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The application of ascini-analytical mcthod iiitroduccd by tlie prcsent autliors in a previous
work lias enabled us to calculate tlie cxcited energy lcvels aiid wave functions associated
with tlic Stark effect on a Hydrogen atom. Tlie method is a variational one and we uscd
algebraic computation to solveit. We prcsent tlie resultsto tlie n = 2 and n = 3levels. It is
shown tliat in tliese cases tlie method works as well asit does for tlie ground state. On tlie
other liand tlie wave functions associatcd witli tlie stationary statcs diow tlie probability of
autoionization by tunneling in tlie limit of high ficlds.

I. Introduction

Tlie study of the Stark effect for strong fields was
tlie subject of great interest, mainly for tlie excited
statcs, due to tlie existence of experimental data on
Rydberg states. Among tlie different tlieoretica ap-
proaches found in tlie literature, we quote tlie follow-
ing: perturbation methods!~3, 1/n expansion®® WKB
calculations®?, numerical®='? and complex scaling!®
methods, scattering phase studies!* and expansion in
Sturmian functions!.

In a previous paper!® we have presented a semi-
analytical mctliod through wiliicli one can calculate tlie
eigenfunctions and eigenvalues of tlie Hydrogen atom
under a uniform static clcctric ficld. As an application
we have solved the corresponding Sclirodinger equation
for the ground state. To apply tlie mctliod to tlie ex-
citcd states we have modified slightly tlie wave function
with respect to tliat adopted in our previous work iz or-
der to improve our results.

Tlie proposcd method is posed in variational form!?
and tlie determination of tlie coefficients tliat appear in
tlie trial function is obtained via an algcbraic compu-
tation procedure; tliat is wliy we have caled it semi-
analytical. In brief, tlie method!® consists in solving
tlie Schrodinger equation in parabolic-cylindrical coor-
dinates and expanding tlie wavefunction in terms of La
guerre functions plus polynomials in a way tliat for the
field-free case tlie expansion rcduces to tlie exact wave-
function for the Ilydrogen atom. This procedure leads
to a transcendental equation for tlie energy eigenval-
ucs wliicli issolved througli a self-consistent procedure.
Even for the excited states tlie expansion for tlie wave
function includes only a few terrns, which shows the
rapid convergence of our method.

In section II we present tlie method of calculus,
while in section III we show the results obtained for
tlic two first excited levelsn = 2 and n = 3. Finaly in

scction IV we present a discussion of these results
II. The Mcthod

For tlie treatment of tlie excited slates we propose
a wave function of tlie form

B, v,6) = N(up)ml/2e=@=0)/2=ms |

[ao L1 () + Q1 (w)][boL15 () + Q2(»)] (1)
where N is anormalization constant, m is tlie magnetic
quantum nuniber, ag and by are constaiits, L7} (z) istlie

Lagucrre iunction, tlie dimensionless coordinates u and
v are defined by

u=y(r+2)/2 ; v=7(-2)/2 (2)

tlie energy parameter is defined by

7= ('2E)1/2’ (3)
and @ (u) and Q+(v) are polynomials.

The idea of expressing tlie wave function in tlie
forin of Laguerrefunction plus a polynoinial is to make
the connection between tlie field-frce case and tlie per-
turbed systcm wave function. In tliis way, when tlie
ficld is zero tlie wave function automatically givcs tlie
correct indices for tlie corresponding lcvel.

Tlie differential equations that must be satisfied by
the polynomials Q1(u) and Qz(v) are

uQ” 1 (u) + [1+ |m|™*]Q (u)
-+ [m + fi(g1) + 91%] Q1(u)

+ [fl(fh) + 571-1—2‘ L'n"fl(u) =0 4)
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and

v@”2(v) + [1+ [m|77]Q5(v)
+ [nz + fo(91) + 01 1):‘] Q2(v)

Haw+ad] o =0, ©

where fi(g1) and f2(g:) are separation constants sucli

that f,(0) = f.(0) =0, and n; and n, are the parabolic
quantum numleers defined Ly tlic relation

n=n;+ny+|m|+1, (6)
where n is tlie principal quantum number.

Tlie energy eigenvalues are tliesolutions of the tran-
scendental equation

1 -
E= 2[n + f1(g1) + f2(91)])? @

Equation (7) makes explicit the dependence of tlie €ii-
ergy with the separation constants fi(g;:) and fo(g1),
where g1 = g/+3/2 is tlie normalized ficld strength as
introduced in Ref. 16.
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Figure 1: Contour plot of tlie angular prouability den-
sity in tlie relevant x-z plane (not normalized) for tlie
following values of tlie radial distance r: 2.0 (—), 3.0
----->-),50(.----) and 70 (.......). Tlie ap-
plicd field is g = 0.0 a.u. (ﬁeld frce case) and quantum
numbers (2,0,0,41).
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Tablc L.a - Encrgics in a.u. of Stark effect for tlie three
n = 2 levels (2,1,0,0), (2,0,1,0) and (2,0,0,%1), for var-
i Ou-~values of tlie field strength.

field  (2,0,0,1) (2,0,1,00 (2,1,0,0)

(a.w.) degrce 12 degrce19 degree 18
0.00000 -0.125000 -0.125000 -0.125000
0.00100 -0.125078 -0.128086 -0.122083
0.00200 -0.125316 -0.131353 -0.119327
0.00300 -0.125720 -0.134826 -0.116733
0.00400 -0.126308 -0.135447 -0.114305
0.00500 -0.127101 -0.142656 -0.112066
0.00600 -0.128131 -0.147918 -0.110031
0.00700 -0.129442 - -
0.00800 -0.131081 - -

Table Lb - Energics of Stark effect for tlie three n =
2 levels (2,1,0,0), (2,0,1,0) and (2,0,0,%1), for field
strength 0.005 a.u. (a) Ref. 12, (b) Rel. 15 aiid (c)
present calculatiori.

level (2,0,0,£1) (20,1,0)  (2,1,0,0)

(8) -0.127146 -0.142618 -0.112061

(b) -0.127146 -0.142618 -0.112061

(c) -0.127101 -0.142656 -0.112066




338

Table II - Normalization coiistaiit, continuum probability and parabolic turning pointsfor tlielevel (2,0,0,41), for

various vaues of tlie field strength.
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field normalization coritinuum turning points
(a.u) constant probability u,v (a.u.)

0.0000 14.17963081 - - -
0.0005 14.18505983 0.130582 x 10-33 246.00 3.961
0.0010 14.20145624 0.186438 x 10~37 121.00 3.924
0.0015 14.22917128 0.869841 x 10~22 79.38 3.888
0.0020 14.26880946 0.135576 x 10~14 58.56 3.854
0.0025 14.32128819 0.107841 x 10~ 46.07 3.822
0.0030 14.38784261 0.240367 x 10~°3 37.75 3.791
0.0035 14.47012943 0.758842 x 10~°7 31.80 3.762
0.0040 14.57031645 0.755455 x 10798 27.35 3.734
0.0045 14.69126805 0.381336 x 1079 23.88 3.707
0.0050 14.83697195 0.135881 x 10~94 21.11 3.682
0.0055 15.01251947 0.464942 x 10794 18.85 3.657
0.0060 15.22564692 0.154578 x 10~93 16.96 3.634
0.0065 15.48766260 0.465987 x 10~93 15.36 3.613
0.0070 15.81652273 0.122139 x 10792 14.00 3.592
0.0075 16.2362702 0.279421 x 10792 12.82 3.572
16.79809486 0.566693 x 10702 11.79 3.554

III. Application of The Mecthod to Tlie First
Excited Statcs

We dlial treat in detail the application of tlie
metliod to tlie first excited levels:

a) Then=2case

Tlie first consequence of the action of tlie electric
fieldistliat tliespherical symmetry is broken. If we con-
sider thefield along thez-axis, thefour (one s and three
p’s) field-free degenerate levels (not including spin) will
split. Tlie degeneracy between p, and p» will be pre-
served, so that three new energy levels will arise when
the atom is placed under an electric field: a double de-
generate one associated to p, and p, states and two
single degenerate levels from tlie s and p, states.

The equations (4) and (5) for the n = 2 case
give rise to three pairs of differential equations in u
and v, corresponding to tlie set of quantum numbers
(n,ny1,n2,|m]); ie. (2,1,0,0), (2,0,1,0) and (2,0,0,1).

In Table I.a we present the energy levels for these
three cases as functions of thefield strength for expan-
sions of ; and @ that include polynomials of degree
12 until 18: for a energy convergence criterion of the
order of 107% a.u. this will suffice to deal with field
strengtlis up to g = 0.006 a.u.. The reliability of our
method can be examined in Table I.b, wliere we have
compared our results to those obtained by Kolosov!®

and Telnov!? for the field intensity of 0.005 a.u. For
greater values Of tliefield the expansion can be contin-
uated until convergence is obtained. Of course, above
some valuesof tlieficld tlie probability of autoionization
of tlie electron becomes high and tlie proposed wave
function ceases to be a good choice.

lii Table I we calculate tlie values of tlie normaliza-
tion constant aiid tlie continuum probability (as defined
in Ref. 16), together with tlieclassical turning pointsin
parabolic coordinates, as function of the field strength.
Since tlie continuum probability givcs away to see how
near tlie autoionization the electron is, we can see that
the correct trend is reproduced.

In TableIlI we calculate the average r-values and z-
values to study tlie beliavior of tlie probability density
astliefieldstrength isincreased. Asexpected, tlieelec-
tron density is stretched along the positive z-direction
and becomes more delocalized as the field strength in-
creases. We also list in Table III the classica turning
pointsfor r and z. One can see that for large values of
tlie electric field the electron is pushed away from the
nucleus. This fact is associated to the increase in the
probability of tiinneling to the continuous region.

In Figures 1 and 2 we plct the behaviour of the
electronic density in polar coordinates where we have
fixed tlieradial distance and vary the polar angle. This
was done for various values of tlie radial distance and
for a value of tliefield equal to 0.0 a.u. (field free case)
and 0.004 a.u., respectively. We note that for small
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Table III - Values of r-average arid z-average comparcd with the classical turning point for various values of the
field strengtli.

field r-average z-average turning points

(a.u) (a.u) (a-u) I,z (a.u.)
0.00000 5.00000 0.00000 - -
0.00025 5.00504 0.03901 499.98 492.02
0.00050 5.00218 0.07811 249.96 242.04
0.00075 5.00492 0.11737 166.60 158.72
0.00100 5.00878 0.15690 124.92 117.07
0.00125 5.01380 0.19677 99.90 92.09
0.00150 5.02001 0.23708 83.21 75.44
0.00175 5.02747 0.27794 71.28 63.55
0.00200 5.03623 0.31945 62.37 54.64
0.00225 5.04637 0.36174 55.37 47.71
0.00250 5.05797 0.40493 49.79 42.17
0.00275 5.07112 0.41916 45.23 37.63
0.00300 5.08595 0.49458 41.42 33.86
0.00325 5.10257 0.54137 38.19 30.67
0.00350 5.12115 0.58972 35.43 27.93
0.00375 5.14115 0.63983 33.02 25.56
0.00400 5.16490 0.69197 30.92 23.49
0.00425 5.19054 0.74642 29.06 21.66
0.00450 5.21910. 0.80355 27.41 20.04
0.00475 5.25111 0.86392 25.29 18.59
0.00500 5.28695 0.92797 24.59 17.29
0.00525 5.32743 0.99654 23.38 16.11
0.00550 5.37355 1.07070 22.27 15.03
0.00575 5.42667 1.15185 21.27 14.06
0.00600 5.48861 1.24188 20.34 13.16
0.00625 5.56187 1.34336 19.49 12.34
0.00650 5.64964 1.45961 18.69 11.58
0.00675 5.75618 1.59495 17.97 10.88
0.00700 5.88684 1.75489 17.29 10.23
0.00725 6.04831 1.94625 16.65 09.62
0.00750 6.24803 2.17666 16.06 09.06
0.00775 6.49597 2.45622 15.51 08.54

0.00800 6.80188 2.79490 14.99 08.04
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Table IV - Energies in a.u. of tlie Stark effect for the n = 3 six levels: (3,2,0,0), (3,0,2,0), (3,1,1,0), (3,1,0,1),
(3,0,1,1) and (3,0,0,2) for various values of tlie field strength.

field (8,1,0,1) (3,0,2,0) (3,2,0,0) (3,0,1,1) (3,1,1,0) (3,0,0,2)
(a.u) degree 15 degree 15 degrec 15 degree 15 degrec 15 degree 10
0.0000 -.0555555 -.0555556 -.05655556 -.0555556 -.0555556 -.0555556
0.0001 -.0554226 -.0558220 -.0552886 -.0556894 -.0555563 -.0555624
0.0002 -.0552908 -.0560879 -.0550212 -.0558241 -.05655586 -.0555832
0.0003 -.0551598 -.0563533 -.0547533 -.0559597 -.0555624 -.0556178
0.0004 -.0550299 -.0566183 -.0544859 -.0560963 -.0555747 -.0556666
0.0005 -.0549009 -.0568828 -.0542159 -.0562338 -.0555831 -.0557300
0.0006 -.0547729 -.0571467 -.0539465 -.0563722 -.0555931 -.0558083
0.0007 -.0546460 -.0574103 -.0536766 -.0565114 -.0556046 -.0559021
0.0008 -.0545203 -.0576733 -.0534061 -.0566516 -.0556176 -.0560123
0.0009 -.0543951 -.0579360 -.0531351 -.0567926 -.0556322 -.0561400
0.0010 -.0542714 -.0579361 -.052836 -.0569315 -.0556679 -.0562867

Table V - Normalization constant, r-average and z-average values for various values of tliefidd strength

field normalization r-average z-average

a.u. constant (a.u) (au)
0.00000 0.2871374836 x 10%3 2.0556 0.0000
0.00025 0.2878496499 x 10% 2.0636 0.0613
0.00050 0.2900596446 x 10%3 2.0887 0.1261
0.00075 0.2940157692 x 10%3 2.1346 0.1990
0.00100 0.3002419652 x 10%3 2.2094 0.2878
0.00125 0.3097640997 x 10%3 2.3296 0.4069

0.00130 0.3122229568 x 10% 2.3617 0.4366
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Figure 2: Same as Fig. 1 for tlie following values of r:
8.0 (—), 9.0 (-—), 10.0 (-.~.-.-.-) and 12.0 (.......) for
ficld ¢ = 0.004 a.u. and same quantum numbers as in
Fig. 1

values of tlie radial distance tlie electronic density is
ouly slightly stretched in the positive r-direction; as we
increase tlie velue of the radial distance, tlie electric
multipole moments of greater order become apparent.
This was expected in terms of what we have obtaincd
in Table III. For a larger field, such that of Fig. 3
where g = 0.006 a.u. we can see that the effect of tlie
field bccomes apparent much sooner and gives rises to
clectric multipcle moments of greater order.

For this second set of levels we also note that our
scliemc workswell for lower field intensities as compared
with tlie ground state!®, the reason for this being tliat
tlie n = 2 level is already delocalized and the action of
a small field miist increase the probability of autoion-
ization. Tliis occurs because tlie n = 2 level is already
too delocalized and lience a small value for the field
strength is sufficient to distort strongly the electronic
wave function and to make the autoionization easier.

b) The n = 3 case:

For n = 3 and in the field free case we have a set
o 9 degenerated levels. When the field is applied, the
Ofold degenerary is partially broken into the follow-
ing set of levels: (pe,py), (dzs,dyz), (dez, de2—y2) and
the remaining tliree single degenerate s, p; and dy2_,2.
According to our previous notation these six new levels
will be labeled as(3,1,0,1), (3,0,1,1), (3,1,1,0), (3,2,0,0),
(3,0,0,2) and (30,2,0).

lii Table 1V +ve present the energiesfor thesix levels
and various values of the electric field witli polynomial
degrees of the crder of 15. The convergence criterion
adopted was the same asin the n = 2 case.
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Figure 3: Same as Fig. 1 for tlie following values of
r: 20(—),30(—); 50(.~----)and 6.0 (.....) for
fidd g = 0.006 a.u. and same quantum numbers asin
Fig. 1.

In Table V we present tlie results for an analysis of
tlie case (3,0,0,2) similar to that shown in Table I1I and
one can see that tlie values of the dynamical variable r
and r vary in the same way as before.

We point that in the n = 3 case tlie largest iield
strength for which we have calculated tlie cigenvalues
was a factor of 6 smaller tlian that associatcd witli the
n= 2 case.

1VV. Conclusions

Tlie method here proposed can be extended to prob-
lems where the equations are not separable at all (hy-
drogen atom in presence of tlie laser field for example).
In fact, some of tlie authors of the present work have
already done such calulations for the Zceman effect!®
and verified the same advantages pointed out in the
present paper. We would like to point out tliat tlie
proposed method is variational and so it represents a
good estimate of the energies.

An advantage of tlie present method is the simplic-
ity of itsimplementation. Infact, the calculations along
this procedure can be performed even in a small com-
puter at a reasonable speed, with the syrnrnetry of the
states taken into account from the beginning. Further-
more, when the results compared with those obtained
by other methods (see Table I.b) the agreement found
was quite satisfactory.
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