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We show that tlie loop variables for static spherically symmetric space-times are elements -
o the Lorentz group SO(3,1), or more generally, they are elements of the covering group
of the Lorentz group in order to include ferinions. Tlie analogous results concerning tlie
cylindrically symmetric space-time are given. In tliis case we particularize our results to tlie
(2+1)-dimensional space-time sliowing tliat tlie loop variables are elements of SO(2,1) or its
covering group. Some examplcs and applications are discussed.

I. Introduction

In tlie loop space formalism for gauge theories' the
fields depend on pathsrather than on space-time points,
and a gauge fidld is described by associating with each
path in space-time an element of tlie corresponding
gauge group. The fundamental quantity that arises
from tliis path-dependent approach, the non-integrable
phase factor? (or loop variable, in our terminology) rep-
resents the electromagnetic field or ageneral gaugefield
more adequately than thefield strength or tlie integral
of the vector potential®. In the electromagnetic case,
for example, as observed by Wu and Yang?, in a situ-
ation where global aspects are taken into consideration
the field strength underdescribes the theory and tlie
integral of the vector potential for every loop overde-
scribesit. The exact description is given by the factor
exp($% §, Audat).

The extension of the loop space formalism to the
theory of gravity was first considered by Mandelstam3
who established several equations involving the loop
variables, and also by Yang® Menskii® and Voronov
and Makeenko®. Recently, Bollini et al.” computed the
loop variables for the gravitational field corresponding
to the Kerr metric.

Einstein gravity in (2 + 1)-dimensional space-time
has recently developed into an areacf active research®®.
One reason for this interest is that there are systems
whose symmetry properties reduce the effective num-
ber of dimensions. In gravity this occursfor the space-
time created by an infinite cosmic string®, which we
shall consider here. On the other hand, this interest
has been stimulated by the peculiar and non-generic
properties of this field theory.

Space-time is flat outside matter in three-
dimensional gravity as well as outside a cosmic string

and lience tliere can exist no static interaction between
sources. The effects of the sources show up in global
aspects of tlie geomctry and we find topology assuming
the role played by curvature in the (3+1)-dimensional
theory. Although tlie local curvature of source free re-
gionsin (2+1)-dimensional gravity is unaffected by any
matter in the space-time, it isimportant to understand
that matter can still produce nontrivial global effects.
In order to study these effects we shall use the only pos-
sible observables in this theory which must come from
non-local variables such as the loop variables matrices.

The loop variables in the theory of gravity are
matrices representing paralel transport along con-
tours in a space-time with a given affine connection.
They are connected with the holonomy transforma-
tions whicli contain important topological information.
These mathematical objects contain information, for
example, about how vectorschange when paralel trans-
ported around a closed curve. They aso can be thought
of as measuring the failure of a single coordinate patcli
to extend all the way around a closed curve.

Suppose that we have a vector v at a point p of
a closed curve C in a space-time. Then, one can pro-
duce a vector v at p which, in general, will be differ-
ent from v&, by parallel transporting v& around C. In
this case, we associate with tlie point p and the curve
C alinear map Ug such that for any vector v® at p,
the vector % at p results from parallel transporting v*
around C and is given by 7% = Ugvﬁ. The linear map
Ug is caled the holonomy transformation associated
with the point p and the curve C. If we choose a tetrad
frame and a parameter A¢[0, 1] for the curve Csuch that
C(0) = C(l) = p, then in parallel transporting a vec-
tor v@from C(A) to C(X T d)), the vector components
change by év* = Mg[z(A)]v’ A, where Mg is a linear
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map which degends on the tetrad, the afine connection
of tlie space-time and tlie value of A. Then, it follows
tliat tlie liolonomy transformation Ug is given by tlie
ordercd matrix product of the N linear maps as

N
o . o 1 o

One often writes the expression iii Eq. (1.1) as

U(C) = Pexp ( /C M) . (1.2)

where P means ordered product along acurve C. Equa-

tion (1.2) should be understood as simply an abbrevi-

ation for tlie expression in Eq.(1). Note that if Mg

is independent of A, then it follows from Eq.(1) tliat

Ug is given by Ug = [exp(M)]§. Under a change of

coordinates x -» ¢’ = Lx,Ug transformsasL(U[;’)L‘l.
In this paper we shall use tlie notation

s = Pexp </:? @ “‘) v (1.3)

where I'# is the tetradic connection and A,B are the
initial and final points of the path. Tlien, associated
with every path C from paiiit A to paiiit B, we have
a loop variable given by Eq.(I.3) which is a function of
tlie patli C as 1 geometrical object.

Tlie aim of this paper is to study the theory
of gravity using loop variables on the basis of a metric
formalism. In Section II we compute the loop vari-
ables for a static spherically symmetric space-time and
the results are applied to tlie black hole-string metric
for an uncharged non-rotating hole. Section III con-
tains similar results concerriing the cylindrically sym-
metric space-ti ne in (241) and 3+1) dimensions and a
bricf discussion on the gravitational analogue!! of the
Aharonov-Bohin effect!? and on tliestudy of space-time
configuration fiom tlie global point of view. Finally, in
Section 1V, we add some concluding remarks.

I1. Loop variables in a sphcrically symmetric
spacc-time

Tlie space-:ime metric which represents a static
spherically synimetric solution of the Einstein's field
equations can be written as

ds® = 2¥ D2 — HACNdr? — 124p? — r¥sin® fdy?
(IL1)
where ®(r) and A(r) are functions of r only, t istlie
time-like coordinate (—co <t <o) and r,# and ( are
spherical coordinates.
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We wish toincorporate astring defect in this metric
because we are interested in the effect of the string in
this background space-time. We can easily introduce
a conical singularity describing a straight cosmic string
assuming that astring is a defect in space-time and is
to beiiitroduced by removing a sector of angle, say 8w
(p is the linear mass density of tlie string) and identi-
fying the sides of tlie sector, that is, identifying © with
1 2x(1 = 44) rather than with © T 27, so making the
periodicity arbitrary. Tlius, the (r,©) planeis topolog-
ically equivalent to a cone of angle sin™(1 — 4z).

The static spherically symmetric metric with a
string passing through is simply given by

ds® = 22 g2 — M) gp? _p2dp? —r?(1—4p1)? sin? 0d?,
(1122
where 0 < ¢ < 2m.

In ordcr to compute the loop variables we have to
write an explicit expression for the tetradic connection
r,.

’ Let us introduce a set of four vectors eé‘a)(a =
0,1,2,3 is a tetradic index) which are orthonor-
mal at each point with respect to the metric with
Minkowski signature, tliat is, guyeé‘a)e(b) = e =
diag(+1,—1,—1,—1). We assumetliat tliee? ’s are ma-
trix invertible, tliat is, tliat tliere exists an inverse frame
& given by eff’)e(a) = 6% and ef,“)e;’b) = §g.

Define tlie one-forms w?(a = 1,2,3,4) as

W' = Mgt

wt = A

w? = rdo,

WP = (1—4p)r sinfdp . (11.3)

Then, in acoordinate system (z° =t,z! =r,x2 =46
and x3 = ¢) the tetrad frame defined by w® = D dz#
isgiven by

Ao 0 0

e(a) _ 0 r 0 0

B 0 0 (1-4p)rsingd 0
0 0 0 e®(r)

Using the Cartan’s structure equations dw® =

e(8) de” Adz# = —wfAw®, we get the following expres-

sions for the tetradic connections I'§, (a,b are tetradic
indices)

My = I = e 0L (0,
r
th = —th =
ry, = —r31=—(1—4;1)sin€e"“‘(’),
o3 = —lo3=—(1-4p)cosé. (119
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First of all we shall consider gciicrol curves in tlic
zy plane (and planes parallel to it), at fixed times. lii
this case we have

[ude? = Tydyp, (IL5)
|

/0 0 i 0

. 0 000

I, = —i(1-4p) i 0 0 0
0 0 0 0

I

In Eq.(I1.6), Ji3 aid Ja3 are, rcspectively, tlie gen-
crators Of rotatioiis about tlic y— aiid z—axis iii %>.
Thercfore, for a general curve in tlic 2y-plane, the loop
variable is givcii by

Upspr(C) = exp[~i(p2 — 1)(1 = 4p1)
(sin 0™ 715+ cos 0.3)] (11.7)
When tlie curve is closed we gt from Lq.(I1.7) the

following expression for tlic holonomy transformation

Uz 0(C) = exp[—27i(1 —4p)(sin 02 713 F cos 0J43))]

(1IL.8)
Now, consider a curve r(A), with 0(A) coiitaiiicd in
amecridian plane. lii this casc we have
dg ., dr
Tyd) = (1 ozl-x +1 rﬁ) dX. (119)

From Eqs.(I1.4) we sce that T, = 0 aid I'y =
ie~Mr) Ji4, independent of 0, and then tlic loop vari-
ables for a general curveiii tlie meridian plane is givdii
by

Us,s,(C) = explie™ (03 — 0,)J,4)], (11.10)
where
0 i 00
CERER
0 000

is tlie generator of rotations about tlic local z-axis in
"3,
From Eq.(I1.10) we get for a closed curve

where

—i(1 = 4p)(sin 0= J 1y + cos 0J23).-

0 0 00 \l
. —A(r) 0 90 : 0 .
sinfe +1 0 Zi 0 o0 ’Ico>0
0 0 0 0/
(11.6)
l
Usr 0(C) = exp[—27i(1 = e=*)J;2]
(11113)
cos[27(1l —e-"")] sin[2z(l—-e")] O O

—sin[27(1 —e-"")] cos2r(l—e"Y)] 0 0

0 0 10
= 0 0 0 1
(11.12)

Eq.(IL.11) represents a rotation about tlic Oz axis
through an angle 27(1 ~e~*). Finally coiisider a trans-
lation in time. In this case I'yda# = T'ydl where

(0 0 0 1

00 00 vy O @

n -3 —-A(r) 2 (r)

L = kOOOU]e &)
¢ 0 0 0,

= —ie_A(7‘)'C’I(l—(€‘D(r))J01 .
P
(11.13)

Jy; bciiig tlic gencrator of aboost in tlie Oxz-direction.
Usiiig Eq.(I1.12) we get for a time translation between
t, aiid ¢y, the following expression for tlie loop variable

VAR AR
Ut,(C) = exp [—16 A(r)E (61( )) (lz-—h)Jol}
codiy 0 0 siuhy\\
_ 0 10 0
= 0 o1 0 . (IL14)
sinthy 0 0 coshy
where y = e AL (%) is tlie boost parameter.

Eq.(11.13) represeiits a boost in tlie (z,?) dircction.
Udiiig tlie above results we can write a general ex-
pression for U(C). In tlie general case U(C') reads



V. B. Bezerra

U(C) = Pexp (é /;]["Zb ;L').]a(,(l.l:“) , (11.15)
where Jyp ar: tlie generators of lIlic Lorciitz groiip
SO(3,1) aiid T% are tlic appropriate tetradic connec-
tions. TFrom the above result we conclude that tlic
lioloiiomy for (3 t 1)-dimensional static spacc-tiiiic
splicrically syrometric, is tlic homomorphism tliat maps
tlic homotopy class of all tlic curves to tlic rotations
and Loostsin SO(3,1). As ordinary vectors live in tan-
gent space to tlic manifold and for static space-times
thicre is no dli fi iii tiiiie aid conscquently no transla-
tions, tlic transformations that act oii tliis spacc are tlie
Lorentz ones and therefore tlie parallel transport ma-
trices (loop variables) must be clements of tlic Lorciilz
group. In gencral, tlie J,;’s generate tlic representa-
tion of tlic Lor:ntz groiip wliicli acts oii tlic traiisportcd
quantity wliicli can be a vcctor or a spinor. In tlicspinor
case, instead of tlic group $0O(3,1) we have a covcriiig
groiip of tliis one. Therefore, when we Lave fermions,
tlic loop varial:les are elements of tlic covering groiip of
the Lorentz groiip.

From tlic previous results we sce tliat tlic wedge re-
moval affects tlic loop variable in tlic zy-plane only, so
that, a vector parallel transported along a curveiiii tlic
zy plane will detect tlie presciice of tlic striiig.

As an example consider the black hole-string metric
for an uncharg:d non-rotating hole wliicli is given by

Y AL oA\t o,
ds® = (1 - 2———) di? - <1 - ——) dr
r r

—  #2(d0* 4 (1 + 4p)sin0dp?), (11.16)

where 0 < ¢ < 2.

lii vicw of tie previous results we should expect tlic
presence of tlic striiig through tlic role to modify tlie
lioloiiomy transformation for general curves in tlic zy
plane, wliicli is given, in tliis case, by

UQ?I’,O(C) =

9

, 2AN?
expy+2mi(1—4p) 1-—--7 sinfdJys + cos @Jas ! o .
(11.17)

Consider a path formed by two beams which is as-
sumed to circulate tlie z axis aiid to be for fixed 0, say
7 /2. Then, tlie relevant phase is

Usr o(C) ==

211\ '/?
l—(1—4/t) 1—‘7‘ J13 y

(1L18)

exp {+27ri
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where we have introduced a factor exp(2#iJy3) in or-
der to take into account tlie rotation of tlielocal tetrad
frame with respect t0 a tetrad of fixed orientation aiid
wliicli is equal to tlic 4 x 4 identity matrix.

Eq(1L.18) give us llic pliase acquired by a vee-
tor when parallel traiisportcd aroiiiid tlic sourcc for
0 = =/2, wliicli is associatcd with tlic non-triviality of
tlic lioloiiomy transformation for all values of r # 2A{.
Note that tlic wedge removal produccd by tlic presence
of astriiig appcars in tlic phasc through tlic parameter
.

We can obtain a similar rcsult iii tlic spinor case.
However, in order to incorporate fermions we have to
use tlic spinorial representation of tlic Lorciitz group.
So, we change Jig by 3.2 = $[y1,73], where 7, and
~3 are Dirac maltrices in tlic standard representation.
Then, for a path in tlic 2y plane, for 0 = 7/2, we get

UQW,O(C) =

20\ /?
exp {—}-27&';’ [l —(1—4p) (1 - —-7—) } }313} .

(11.19)

From Eq.(I1.19) we scc tliat tlic lioloiiomy trans-
formation for tlic black liole-striiig metric and for
Sclimarzscliild metric (y¢ = 0) also, is trivial only for » =
23], where the metric is infinite. For physical sources
howevecr, tliis singularity occurs inside tlic source where
tlic exterior solution does iiot apply. Tlicii, tlic phase
can never reach tlic trivial value, or in other words, tlie
obscrvability of tliis value is limited by physical consid-
crations.

III. Loop variables in a cyhndrically
symmetric space-time and applications

Tlic niost general static cylindrically symmetric
metric may bc cspressed in tlie form

ds® = e dt? — P (dp? + d2?) — M dp?,  (IIL1)
where ¢ is tlie time-like coordinate (— w<t < o0), p, ¢
aiid z arc ordinary cylindrical coordinates with 0 < p <
00, 0 < ¢ < 2 diid ~co < z < w aiid v, A aiid ¢ are
functions of p.

Proceeding as in Scctioii II we define the forms

WO = e,

wl = e cospdp — e¥singdyp,
w? = ersinpdp + e¥sinpdyp,
W= M.

(111.2)
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Then, in a coordinate system (zl =p,x2= ®, x3=
z and 20 = 1), the tetrad frame defined by e{?dz# is
given by!3

egl) = e cosyp , egl)z—e'/’sincp,

652 = e’sinp eﬁ,’”:—e* cosp,

3

ef) = o , D=1, (1113)

Proceeding analogously to the spherically symmet-
ric case we can show tliat tlie loop variables are given
by Eq.(I1.14), with the tetradic connections given by'3

Th = Th= e—'gdp(ev) cos @,
Ilh = Th= —A'd_(eu)SinSo
dp !
rt, = -2, = [1 - e""-(i(e'l’).l
»2 el dp ’
1 -A d A
s = = - '('1_[;(6 )COS§0>

]

-3, = e'A%(e)‘)singo. (1114

Consider now the (2 * 1)-dimensional case. Then
Eqs.(I11.4) reduces to

-— d v
Ty = Ta=e A;j‘;(e ) cos g,
I3, = T8 = e (e )sing,
ad
rl, = —rgl=[1—e *%(e'ﬁ)]. (111.5)

Using these connections and considering general
curves in the xy-plane, translation in time and radial
segments it is easy to show!* that theloop variables are
given by Eq.(I1.14) where now the Ja»’s are generators
of the group SO(2,1) or in general, Jqs’s are generators
o the covering group of the group SO(2, 1).

Now let us define the deficit angle and establish
its connection with the holonomy transformation. The
deficit angle is one number and the holonomy trans-
formation is a set of linear maps (one for each point
and closed curve). One must then obtain from the lin-
ear map a single number, the deficit angle which is a
property of axially symmetric, asymptotically conical
space-times (at infinity, these space-times are asymp-
totically a cone rather than a plane). To obtain the
single linear map we consider a point p on the curve C.
Since the space-time is axially syrnmetric, it does not
matter which point we choose. Then Ug, as defined
previously, is the holonomy transformation associated
with the point p and a curve C, where C is an integral

curve of the axial Killing field in the asymptotic region.
With Ug, tlie deficit angle x can be defined hy
cosx = Us AaAg, (111.6)
where fia is the unit vector in the direction of the axial
Killing field. Using tetradic indices we can write

cosy = A%nAq, (11L.7)

where A% = Ug A®.

As AY is a unit vector, the elements of U are the
components of the parallel translated vector. From this
and Eq. (IIL.7), it followsthat, the corresponding diag-
onal element of U isthe cosine of the angle between the
vectors. Tlien, we can write in this case cos xq = UJ,
where a is a tetradic index.

Considering a= 1, we have

d
oS X1 = COS [271' (1 -~ e—AE;(e‘/’))} ,

d
= — e ¥
1] = I21r (1 e (e )) +27rn|.

Ase-*$(e*) — 0, we must have x; — 0, and we
choose h = 0 so that

i)

Eq.(I11.9) corresponds to the general formulafor tlie
angular deficit for aclass of static cylindrically symmet-
ric space-times metric given by Eq.(I11.1).

Now, let us apply our results to tlie change in a
vector as well as in a spinor when parallel transported
along a closed curvein the space-time of a static cylin-
drically symmetric cosrnic string!®. As we know, tlie
space-time corresponding to thissolution has the geom-
etry of a cone %2. The curvature vanishes everywhere
except in tlie vertex. Then, if a vector (or a spinor) is
carried around a closed curveencircling the vertex, after
the transport is completed, the vector (or the spinor)
changes due to the global effect of the enclosed curva-
ture.

For the cosmicstring solution, the metricis a partic-
ular caseof theonegiven by Eq.(IIL.1) withe? = ¢ =1
and € = (1- 4u)p, where g is the linear mass density
o thestring and we have considered Newton's constant
G = 1 Explicitly, the line element of the space-time
described by an infinite, straight and static cylindri-
cally syrnmetric cosmic string, lying along tlie z-axis, is
given by1?

(111.8)

or

(11L.9)

ds? = dt? — dp? — (1 — 4p)?p?p® — d2?,  (I11.10)

with the deficit angle x =
Eq.(I11.9).

8wp, obtained from
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For general curves in tlie zy plane me find, us-
ing Eqs.(11.14) aiid (I111.4) witli e* = ¢ = 1 and
€ = (1-4u)», tliat in the cosmic string case, U(C) is
given by

U(Z) = exp(—8mipJya)

cos(8my) sin(8xp) 0 0
—sin(8my) cos(8xp) 0 0

= (() ") (0 " 1 o furin
0 0 01

where 87y istlie deficit angle associated witli tlie space-
time of a cosrric string. \We can obtain a similar rcsult
in tlie case of transport of spinors but in order to in-
corporate fermrions we have to use tlie spinorial repre-
sentation of tl e Lorentz group. So, we cliange Jio by
Yig = %[71,72 , Where v; aid 4, are Dirac matrices in
tlie standard representation. Tlien, for general closed
curves in the zy-plane we get

U(C) = exp(—4minZis). (111.12)

After tlie paralel transport, tlie spinor ¥(¢ = 27)
will be given in terms of tlie original one ¥(¢ = Q by
tlie relation

Yo =91) = 6_4"i“§)1zz/)(<p =0).

From Eq.(I 1.13) we conclude tliat there will be no
Aharonov-Bohm effect if aiid only if 47y is an even
integer. Iowever, tliis condition is not always satis-
fied. Tlien, we have shown that if we parallel transport
a spinor around a closed path in tlie xy-plane lying in
tlieflat region, tlie transported one does not necessarily
coincide witli tlie original. Therefore, when we parallel
transport a spinor in a region in which the curvature
vanishes, it exl ibits a physical effect arising from tlie
enclosed non-zero curvature associated with tlie pres-
ente Of tlie cosmic string. This is an example of tlie
gravitational aiialogue of tlie Aharonov-Bohm effect.
Tliiseffect should be regarded asbasically classical, and
it is associated with the non- triviality of tlie liolonomy
transformation for general curvesin the xy-plane, due
to tlie presence of the cosmic string. As in this case
tlie geometry is locally flut the phase dliift acquircd by
tlie spinor when parallel transported around tlie source
may bc regarded as due to tlie coupling of its energy-
momentum to the global geoinetrical properties of this
space-time. The same analysis can be applied to a vec-
tor. In this case we use the expression for tlie liolonomy
transformation given by Eq.(111.11) concluding that the
same effect accurs.

A similar result can beobtained in tlie caseof aspin-
Icss point particle solution® (three-dimensional case).
In tliespinor case, the spinor acquires a pliase given by
exp(—4mimXy2), where X1, == %[01,02] with o1 and o

(111.13)
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being Pauli’s matrices, aiid m is tlie mass of tlie par-
ticle tliat gencrates tlie gravitational ficld. Following
tlie arguments of tlie string case, we conclude that we
have an Aharonov-Bohm eflect in this case. Tlie same
analysis can be extended to tlie transport of vectors,
with a similar conclusion.

Similarly, we can consider tlie metrict®

ds? = dt* — dp® — Gap*dp® — (Bot + B1)2dz?, (111.14)

where Go, Bg are B, aiid integration constants.

The metric given by Eq.(II1.14) corresponds to a
Minkowski space-time minus a wedge as we sec by defin-
ing tlie coordinates ®,Z and T, for By # 0, by

GOQO )
B .
(t + E’i) sinh(Bgz) ,

(t + %) cosh(Bgz).

lii

T

(111.15)

In tlie new coordinates, tlie metric given by
Eq.(II1.14) reads

ds® = dT?* — dp? — p*d®?* — dZ2. (111.16)

Tlius tlie above metric is localy flat but not glob-
ally. Tlie deficit angle is 27 Gy.

We can do the previous analysis dlioming that
we have a gravitational analogue of tlie Aharonov-
Bolhum effect also, in tlie vector and spinor cases, witli
tlie holonomies in tlie xy plane given by U(C) =
exp(—27iGyJ12) and U(C) = exp(—miGoL{a), respec-
tively.

AS another application we dliall study tlie space-
time configuration of two moving cosmic strings. To do
tliis we shall use Eq.(I11.10) and a result!® tliat only
strings enclosed by tlie circles contribute to tlie phase
factor acquired by a vector when parallel transported
in the background space-time of tlie multiple cosmic
string solution'®.

Tlien, suppose tliat we transport a vector around a
string 2 localized at (a2,0,0, O). The pliase factor ac-
quired by this vector is Uy = exp(—8wiuzJi2). Now,
carrying tlie resultiiig vector along acircle around string
llocalized at (a;,Q0, O), it iseasy to conclude that tlie
resulting vector will have a phase given by the prod-
uct Uy, Us, where Uy = exp(—8wiui1Ji2). Note tliat
we can continue tliis process involving N strings. Af-
ter tliis, the vector will have acquired a pliase given
by UlUg...UK_lUKUK_H ...UN_lUN, where UK =
exp(—8miux Ji2), ix being tlie linear mass density of
the K th string.

Now consider a system of two moving strings. Con-
sider string 1, initially at the origin with velocity
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and string 2 located along the r-direction at (a2, 0, 0, O),
with velocity @s, in the xy-plane. These strings can be
vicwed asstrings at rest tliat were boostcd. Tlien, if we
take avector and carry it alonga circle around string 2,
instead of tlie pliase U tlie vector will acquire a phase
L ULy 1, whicli corresponds to the transformation of
tlic loop variable under tlie cliange of coordinate corre-
sponding to the boost L, wliich is given by

coshyy 0 0 sinh+yg
0 10 0
Ly= o 01 o , (IIL17)
sinhye 0 0 coshvy, /

1 — cos® p3(1 — coshy3)

— cos p3sings(1 — cosh
La(ps,vs) = ( #s 90;(;)( %)

\ — cos g sinh v

The form o Ls(ps,v3) comes out from tlie fact
tliat every homogeneous Lorentz transformation can
be decomposed in tlie following way: L(p,y) =
R(p)YL(0,7)S(p), wliere R and S are rotations and
we choose S = R~! and in tliis case L™!(p,y) =
R(p)L(0, ~7)S(p).

We want tlie third string to be globally equivalent
to tlie two previous ones. Tlien, we have to egiiate
tlie pliase factor acgiiired in both situations, tliat is
L\Us L7 LyUs Lyt = L3UsL3 Y. Taking the trace of tliis
relation we find tlie solutions

+cos(dmpuz) = cos(dmpy)cos(dmpa)
—sin(4mpy )sin(4mpg) X
(cosh#y; coshys — sinli vy sinli 3)

(111.19)

Equation (111.19) is tlie relation between tlie deficit
angles produced by the system of strings, the veloci-
ties and the deficit angle produced by tlie tliird string.
Trom tliis equation we seetliat tlie angle 473 depends
on the linear mass densities of tlie strings 1 and 2, and
on its velocities.

In the (2+1)-dimensional case we obtain the same
Eq.(I11.19) for asystem of particles, interchanging y by
m (mass of the particlc).

Equation (111.19) and the similar one in the case of
point particles give usinformation about tlie global fea-
tures of the space-time gcnerated by a system of strings

— cos p3singz(l — coshys) 0

where v, is the boost parameter and sucli that
[T2| = tanh ya.

If now, tlie resulting vector is parallel transported
around string 1, along a circle, tlie final pliase will be
LU LT LaUs Ly, where Ly is given by tlie same ex-
pression for Ly with the intercliange of 2 by v1{|¥:| =
tanh ;).

Let usnow consider atliird string that behaves glob-
aly like tlicsc two. Tliis string can be viewed as one
boosted by

cos 3 Sinli vz

1 —sin®p3(1 ~coshys) 0 sinpzsinlivys
0 1 ; (I11.18)
sings sinh 73 0 cosh s

l

and point particlcs, respectively.

| V. Concluding remarks

We have shown by explicit computation for metrics
corresponding to splierically symmctric space-times,
tliat tlie pliase acqiiired by a particle (vector or spinor),
when parallel transported along agiven curve Cin tlicsc
background gravitational fieldsis given by the loop vai-
ables U(C) = Pexp(f, Tudz#) with T, = £T8 70,
wliere Jg; are tlie generators of tlie Lie algebra o tlie
Lorentz group SO(3,1) or of its covering group. Tlien,
for a given curve in these space-times, tlie phase shift
acquired by a particle is an element of tlie Lorentz
group, or in general, the phase factor is an element
o tlie covering group of the Lorentz group, in order to
include fermions.

For tlie metrics corresponding to cylindrically sym-
metric space-times, tlie loop variablcs are elements o
tlie Lorentz group SO(3,1) or of its covering group!?,
and in the (2 + 1)-dimensional case, they are elements
o the SO(2,1) group or of its covering group aso in
order to include fermions. These results permit us
to study tlie gravitational analogue of the Aharanov-
Bolim effect!!.

As tlie loop variables for the static geometric struc-
tures under considerations are elements of tlie Lorentz
group SQO(3,1), tliis means that these quantities are re-
lated to the holonomies of a flat SO(3,1) connections
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and consequertly that the space-time geometry is en-
coded in tlie liolonomies of these flat SO{3,1) connec-
tions.

The configuration of a space-time corresponding to
two moving strings or particles ((2 T 1)-dimensional
case) diows that there is a linking between tlie
parameters thet describe this space-time and tliespace-
times generated by each of the two strings or particlcs,
respectively.
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