applied t o  a large variety of materials. 
For the case of the third order susceptibility an exten- 
sion lias already been reported for measuring its phase 
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dispersion close to a Raman resonance[l". Further ex- 
tensions may also include the study of the phase clisper- 
sion of X(3) in the vicinity of a two-photon absorption 
resonance. For the study of high-order nonlinear sus- 
ceptibilities it has been shown that the applicability 
of the method to the particular case of is depen- 
dent on the ratio between the two Fourier components 
which contribute to the second order diffracted signals. 
Finally, we note that in both cases described above this 
technique can be extended, by choosing appropriately 
the polarizations of the incident beams, to study the 
various tensor components of the nonlinear susceptibil- 
ities. 
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