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\ITe show that tlie loop variables for static spherically symmetric space-times are elcmcnts 
of the Lorcntz group S0(3,1), or more generally, they are elements of the covering group 
of the Lorentz group in order to include ferinions. Tlie analogous results concerning tlie 
cylindrically symmetric space-t,ime are given. In tliis case we particularize our results to tlie 
(2+1)-dimensional space-time sliowing tliat tlie loop variables are elements of SO(2,l) or its 
covering group. Some examplcs and applications are discussed. 

In tlie loop space formalism for gauge theoriesl the 
fields depend on paths ratlier than on space-time points, 
and a gauge field is described by associating with eacli 
patli in space-time an element of tlie correspoiicling 
gauge group. The fundamental quantity that arises 
from tliis path-dependent approach, the non-integrable 
phase factor2 (or loop variable, in our terminology) rep- 
resents the electromagnetic fieid or a general gauge field 
more adequately than the field strength or tlie integral 
of the vector potentia12. In the electromagnetic case, 
for example, as observed by \\TU and yang2, in a situ- 
ation where global aspects are taken into consideration 
the field strength underdescribes the theory and tlie 
integral of the vector potential for every loop overde- 
scribes it. The exact description is given by the factor 
e x p ( e  $c A,dx,). 

The exteyion of the loop space formalism to the 
theory of gravity was first considered by Mandelstam3 

who established severa1 equations involving the loop 
variables, and also by Yang4, Menskii5 and Voronov 
and ~ a k e e n k o ~ .  Recently, Bollini et computed the 
loop variables for the gravitational field corresponding 
to the Kerr metric. 

Einstein gravity in (2 + 1)-dimensional space-time 
has recently developed into an area of active re~earch '~~.  
One reason for this interest is that there are systems 
whose symrnetry properties reduce the effective num- 
ber of dimensions. In gravity this occurs for the space- 
time created by an infinite cosmic stringlO, which we 
shall consider here. On the other hand, this interest 
has been stimulated by the peculiar and non-generic 
properties of this field theory. 

Space-time is flat outside matter in three- 
dimensional gravity as well as outside a cosmic string 

and lience tliere can exist no static interaction between 
sources. The effects of the sources show up in global 
aspects of tlie geomctry and we find topology assuming 
the role played by curvature in the (3+1)-dimensional 
theory. Although tlie local curvature of source free re- 
gions in (2+1)-dimcnsional gravity is unaffected by any 
matter in the space-time, it is important to understand 
that matter can still produce nontrivial global effects. 
In order to study these effects we shall use the only pos- 
sible observables in this theory which must come from 
non-local variables such as the loop variables matrices. 

The loop variables in the theory of gravity are 
matrices representing parallel transport along con- 
tours in a space-time with a given afine connection. 
They are connected with the holonomy transforma- 
tions whicli contain important topological information. 
These mathematical objects contain information, for 
example, about how vectors change when parallel trans- 
ported around a closed curve. They also can be thought 
of as measuring the failure of a single coordinate patcli 
to extend a11 the way around a closed curve. 

Suppose that we have a vector va at a point p of 
a closed curve C in a space-time. Then, one can pro- 
duce a vector üa at p which, in general, will be differ- 
ent from va, by parallel transporting va around C.  In 
this case, we associate with tlie point p and the curve 
C a linear map Uf such that for any vector va at p, 
the vector ü" at p results from parallel transporting v" 
around C and is given by .lia = Uzvfi. The linear map 
UF is called the holonomy transformation associated 
with the point p and the curve C. If we choose a tetrad 
frame and a parameter XefO, 11 for the curve C such that 
C(0) = C( l )  = p, then in parallel transporting a vec- 
tor va from C(X) to C(X + dX), the vector components 
change by Sua = ~;[x(X)]vfiX, where M z  is a linear 
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map wliicli der ends on the tetrad, the afine connection We wish to  incorporate a string defect in this metric 
of tlie space-tine and tlie \alue of A. Then, it follows because we are intercsted in the effect of the string in 
tliat tlie liolonomy transformation UF is given by tlie this background space-time. Me can easily introduce 
ordercd matrix product of the N linear maps as a conical singularity describing a straight cosmic string 

assuming that a string is a defect in space-time and is 
to be iiitroduced by removing a sector of angle, say 87~p 

1 " - lim 6$+ -MF[x(A)]1 " {  N ) (1.1) 

( p  is the linear mass density of tlie string) and identi- 
U~ - N+a, X = i / N  

i=l 
fying the sides of tlie sector, that is, identifying (o with 
(o + 2 s ( l -  411) rather than with (o + 2s ,  so making the 

One oftcn writes the expression iii Eq. (1.1) as periodicity arbitrary. Tlius, the (r,  (o) plane is topolog- 
ically eqiiivalent to a cone of angle sin-'(1 - 4p). 

V(C) = ~ e x p  (' hl) . (1.2) 
The static spherically symmetric metric with a 

string passing tlirougli is simply given by 

wliere P means ordered procluct along a curve C. Equa- 
tion (1.2) sliould be underslood as simply an abbrevi- ds2 = e2@(r )d12 -e2A( ' )d r2 - r2d~2- r2 ( l -4 /1 )2  
ation for tlie cxpression in Eq.(l). Note Iliat if MF (11.2) 
is independent of A,  then it follows from Eq.(l) tliat wllere O 5 9 5 2s .  
U i  is giveii b ~ ,  UF = [exp(M)];. Under a change of Iii ordcr to compute tlie loop variables we liave to 
coordinates x --, x' = Lx, UEj transforms as L(u;)L-'. write an explicit expression for the tetradic connection 

111 tliis paper we sball use tlie notation FP' 
Let us introduce a set of four vectors e(,,(a = 

.. , 
0,1,2,3 is a tetradic index) which are orthonor- 

, = p ( , (1.3) mal a t  eacli point witli respect to tlie n~etric witli 
Rlinkowski signature, tliat is, g,,e~a,e~bl = q,b = 

wlicre I'f' is the tetradic connection and A, B are the 
initial and final points of tllie path. Tlien, associated 
w i ~ h  every path C from poiiit A to poiiit B, we Iiave 
a loop variable given by Eq.(I.3) which is a function of 
tlie patli C as I geometrical object. 

Tlie aim clf this papei. is to study the theory 
of gravity using loop variables on the basis of a metric 
formalism. In Section I1 vve compute the loop vari- 
ables for a static spherically symmetric space-time and 
the results are applied to  tlie black hole-string metric 
for an uncliarged non-rotating hole. Section 111 con- 
tains similar rtsults concerriing the cylindrically sym- 
metric space-ti nc in (2+1) and 3+1) dimensions and a 
bricf discussion on the gravitational analoguel1 of the 
hliaronov-Bohin effect12 ancl on tlie study of space-time 
configuratim fiom tlie global point of view. Finally, in 
Section IV, we add some coilcluding remarks. 

11. Loop vai.-iablcs in a sphcrically syxnmetric 
spacc- t i m e  

Tlie space-Gme metric which represents a static 
spherically synimetric solution of the Einstein's field 
equations can 11e written as 

. , . .  
diag(+l, -1, -1, -1). 1% assume tliat tlie e, 's are ma- 

(.) 
trix invertible, tliat is, tliat tliere exists an inverse frame 

(a) e, given by ep)eya) = 6; and ep)eb)  = 6;. 
Define tlie one-forms wa(a = 1,2,3,4) as 

Then, in a coordinate system (xO = t ,  x1 = r, x2 = 6' 
and x3 = p) the tetrad frame defined by wa = ef'dxf' 
is given by 

Using the Cartan's structure equations dwa = 
e(') dxVAdx, = - w f ~ w ~ ,  we get the following expres- ,llv 
sions for the tetradic connections rib (a, b are tetradic 
indices) 

-. 
(11.1) ri2 = -r& = e-'('), 

wliere @(r) and A(r) are functioiis of r only, t is tlie 
rb3 = -r3 ,, - - -(1 - 4,u) sin ~e-"('), time-like coordinate (-co < t < co) and r, O and (o are 

splierical coordinates. = -r3 ,, - - -(1 - 41-1) COS e. (11.4) 
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First of a11 n-c sliall coiisiclcr gciicrol curves i11 tlic ivlicrc 
zy plane (and planes parallcl to it), at  fiscd tiiiics. Iii 
tliis casc wc liave 

rp(w = rV(191 (11.5) 

(11.6) 
= -i(l  - 4,r)(siii 0e-"(") J~~ + cos 0 J-a). 

Iii Eq.(II.G), J13 aiid J23 are, rcspcctively, tlie gcn- 
cralors of rotatioiis about tlic y- aiid .r-asis iii X3. 
Tlicrcfore, for a gcncral curve iii tlic .zy-plniie, Ilic loop 
variril~lc is givcii by 

UV,,,(C) = csp[-i(cp2 - pi ) ( l  - 4lr) 

(siii O ~ - " ( ' ) J ~ ~  + cos OJ23)] .(II.T) 

\\'licii tlie curve is closcd ~vc  gct iroiii Eq.(II.7) Llic 
a 1011 following esprcssioii for tlic Iioloiiomg traiisforin 1' 

U2n,0(C) = esp[-2iri(l- 4/~)(siii OeA(') ~ 1 3  + cos 0 JZ3)] 
(11.8) 

Now, coiisider a curve !.(A), witli O(X) coiitaiiicd iii 
a iiicridiaii plaiie. Iii tliis case wc liuve 

From Ecp(II.4) ~ v e  sce tliat r, = O aiid I'@ = 
ie-"(')J12, iiidepciideiit of O ,  ancl tlicii tlic loop vari- 
ables for a general curve iii tlie iiicritliaii plane is givcii 
1 1 ~  

wlicre 

is tlie gciierator of rotatioiis aboiit tlic local r-asis i11 
x3. 

From Eq.(II.10) we get for a closed curve 

U2,,o(C) = esp[-2xi(l - eVA)  J ~ ? ]  

(11.11) 
cos[2x(l - e-")] siii['2;r(l - e-")] O O 

= i -siii[2ir(l - e-")] cos[2x(l - e-") ]  0 0 
o o 1 o 
O o o 1 1 

(11.12) 

Eq.(II.ll) rcpreseiits n rotation alout  tlic Or  asis 
tlirougli ali aiigle 2ir(l- e-"). Fiiially coiisidcr a trails- 
latioii iii tiiiic. Iii tliis case r,,tldi = rtdL ivliere 

O O O i  
d 0 0 0 0 (e+(')) 
d1. 

O 0 0  

Jol bciiig tlic gcncrator of a boost iii tlie Ox-directioii. 
Usiiig Eq.(II.12) Ire get for a time traiislution betwceil 
i1 aiid t z ,  tlic follo~viiig espressioii for tlie loop variable 

cosli y O O siiili y 

- 
o o 1  o , (11.14) 

\ siiili y O O cosli y / 
wlicre y = e-A(')$(e'l'(r)) is tlie boost pararnctcr. 
Eq.(II.13) represeiits a boost iii tlie ( z , t )  dircctioil. 

Usiiig tlie above rcsults wc can write a geiieral cs- 
pressioii for U(C). Iii tlie general case U(C) reads 



wlicrc Jab a r ?  tlie gciicrators of llic Lorciitz groiip 
SO(3, l)  aiid r:,b are tlic appropriate tctrridic coiiiicc- 
tioiis. R o i n  tlic above rc~sult \rc concliidc tlial tlic 
lioloiiomy for ( 3  + 1)-diiiiciisioiial static spacc-tiiiic 
sl~licrically syinmclric, is tlic lioiiiomorpliisiii tliat iilaps 
tlic liomotopy class of a11 tlic curvcs to tlic rotatioils 
aiicl Loosts iii ,5'0(3,1). 11s ordiiiary vcctors livc iii taii- 
gciit spacc to tlic iiiaiiifold aiicl for stiitic space-tiiucs 
tlicre is no  sli ft iii tiiiie aiid coiiscq~iciitly no t r a i i h  
tioiis, tlic traii:jforinatioiis t1iaL act oii tliis spacc are tlie 
Lorciilz oiics aiid tlicrefore tlie parallcl traiisport ma- 
triccs (1001) va'~ir11)les) iniist bc clcinciils of tlic Lorciilz 
group. Iii geiicral, tlie JOb's gcilcrate tlic rcprcsciita- 
tioii of tlic Lor':iitz groiip wliicli acts oii tlic traiisportcd 
qiianlity wliicli cai] bc a vcctor or aspiiior. Iii tlic spiiior 
ca.x, iiistcad of tlic group Li'O(3, 1) wc Iirive a covcriiig 
groiip of tliis oiic. TIicrcfo~.c, wlicii wc liavc fcrmioiis, 
tlic loop variallcs aic clcii~ciits of tlic covcriiig groiip of 
Llic Loiciilz groiip. 

r r o m  tlic prcvious results wc see tliat tlic wcdgc re- 
iiiovr~l i\fCccts tlic loop variable iii tlic xy-plane oiily, so 
tliut, a vcclor parrillel traiisportcd riloiig a curve iii tlic 
zy plaiie nill dctcct tlie prcsciice of tlic striiig. 

As ali csairple coiisidcr íJic black liolc-striiig inctric 
fur ai1 uiic11arg:d 11011-rotatiiig liole wliicli is givcii Ly 

v.licrc O 5 p 5 2w. 
Iii vicw of t ie previous rcsults \rc sliould cspcct tlic 

prcscncc of tlic striiig tlirougli tlic role to iiiodify tlie 
lioloiiomy traii:Jormatioii for gcilcral curvcs iii tlic xy 
piam, wliicli is given, i11 tliis case, Ly 

wlicrc n c  Iirive iiitroclucccl :L factor esp(2rriJ13) iii or- 
dcr to tiikc iiito accouiit tlie rotatioii of tlie local tclrad 
frniiic witli rcspcct to a tctrad of Gscd oriciitrition aiid 
wliicli is cqiial to tlic 4 x 4 idciitity matris .  

Eq.(II.lS) give iis Ilic pliase acqiiircd l ~ y  a vcc- 
tor wlicii parnllcl traiisportcd aroiiiid tlic sourcc for 
O = w/2, wliicli is associatcd ~ r i t l i  tlic iioil-triviality of 
tlic lioloiiomy traiisforiiiatioii for a11 valucs of r # 2~11. 
Note tlirit tlic wcdgc rciiiovnl produccd by tlic prcsciice 
of a striiig appcars iii tlic pliasc tlirougli tlic parameler 

i r .  
\\'c cai1 obtaiii a siiiiilar rcsult iii tlic spiiior case. 

IIowcvcr, iii ordcr to  iiicorporate fcriiiioiis wc 11aw to 
use tlic spiiiorial rcprcsciitrttioii of tlic Lorciitz group. 
So, irc ciialigc J13 I)y C13 = $[Y1,i3], ~r i icrc  yi aiicl 
y;i are Dirac iiiatriccs iii tlic staiidarrl rcpresciitritioii. 
Tlicii, for a patli iii tlic .z.g plaiic, for O = 2~1.2, \\'c gct 

rroiii Eq.(II.19) Irc scc tliat tlic lioloiiomy traiis- 
formritioii for tlic bl~icli liole-striiig inctric aild for 
Sclimarzscliild iiictric ( / L  = 0) rilso, is trivial oiily for r = 
2.11, \rlicrc lhe mctric is iiifiiiitc. For pliysical sources 
Iio\rcvcr, tliis siligiilarity occurs iiiside tlic source wliere 
tlic cstcrior solulioii docs iiot apply. Tlicii, tlic pliasc 
cai1 i-icvcr reacli tlic trivial value, or i11 otlicr ~voids,  tlie 
obscrvability of tliis valuc is liniitcd L>y pliysicril coiisicl- 
cratioiis. 

111. Loop v:iriaLlcs i11 a cyliiiclricnlly 
syii i i i ictr ic spacc - t i inc  aiid appl ica t io i i s  

Tlic niost gciicrril static cyliiidrically symmctric 
iiictric mny bc csprcsscd iii tlie form 

- 
( 1 )  wlicrc t is tlie time-lilie coordiiiatc (- w  < 1 < ca), p, cp 

aiid t. arc ortliiiary cyliiidrical coordiilatcs witli O 5 p < 
Coiisidcr a patli formcd by two bcams wliicli is as- CO, O < cp < 2n aiid -CO < z < w aiid v,  X aiid $ are 

suiiicd to  c i r cu l~ tc  tlie z asis aiid t o  be for íiscd 0 ,  say fuiictioiis of p. 
~ / 2 .  Tlieii, tlie relcvaiit pliase is Procccdiiig as iii Scctioii 11 we define tlic forins 

csp  {+2rri [ I -  (1 - 4/41 (1 - F) 'I2] J13} , 

w 0  = evdt, 
X w1 = e cos y d p  - e@siiipdi3, 

w 2  = e x s i i i y ~ l p + e @ s i i i p ~ l ~ ,  

w 3  = exdr .  
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Then, in a coordinate system (xl = p, x2 = cp, x3 = 
z and x0 = t ) ,  the tetrad frame defined by e f ) d x ~  is 
given byI3 

= e* coscp , e?) = -e*sincp, 

e!') = exsincp , e?) = -e* cosp, 
= 

3 , e c )  = +ev. (111.3) 

Proceeding analogously to the spherically symmet- 
ric case we can show tliat tlie loop variables are given 
by Eq.(II.14), with the tetradic connections given by13 

d 
I':o = ril = e-'-(ev) COS cp, 

dp 
d 

I'so = ri2 = e-'-(e")~in~, 
dp 

r:, = 

d 
= -rZ2 = e-'-(ex)sincp. (111.4) 

d p  

Consider now the (2 + 1)-dimensional case. Then 
Eqs(III.4) reduces to 

Using these connections and considering general 
curves in the xy-plane, translation in time and radial 
segments it is easy to show14 that the loop variables are 
given by Eq.(II.14) where now the Jab's are generators 
of the group SO(2 , l )  or in general, Jab9s are generators 
of the covering group of the group SO(2,l).  

Now let us define the deficit angle and establish 
its connection with the holonomy transformation. The 
deficit angle is one number and the holonomy trans- 
formation is a set of linear maps (one for each point 
and closed curve). One must then obtain from the lin- 
ear map a single number, the deficit angle which is a 
property of axially symmetric, asymptotically conical 
space-times (at infinity, these space-times are asymp- 
totically a cone rather than a plane). To obtain the 
single linear map we consider a point p on the curve C. 
Since the space-time is axially syrnmetric, it does not 
matter which point we choose. Then UT, as defined 
previously, is the holonomy transformation associated 
with the point p and a curve C, where C is an integral 

curve of the axial Killing field in the asymptotic region. 
With U;, tlie deficit angle x can be defined hy 

where Â, is the unit vcctor in the direction of the axial 
Killing field. Using tetradic indices we can write 

COs = Ã a v ~ a  , (111.7) 

where Ãa = U: A ~ .  
As Â";s a unit vector, the elernents of U are the 

components of the parallel translated vector. From this 
and Eq. (III.7), it follows that, the corresponding diag- 
onal element of U is the cosine of the angle between the 
vectors. Tlien, we can write in this case cosx, = U a ,  
where a is a tetradic index. 

Considering a = 1, we have 

As e-*$(e*) + O,  n e  must have ~1 -r 0, and we 
choose n = O so that 

Eq.(III.9) corresponds to the general formula for tlie 
angular deficit for a class of static cylindrically symmet- 
ric space-times metric given by Eq.(III.l). 

Now, let us apply our results to tlie change in a 
vector as well as in a spinor when parallel transported 
along a closcd curve in the space-time of a static cylin- 
drically symmetric cosrnic stringlO. As we know, tlie 
space-time corresponding to  this solution has the geom- 
etry of a cone ?X2. The curvature vanishes everywliere 
except in tlie vertex. Then, if a vector (or a spinor) is 
carried around a closed curve encircling the vertex, after 
the transport is completed, the vector (or the spinor) 
changes due to the global effect of the enclosed curva- 
ture. 

For the cosmic string solution, the metric is a partic- 
ular case of the one given by Eq.(III.l) with e" = e' = 1 
and e* = (1 - 4p)p, where p is the linear mass density 
of the string and we have considered Newton's constant 
G = 1. Explicitly, the line element of the space-time 
described by an infinite, straight and static cylindri- 
cally syrnmetric cosmic string, lying along tlie z-axis, is 
given by10 

with the deficit angle x = 8?rp, obtained from 
Eq.(111.9). 



For generirl curves in tlie xy plane me find, us- 
ing Eqs.(II.ll) aiid (111.4;) witli e" = e' = 1 and 
e* = (1 - qp),,, tliat in the cosmic string case, U(C) is 
givcn by 

wlierc Sap is tlie deficit angle associated witli tlie space- 
time of a cosrric string. \k can obtain a similar rcsult 
in tlie case of transport of spinors but in order to in- 
corporate ferrrions we have to use tlie spinorial repre- 
seiilation of tl e Lorentz group. So, we cliange J12 by 

1 C12 = 2 [y1, 7 2  , where yl aiid yz are Dirac matrices in 
tlie s taiidard rcpresentatioci. Tlien, for general closcd 
cuivcs in the a y-plane we g-t 

1Zfter tlie parallel transport, tlie spinor $(cp = 2n) 
will 1x2 given iii terms of tlie original one $(v = O) by 
tlie rclation 

being Pauli's matrices, aiid m is tlie mass of tlie par- 
ticle tliat gencrates tlie gravitational Geld. Folloming 
tlie arguments of tlie string case, we conclude tliul we 
liave an Xliaronov-Bohm efTect in tliis case. Tlie same 
analysis can be extended to tlie transport of vectors, 
with a similar conclusion. 

Siiililarly, ive can considcr tlie metric15 

wlicre Gol  B0 are Bl aiid iiitegration constants. 
The iiletric givcn by Eq.(III.14) corrcsponds to a 

Aliiikowski space-time minus a ~vedge as we sce by defiii- 
irig tlie coordinates (3, Z and T, for B0 # O ,  by 

Iii tlie new coordinates, tlie nictric given by 
Eq.(III.14) reads 

From Eq.(I 1.13) we conclude tliat there will be no 
Aliaronov-Boliiii effect if aiid only if 4xp is ali even 
i~iteger. IIoweIer, tliis condition is not always satis- 
ficd. Tlien, we tiave shown that if we parallel transport 
a spinor arountl a closed pai,li in tlie xy-plane lying in 
tlie flat region, tlie transported one does not necessarily 
coincide witli tlie original. Tlierefore, when -+e parallcl 
transport a spinor in a region in wliicll thc curvature 
vaiiishcs, it exl ibits a physical effect arising froni tlie 
cnclosed noii-zero curvature associated with tlie pres- 
ente of tlie cosmic string. 'Tliis is an example of tlie 
gravitational aiialogue of tlie Aharonov-Bohrn effect. 
Tliis enèct should be regarded as basically classical, and 
it is associated with the non- trivialily of tlie liolonomy 
transformation for general curves in the xy-plane, due 
to tlie presence of the cosmic string. As in this case 
tlie geometry is locally flut the   lia se sliift acquircd by 
tlie spinor when parallel transported around tlie source 
may bc regarded as due to tlie coupling of its energy- 
momciltum to the global geoinetrical properties of this 
space-time. Thc same analysis can be applied to a vec- 
tor. In this case we use the e~pression for tlie liolonomy 
transformation given by Eq.(TII.11) concluding that the 
same effect occi rs. 

A similar result can be obtained ir1 tlie case of a spin- 
lcss point parti& so1ution"three-dimensional case). 
In tlie spinor cate, the spinor acquires a pliase given by 
esp(-4nimllz),  where Clz == +[ai,  ãz] with a1 and ã z  

Tlius tlie above inetric is locally flat but not glob- 
ally. Tlie deficit angle is 2aGo. 

\Ire can do the previous analysis slioming that 
we have a gravitational analogue of tlie Aliaronov- 
Boliin effect also, in tlie vector and spinor cases, witli 
tlie holonomies in tlie xy plane giveii by U(C) = 
esp(-2niCoJ12) and U(C) = exp(-niGoCia), respec- 
tively. 

As ariotlier ap~lication we sliall study tlie space- 
tiiiie configuratiori of two moving cosmic strings. To do 
tliis we shall use Eq.(III.lO) and a result13 tliat only 
strings enclosed by tlie circles contribute to tlie phase 
factor acquired by a vector when parallcl transported 
i11 the background space-time of tlie multiple cosmic 
string so l~ t i on '~ .  

Tlien, suppose tliat we transport a vector around a 
string 2 localized at (az, O,  O ,  O). The pliase factor ac- 
quired by this vector is U2 = esp(-8nipzJlz). Now, 
carrying tlie resultiiig vector along a circle around string 
1 localized at (al,  O, O, O), it is easy to conclude that tlie 
resulting vector will have a pllase given by the prod- 
uct U1,U2, whcre Ul = esp(-8niplJlz). Note tliat 
we can continue tliis process involving N strings. Af- 
ter tliis, the vector will liave acquired a pliase given 
by U1U2. . . U K - l U h ' U ~ + l . .  . U N - l U ~ ,  where UK = 
esp(-8nipKJl2), being tlie linear mass density of 
the I< t h  string. 

Now consider a system of two moving strings. Con- 
sider string 1, initially at the origin with velocjty 



334 Brazilian Jorirnal of Pi~ysics, vol. 22, no. 4, December, 1992 

and string 2 located along the r-direction at (a2, O,  O, O), 
witli velocity Ü2, in the xy-plane. These strings can be 
vicwed as strings at rest tliat were boostcd. Tlien, if we 
take a vector and carry it alonga circIe around string 2, 
instead of tlie pliase U2 tlie vector will acquire a phase 
L ~ U L ,  l ,  whicli corresponds to the transformation of 
tlic loop variable under tlie cliange of coordinate corre- 
spondiiig to the boost L2 wliich is given by 

\ sinh y2 O O coshy2 / 

where 72 is the boost parameter and sucli that 
IÜ21 = tanliy2. 

If now, tlie resulting vector is parallel transported 
around string 1, aloiig a circle, tlie final pliase will be 
L ~ u ~ L ~ ~  L ~ u ~ L ~ ' ,  wliere Li is given by tlie same ex- 
pression for L2 witli tIie intercliange of y:! by yl(lÜll = 
tanli 71). 

Let us now consider a tliird string that behaves glob- 
ally like tlicsc two. 
boosted by 

Tliis string can be viewed as one 

\ - cos p3 sinh y3 
o 

sinpg sinh 73 

O cos p3 sinli 73 
O sinp3 sinli 73 
1 O 
o cosh 73 

Tlie form of L3(p3,y3) comes out from tlie fact 
tliat every homogeneous Lorentz transformation can 
be decomposed in tlie following way: L(p, y) = 
R(p)L(O, y)S(cp), wliere h! and S are rotations and 
we choose S = R-' and in tliis case L-'(p, y) = 
R(cp)L(O, -7)S(v). 

\\'e want tlie third string to be globally equivalcnt 
to tlie twb previous ones. Tlien, we Iiave to eqiiate 
tlie pliase factor acqiiired in both situations, tliat is 
Li U1 L;' L ~ u ~ L ~ ~  = ~ 3 ~ 3 ~ 3 ~ .  Taking the trace of tliis 
relation we find tlie solutions 

f cos(4?rp3) = cos(4ã/li) cos(4x/ln) 

-~ i i i ( 4?r / i~ ) s i l i ( 4~ /~~ )  x 

(cosh yl cosh 72 - sinli yl sinli y2) 

(111.19) 

Equation (111.19) is tlie relation between tlie deficit 
angles produced by the system of strings, the veloci- 
ties and the deficit angle produced by tlie tliird string. 
From tliis equation we see tliat tlie angle 4rp3 depends 
on the linear mass densities of tlie strings 1 and 2, and 
on its velocities. 

In the (2+1)-dimensional case we obtain the same 
Eq.(III.19) for a system of particles, intcrclianging / I  hy 
nz (mass of the particlc). 

Equation (111.19) and the similar one in the case of 
point particles give us information about, tlie global fea- 
tures of the space-time gcnerated by a system of strings 

and point particlcs, respectively. 

IV. Concludirig rcinarks 

\Ve have sliown by explicit computatioii for inetrics 
corresponding to splierically symmctric space-times, 
tliat tlie pliase acqiiired by a particle (vector or spinor), 
wlien parallel transported along a given curve C in tlicsc 
background gravitational fields is givcn by the loop vai-  
ables U(C) = Pexp(lc  I',,dxfi) with I',, = ~ ~ e ,  
wliere Jab are tlie generators of tlie Lie algebra of tlie 
Lorentz group SO(3 , l )  or of its covering group. Tlien, 
for a given curve in these space-times, tlie phase sliift 
acquired by a particle is an elemeilt of tlie Lorentz 
group, or in general, the phase factor is an element 
of tlie covering groiip of the Lorentz group, in order to 
include fermions. 

For tlie metrics corresponding to cylindrically sym- 
metric space-times, tlie loop variablcs are elements of 
tlie Loreiitz group SO(3, l)  or of its covering group13, 
and in the (2 + 1)-dimensional case, they are elements 
of the SO(2, l)  group or of its covering group also in 
order to include fermions. These results perrnit us 
to study tlie gravitational analogue of the Aharanov- 
Bolim eflcct". 

As tlie loop variables for the static geometric struc- 
tures under considerations are elements of tlie Lorentz 
group SO(3, I),  tliis ineans that these quantities are re- 
laled to the holonoinies of a flat SO(3 , l )  connections 
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and consequeritly that the space-time geometry is en- 
coded in tlie liolonomies of these íiat SO(3 , l )  coniiec- 
tions. 

Tlie configiiration of a space-time corresponding to 
t ~ r o  moving strings or pariicles ((2 + 1)-dimensional 
case) sliows :liat tliere is a linking bctwecn tlie 
parameters t1iz.t describe tliis space-time and tlie space- 
timcs generated by each of i?he two strings or particlcs, 
rcspectively. 

Tliis work lias been supported in pari by funds pro- 
vided by tlie Conselho Nacional de Descnvolviincnto 
Científico e Temológico (CPuTPq) . 
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