Different Approach to the Stark Effect: Application to the Excited States of Hidrogen Atom

O. L. Silva Filho, A. L. A. Fonseca, II. N. Nazareno and P. I. A. Guimarães
Departamento de Física, Universidade de Brasilia, 70910-900, Brasilia, DF, Brasil

Reccived March 3, 1992; revised manuscript received July 28, 1992

Abstract

The application of a scini-analytical mcthod iiitroduccd by tlie present autliors in a previous work lias enabled us to calculate tlie cxcitcd energy levels aiid wave functions associated with tlic Stark effect on a Mydrogen atom. Tlie method is a variational one and we uscd algebraic computation to solve it. We prcsent tlie results to tlie $\mathrm{n}=2$ and $\mathrm{n}=3$ levels. It is shown tliat in tliese cases tlie method works as well as it does for tlie ground state. On tlie other liand tlie wave functions associatcd witli tlie stationary statcs sliow tlie probability of autoionization by tumneling in tlie limit of high ficlds.

I. Introduction

Tlie study of the Stark effect for strong fields was tlie subject of great interest, mainly for tlie excited states, due to tlie existence of experimental data on Rydberg states. Among tlie different tlieoretical approaches found in tlie literature, we quote tlie following: perturbation methods ${ }^{1-3}, 1 / n$ expansion ${ }^{4,5}$, WKB calculations ${ }^{6,7}$, numerical ${ }^{8-12}$ and complex scaling ${ }^{13}$ mochods, scattering phase studies ${ }^{14}$ and expansion in Sturmian functions ${ }^{15}$.

In a previous paper ${ }^{16}$ we have presented a semianalytical metliod through wlicli one can calculate tlie eigenfunctions and eigenvalues of tlie Itydrogen atom under a uniform static clectric ficld. As an application we have solved the corresponding Sclirodinger equation for the ground state. To apply tlie mctliod to tlie excitcd states we have modified slightly tlie wave function with respect to tliat adopted in our previous work in order to improve our results.

Tlie proposed method is posed in variational form ${ }^{17}$ and tlie determination of tlie coefficients tliat appear in tlie trial function is obtained via an algcbraic computation procedure; tliat is wliy we have called it semianalytical. In brief, tlie method ${ }^{16}$ consists in solving tlie Schrödinger equation in parabolic-cylindrical coordinates and expanding tlie wavefunction in terms of Lagucrre functions plus polynomials in a way tliat for the field-free case tlie expansion reduces to tlie exact wavefunction for the Iydrogen atom. This procedure leads to a transcendental equation for tlie energy eigenvalucs wliicli is solved througli a self-consistent procedure. Even for the excited states tlie expansion for tlie wave function includes only a few terrns, which shows the rapid convergence of our method.

In section II we present tlie method of calculus, while in section III we show the results obtained for tlic two first excited levels $n=2$ and $n=3$. Finally in
section IV we prcsent a discussion of these results

II. The Method

For tlie treatment of tlie excited slates we propose a wave function of tlie form

$$
\begin{align*}
& \psi(u, v, \phi)=N(u v)^{|m| / 2} e^{-(u-v) / 2} e^{-m \phi} . \\
& {\left[a_{0} L_{n 1}^{|m|}(u)+Q_{1}(u)\right]\left[b_{0} L_{n 2}^{|m|}(v)+Q_{2}(v)\right]} \tag{1}
\end{align*}
$$

where N is a normalization constant, m is tlie magnetic quantum nuniber, a_{0} and b_{0} are constaiits, $L_{n}^{m}(x)$ is tlie Lagucrre iunction, tlie dimensionless coordinates u and v are defined by

$$
\begin{equation*}
u=\gamma(r+z) / 2 \quad ; \quad v=\gamma(r-z) / 2, \tag{2}
\end{equation*}
$$

tlie energy parameter is defined by

$$
\begin{equation*}
\gamma=(-2 E)^{1 / 2} \tag{3}
\end{equation*}
$$

and $Q_{1}(u)$ and $Q_{2}(v)$ are polynomials.
The idea of expressing tlie wave function in tlie forin of Laguerre function plus a polynoinial is to make the connection between tlie field-frce case and tlie perturbed systcm wave function. In tliis way, when tlie ficld is zero tlie wave function automatically gives tlie correct indices for tlie corresponding lcvel.

Tlie differential equations that must be satisfied by the polynomials $Q_{1}(u)$ and $Q_{2}(v)$ are

$$
\begin{align*}
& u Q^{\prime \prime}{ }_{1}(u)+\left[1+|m|^{-u}\right] Q_{1}^{\prime}(u) \\
& +\left[n_{1}+f_{1}\left(g_{1}\right)+g_{1} \frac{u^{2}}{4}\right] Q_{1}(u) \\
& +\left[f_{1}\left(g_{1}\right)+g_{1} \frac{u^{2}}{4}\right] L_{n_{1}}^{|m|}(u)=0 \tag{4}
\end{align*}
$$

and

$$
\begin{align*}
& v Q^{\prime \prime}(v)+\left[1+|m|^{-v}\right] Q_{2}^{\prime}(v) \\
& +\left[n_{2}+f_{2}\left(g_{1}\right)+g_{1} \frac{v^{2}}{4}\right] Q_{2}(v) \\
& +\left[f_{2}\left(g_{1}\right)+g_{1} \frac{v^{2}}{4}\right] L_{n_{2}}^{|m|}(v)=0, \tag{5}
\end{align*}
$$

where $f_{1}\left(g_{1}\right)$ and $\int_{2}\left(g_{1}\right)$ are separation constants sucli that $f_{1}(0)=f_{2}(0)=0$, and n_{1} and n_{2} are the parabolic quantum numbers defined Ly tlic relation

$$
\begin{equation*}
n=n_{1}+n_{2}+|m|+1, \tag{6}
\end{equation*}
$$

where n is tlie principal quantum number.
Tlie energy eigenvalues are tlie solutions of the transcondental equation

$$
\begin{equation*}
E=\frac{1}{2\left[n+f_{1}\left(g_{1}\right)+f_{2}\left(g_{1}\right)\right]^{2}} \tag{7}
\end{equation*}
$$

Equation (7) makes explicit the dependence of tlie eiicrgy with the separation constants $f_{1}\left(g_{1}\right)$ and $f_{2}\left(g_{1}\right)$, where $g_{1}=g / r^{3 / 2}$ is tlie normalized ficld strength as introduced in Ref. 16.

Figure 1: Contour plot of tlie angular proùability density in tlie relevant x-z plane (not normalized) for tlie following values of tlie radial distance $\mathrm{r}: 2.0(-), 3.0$ (- - - - -), 5.0 (-.....-) and 7.0 (.......). Tlie applicd field is $\mathrm{g}=0.0$ a.u. (field frce case) and quantum numbers $(2,0,0,+1)$.

Tablc I.a-Encrgics in a.u. of Stark effect for thie three $n=2$ levels ($2,1,0,0$), ($2,0,1,0$) and ($2,0,0, \pm 1$), for variou values of tlie field strength.

field (a.u.)	$(2,0,0,1)$ degrce 12	$(2,0,1,0)$ degrce 19	$(2,1,0,0)$ degrce 18
0.00000	-0.125000	-0.125000	-0.125000
0.00100	-0.125078	-0.128086	-0.122083
0.00200	-0.125316	-0.131353	-0.119327
0.00300	-0.125720	-0.134826	-0.116733
0.00400	-0.126308	-0.135447	-0.114305
0.00500	-0.127101	-0.142656	-0.112066
0.00600	-0.128131	-0.147918	-0.110031
0.00700	-0.129442	-	-
0.00800	-0.131081	-	-

Table I.b - Energics of Stark effect for tlie three $n=$ 2 levels ($2,1,0,0$), ($2,0,1,0$) and ($2,0,0, \pm 1$), for field strength 0.005 a.u. (a) Ref. 12, (b) Ref. 15 aiid (c) present calculatiori.

level	$(2,0,0, \pm 1)$	$(2,0,1,0)$	$(2,1,0,0)$
(a)	-0.127146	-0.142618	-0.112061
(b)	-0.127146	-0.142618	-0.112061
(c)	-0.127101	-0.142656	-0.112066

Table II - Normalization coiistaiit, continuum probability and parabolic turning points for tlie level ($2,0,0, \pm 1$), for various values of tlie field strength.

$\begin{aligned} & \text { field } \\ & \text { (a.u) } \end{aligned}$	normalization constant	coritinuum probability	$\begin{aligned} & \text { turning points } \\ & u, \mathrm{v} \\ & \text { (a.u.) } \end{aligned}$	
0.0000	14.17963081	-	-	-
0.0005	14.18505983	0.130582×10^{-83}	246.00	3.961
0.0010	14.20145624	0.186438×10^{-37}	121.00	3.924
0.0015	14.22917128	0.869841×10^{-22}	79.38	3.888
0.0020	14.26880946	0.135576×10^{-14}	58.56	3.854
0.0025	14.32128819	0.107841×10^{-10}	46.07	3.822
0.0030	14.38784261	0.240367×10^{-08}	37.75	3.791
0.0035	14.47012943	0.758842×10^{-07}	31.80	3.762
0.0040	14.57031645	0.755455×10^{-06}	27.35	3.734
0.0045	14.69126805	0.381336×10^{-05}	23.88	3.707
0.0050	14.83697195	0.135881×10^{-04}	21.11	3.682
0.0055	15.01251947	0.464942×10^{-04}	18.85	3.657
0.0060	15.22564692	0.154578×10^{-03}	16.96	3.634
0.0065	15.48766260	0.465987×10^{-03}	15.36	3.613
0.0070	15.81652273	0.122139×10^{-02}	14.00	3.592
0.0075	16.2362702	0.279421×10^{-02}	12.82	3.572
	16.79809480	0.566693×10^{-02}	11.79	3.554

III. Application of The Method to Tlie First Excited States

We sliall treat in detail the application of tlie metliod to tlie first excited levels:
a) The $\mathrm{n}=2$ case:

Tlie first consequence of the action of tlie electric field is tliat tlie spherical symmetry is broken. If we consider the field along the z -axis, the four (one s and three p 's) field-free degenerate levels (not including spin) will split. Tlie degeneracy between p_{y} and p_{x} will be preserved, so that three new energy levels will arise when the atom is placed under an electric field: a double degenerate one associated to p_{x} and p_{y} states and two single degenerate levels from tlie s and p_{z} states.

The equations (4) and (5) for the $n=2$ case give rise to three pairs of differential equations in u and v , corresponding to tlie set of quantum numbers ($n, n_{1}, n_{2},|m|$); i.e. ($2,1,0,0$), ($2,0,1,0$) and ($2,0,0,1$).

In Table I.a we present the energy levels for these three cases as functions of the field strength for expansions of Q_{1} and Q_{2} that include polynomials of degree 12 until 18: for a energy convergence criterion of the order of 10^{-6} a.u. this will suffice to deal with field strengtlis up to $\mathrm{g}=0.006$ a.u.. The reliability of our method can be examined in Table I.b, wliere we have compared our results to those obtained by Kolosov ${ }^{15}$
and Telnov ${ }^{12}$ for the field intensity of 0.005 a.u. For greater values of tlie field the expansion can be continuated until convergence is obtained. Of course, above some values of tlie ficld tlie probability of autoionization of tlie electron becomes high and tlie proposed wave function ceases to be a good choice.

Iii Table II we calculate tlie values of tlie normalization constant aiid tlie continuum probability (as defined in Ref. 16), together with tlie classical turning points in parabolic coordinates, as function of the field strength. Since tlie continuum probability givcs a way to see how near tlie autoionization the electron is, we can sec that the correct trend is reproduced.

In Table III we calculate the average r -values and z values to study tlie beliavior of tlie probability density as tlie field strength is increased. As expected, tlie electron density is stretched along the positive z -direction and becomes more delocalized as the field strength increases. We also list in Table III the classical turning points for r and z. One can see that for large values of tlie electric field the electron is pushed away from the nucleus. This fact is associated to the increase in the probability of tiinneling to the continuous region.

In Figures 1 and 2 we plct the behaviour of the electronic density in polar coordinates where we have fixed tlie radial distance and vary the polar angle. This was done for various values of tlie radial distance and for a value of tlie field equal to 0.0 a.u. (field free case) and 0.004 a.u., respectively. We note that for small

Table III - Values of r -average arid z -average comparcd with the classical turning point for various values of the field strengtli.

$\begin{gathered} \text { field } \\ \text { (a.u) } \end{gathered}$	r-average (a.u)	z-average (a.u)	turning points	
0.00000	5.00000	0.00000	-	-
0.00025	5.00504	0.03901	499.98	492.02
0.00050	5.00218	0.07811	249.96	242.04
0.00075	5.00492	0.11737	166.60	158.72
0.00100	5.00878	0.15690	124.92	117.07
0.00125	5.01380	0.19677	99.90	92.09
0.00150	5.02001	0.23708	83.21	75.44
0.00175	5.02747	0.27794	71.28	63.55
0.00200	5.03623	0.31945	62.37	54.64
0.00225	5.04637	0.36174	55.37	47.71
0.00250	5.05797	0.40493	49.79	42.17
0.00275	5.07112	0.44916	45.23	37.63
0.00300	5.08595	0.49458	41.42	33.86
0.00325	5.10257	0.54137	38.19	30.67
0.00350	5.12115	0.58972	35.43	27.93
0.00375	5.14115	0.63983	33.02	25.56
0.00400	5.16490	0.69197	30.92	23.49
0.00425	5.19054	0.74642	29.06	21.56
0.00450	5.21910 .	0.80355	27.41	20.04
0.00475	5.25111	0.86392	25.29	18.59
0.00500	5.28695	0.92797	24.59	17.29
0.00525	5.32743	0.99654	23.38	16.11
0.00550	5.37355	1.07070	22.27	15.03
0.00575	5.42667	1.15185	21.27	14.06
0.00600	5.48861	1.24188	20.34	13.16
0.00625	5.56187	1.34336	19.49	12.34
0.00650	5.64964	1.45961	18.69	11.58
0.00575	5.75618	1.59495	17.97	10.88
0.00700	5.88684	1.75489	17.29	10.23
0.00725	6.04831	1.94625	16.65	09.62
0.00750	6.24803	2.17666	16.06	09.06
0.00775	6.49597	2.45622	15.51	08.54
0.00800	6.80188	2.79490	14.99	08.04

Table IV - Energies in a.u. of thie Stark effect for the $\mathrm{n}=3$ six levels: $(3,2,0,0),(3,0,2,0),(3,1,1,0),(3,1,0,1)$, (3,0,1,1) and (3,0,0,2) for various values of tlie field strength.

field	$(3,1,0,1)$	$(3,0,2,0)$	$(3,2,0,0)$	$(3,0,1,1)$	$(3,1,1,0)$	$(3,0,0,2)$
(a.u)	degree 15	degree 15	degrec 15	degree 15	degree 15	degrec 10
0.0000	-.0555555	-.0555556	-.0555556	-.0555556	-.0555556	-.0555556
0.0001	-.0554226	-.0558220	-.0552886	-.0556894	-.0555563	-.0555624
0.0002	-.0552908	-.0560879	-.0550212	-.0558241	-.0555586	-.0555832
0.0003	-.0551598	-.0563533	-.0547533	-.0559597	-.0555624	-.0556178
0.0004	-.0550299	-.0566183	-.0544859	-.0560963	-.0555747	-.0556666
0.0005	-.0549009	-.0568828	-.0542159	-.0562338	-.0555831	-.0557300
0.0006	-.0547729	-.0571467	-.0539465	-.0563722	-.0555931	-.0558083
0.0007	-.0546460	-.0574103	-.0536766	-.0565114	-.0556046	-.0559021
0.0008	-.0545203	-.0576733	-.0534061	-.0566516	-.0556176	-.0560123
0.0009	-.0543951	-.0579360	-.0531351	-.0567926	-.0550322	-.0561400
0.0010	-.0542714	-.0579361	-.052836	-.0569315	-.0556679	-.0562867

Table V-Normalization constant, r-average and z-average values for various values of tlie field strength

field a.u.	normalization constant	r-average $($ a.u $)$	z-average (a.u.)
0.00000	$0.2871374836 \times 10^{03}$	2.0556	0.0000
0.00025	$0.2878496499 \times 10^{03}$	2.0636	0.0613
0.00050	$0.2900596446 \times 10^{03}$	2.0887	0.1261
0.00075	$0.2940157692 \times 10^{03}$	2.1346	0.1990
0.00100	$0.3002419652 \times 10^{03}$	2.2094	0.2878
0.00125	$0.3097640997 \times 10^{03}$	2.3296	0.4069
0.00130	$0.3122229568 \times 10^{03}$	2.3617	0.4366

Figure 2: Same as Fig. 1 for tlie following values of r : $8.0(-), 9.0(-), 10.0(\ldots \ldots)$ and $12.0(\ldots \ldots)$ for ficld $g=0.004$ a.u. and same quantum numbers as in Fig. 1.
values of tlie radial distance tlie electronic density is only slightly stretched in the positive r-direction; as we increase tlie velue of the radial distance, tlie electric multipole moments of greater order become apparent. This was expected in terms of what we have obtaincd in Table III. For a larger field, such that of Fig. 3 where $\mathrm{g}=0.006 \mathrm{a} . \mathrm{u}$. we can see that the effect of tlie field bccomes apparent much sooner and gives rises to clectric multipole moments of greater order.

For this second set of levels we also note that our scliemc works well for lower field intensities as compared with tlie ground state ${ }^{16}$, the reason for this being tliat tlie $\mathrm{n}=\mathbf{2}$ level is already delocalized and the action of a small field miist increase the probability of autoionization. Tliis orcurs because tlie $\mathrm{n}=2$ level is already too delocalized and lience a, small value for the field strength is sufficient to distort strongly the electronic wave function and to make the autoionization easier.
b) The $\mathrm{n}=3$ case:

For $\mathrm{n}=3$ and in the field free case we have a set of 9 degenerated levels. When the field is applied, the O-fold degenerary is partially broken into the following set of levels: $\left(p_{x}, p_{y}\right),\left(d_{x z}, d_{y z}\right),\left(d_{x z}, d_{x^{2}-y^{2}}\right)$ and the remaining tliree single degenerate s, p_{z} and $d_{r^{2}-z^{2}}$. According to our previous notation these six new levels will bc labeled as $(3,1,0,1),(3,0,1,1),(3,1,1,0),(3,2,0,0)$, $(3,0,0,2)$ and ($30,2,0$).

Iii Table IV we present the energies for the six levels and various val es of the electric field witli polynomial degrees of the crder of 15 . The convergence criterion adopted was the same as in the $n=2$ case.

Figure 3: Same as Fig. 1 for tlie following values of r: $2.0(-), 3.0(-), 5.0(\ldots,-.-)$ and $6.0(\ldots \ldots)$ for field $\mathrm{g}=0.006$ a.u. and same quantum numbers as in Fig. 1.

In Table V we present tlie results for an analysis of tlie case ($3,0,0,2$) similar to that shown in Table III and one can see that tlie values of the dynamical variable r and r vary in the same way as before.

We point that in the $\mathrm{n}=3$ case tlie largest íeld strength for which we have calculated tlie cigenvalues was a factor of 6 smaller tlian that associatcd witli the $\mathrm{n}=2$ case.

IV. Conclusions

Tlie method here proposed can be extended to problems where the equations are not separable at all (hydrogen atom in presence of tlie laser field for example). In fact, some of tlie authors of the present work have already done such calulations for the Zceman effect ${ }^{18}$ and verified the same advantages pointed out in the present paper. We would like to point out tliat tlie proposed method is variational and so it represents a good estimate of the energies.

An advantage of tlie present method is the simplicity of its implementation. In fact, the calculations along this procedure can be performed even in a small computer at a reasonable speed, with the syrnrnetry of the states taken into account from the beginning. Furthermore, when the results compared with those obtained by other methods (see Table I.b) the agreement found was quite satisfactory.

Acknowledgements

The authors wish to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
for partial financia1 support and tlie LCC-FIS for tlie gcnerous access to its computing facilities during tlie course of this work.

References

1. II. J. Silverstone, Phys. Rev. 18A, 1853 (1978).
2. S. P. Alliluev, V. L. Eletsky, V. S. Popov and V. RI. Weinberg, Pliys. Lett. 78A, 43 (1980).
3. II. Noe, B. D. Etat and G. Couland, Pliys. Lett. 85A, 327 (1981).
4. V. RI. Weingerg, V. D. Mur, V. S. Popov and A. V. Sergeev, Pis'ma ZII. Eksp. Tcor. Fiz. 44, 9 (1986).
5. V. S. Popov, V. M. Mur, A. V. Shcheblykin aiid V. AI. Weingerg, Pliys. Lett. 124A, 77 (1987).
G. D. Bekenstein and J. B. Krieger, Pliys. Rev. 188, 130 (1960).
6. J. A. C. Gallas and II. Walther, Pliys. Rev. 26A, 1775 (1982).
7. M. II. Alexander, Pliys. Rev. 178, 34 (1969).
8. R. J. Damburg and V. V. Kolorov, J. Phys. B9, 3149 (1979).
9. E. Luc-Koenig aiid A. Bachelier, J. Pliys. 1313, 1743 (1980).
10. G. B. IIillard aiid W. L. Glab, Physica $145 \mathrm{C}, 229$ (1987).
11. V. V. Kolosov, J. Phys. 1320, 2359 (1987).
12. I. W. Herbst, B. Siinon, Pliys. Rcv. Lett. 41, G7 (1978); A. Magnet, Sliib I. Cliu, W. P. Reinhardt, Phys. Rev. A27, 2046 (1983); SI. Crance, J. Opt. Soc. Ain. B7, 449 (1990).
13. M. Klein, D. Robert, Xue Ping Wang, Commun. Math. Pliys. 131, 109 (1990).
14. D. A. Telnov, J. Pliys. B22, 1309 (1989).
15. O. L. Silva Fillio, A. L. A. Fonseca, II. N. Nazareno and P. II. A. Guimarães, Pliys. Rcv. A42, 4008 (1990).
16. O. L. Silva Filho, J. D. RI. Vianna aiid A. L. A. Fonseca, Pliys. Rev. A44, 4717 (1001).
17. O. L. Silva Filho aiid A. L. \boldsymbol{h} Fonseca, to be publislied.
