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The mean ficld renormalization group is applicd to determine the critical propertics of a
spin - 1 Ising model with a random crystal-field. The random crystal-field is given by a two-
peaked distribution probability. As in mean-field calculations, three different types of phase
diagrams are obtained as a [unction of the concentration of crystal-ficld. Mcanwhile, a lower
critical concentration is determined above which there is no more a stable ferromagnetic

phase at low temperatures.

I. Introduction

In this work the simplest version of the mean ficld
renormalization group by Indekeu et al' is applied to
determine the phase diagram of a spin-1 Ising model
with a ranlom crystal-ficld. This model was treated
recently in the mean ficld approximation by Benyoussc{
ct al® and by Carnciro et al®. They considered the
following Hamiltonian model

]IZ—JZSiSj+ZAiSz'27 (1
1,7 {
where S; = —1,0,+1, and the first sum runs over all

pairs of nearest neighbours. The random crystal-ficld
is given by the probability distribution,

P(A) = p§(A; — A) + (1 = pIS(A,). (2)

Benyoussef ¢t al® have shown that depending on the val-
ues of p the phase diagram in the (7'— A) plane can ex-
hibit a single critical line, first and second order transi-
tion lines with a critical and a double critical end-point
and first and sccond order transition lines with a tricrit-
ical poini. Carneiro et al3, determined the existence of
two ferromagnetic phases at low temperatures, except
at p = 1, which is the Blume-Capel model®. Also, one
of the ferromagnetic phases was found to be stable at
low temperatures, for arbitrarily large values of A and
al any concentration p < 1. The case p = 1 was also
studied by De Alcantara Bonfimn® within a mean ficld
renormalization group scheme and he determined a tri-
critical point in the phase diagram which improved the
mean lield results. Recently Carnciro et al® have per-
formed a ¢-expansion on this model and concluded that
tlicir Heisenberg fixed point is fully stable although it
cannot be reached from any physical initial conditions.
However, when they disregard replica fluctuations, the
mean-ficld anl renormalization group calculations can

be reconciled. In the present work it is shown that
mean ficld renormalization group calculations improve
the carlicr mean field results for the second order lines
and give a lower critical concentration p. above which
the ferromagnetic plase is no more stable at low tem-
peraturcs. This behavior is very similar to that found
for the Ising model in a transverse random field”.

In order to study the critical properties of the model
given by eq. (1) we follow the mean ficld renormaliza-
tion group approach by Indckeu et al! by considering
the stmplest choice for the clusters, namely the one-
and two-spin clusters. This method has been applied
to a greai variely of systems and quite good results
Liave been obtained even using small block sizes (sce
also Rel. 8 and relerences therein). The Hamiltonian
for the single spin reads

I = —z5, 7'V + ALST, (3)

where ¥, assumed to be very small, is the fixed magne-
tization of its z necarest neighbours. The magnetization
my of the single spin, alter averaging over the proba-
bility distribution given in eq. (2) is

2’ [ exp(—d')
1+ 2exp(—d’)

where K = gJ', d' = BA’!, B = (kpT)~! and primed
quantitics were used to indicate scaled parameters of
the present Iamiltonian according to the mean field
renormalization group.

The usual mean ficld approximation is obtained by
sclting &' = m; in the above cquation. In this case,
alter dropping the primes the critical lincs are given by

2p exp(~d) 5)

14 2exp(—d)]"
In particular, for large values of A, the critical temper-
ature kpT,/zJ tends asymptotically to 2(1—~p)/3 for all

my = [2(1 -p)/3+ K'zY, (1)

K'=z [2(1 -p)/3+
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values of tlie concentration p, except at p=L Atp=1
(Blume-Capel model) eq. (5) gives a second order line
for all values of tlie anisotropy (A) up to a tricritical
point at kpT'/zJ = 1/3 and A/zJ = 2In(2)/3. Beyond
tliis poiiit, eg. (5) lias no more solutions and the critical
line becomes afirst order one.

Analogously, the hamiltonian for the two-spin clus-
ter can be written as

f[z = —-JSlSz*-J(Z-—I)(Sl +Sg)b+A1.S’f+AQS§, (6)

where b is the magnetization of tlie (z — 1) ncarest-
neighbors of each spin of tlie cluster. Again, after av-
eraging over tlie crystal-field distribution the magneti-
zation per spin for tliis cluster can be written as

my = |p? 4exp(K = 2d) + 2 exp(—d) +
1+ 4exp(—d) + 4 exp(—2d) cosh(K)
2 +4exp(K)
— 2-——————-——-—-—— ——
(1-p) 5 + 4 cosh(K) +2p(1~p).
1+ exp(—d) +4dexp(K ~d)
3+ 2exp(~—d) + 4exp(—d) cosh(K)

] K(z — 1)b.
(7)

According to tlie two-cell mean field renormaliza-
tion group tlie magnetizations m; and ms, are assumed
toscale as tlie symmetry breaking fields &' and b tliat
is, m; = {mq and b = {b. It is tlien obtained a renor-
malization recursion rclation ainongst K’, d', p’ and
Ir', d, p which is independent of (. Asit is not pos-
sible to determine tlie complete renormalization flow
diagram from just tliis single equation its fixed point
structureis studied for tliecase K’ = K = K., d' =d
and p’ = p. From equations (4) and (7) we then obtain

»? 4exp(Ke — 2d) + 2exp(—d)
1 4+ 4 exp(—d) + 4 exp(—2d) cosh(K.)
(1- Pt ()
sh(X.)
1+ 4exp(K, — d) + exp(—d)

2P~ P 35 (= d) 1 dexp(—d) cosh(Ky)
2pexp(~d) z
[2(1 —PB+ 2exp(~d)] (z=1)

(8)

Equation (8) describcs the beliavior of' the critical
temperature asafunction of anisotropy for different val-
ues of p. Three typical regions o p can be determined.
Figure 1 shows the phase diagram in tliet = kgT'/zJ
versus D = A/zJ planewith z = 4, for 0 < p< 0.8132.
In this case all transition lines are second order and it
is observed that as D is very large the ferromagnetic
phase is stable.

On the other hand for 0.8132 < p < 5/6, eq. (8)
presents two regions where tlie transition lincs are of
second order. Asshown in figure 2 there is a small re-
gion where eg. (8) does not have a solution. Although
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Figure 1 Phase diagram in tlie {(= kpT/zJ) versus
D(= A/zJ) plane for different values of tlie concentra-
tionp; z= 4.

tlie mean field renormalization group can not give in-
formation about first order transitions, it is expected
that in tliis region the transition is a first order one.
The points A and B, wliere the second ordcr lines end
are possibly critical end-points. This type of phase di-
agram is equivalent to tliefigure 2 of Benyoussef et al?,
although they do not consider the long tail of tlie fer-
romagnetic phase as was done by Carneiro et al®. Fig-
ure 3 exhibits the region of the phase diagram wliere
p > 5/6. In this region the second order line ends at
a tricritical point and there is no more a long tail in
the ferromagnetic phase for large values of D. After a
straightforward calculation it is easy to show that tlie
critical temperature, for large values of D, is given by

where 0 3
Pe= 30Ty (10)

If z = 4, p. = 5/6 and thefigures 1 and 2 show that eq.
(9) describes the predicted long tail of the ferromag-
netic phase in the mean renormalization group. On the
other hand, if p > 5/6, figure 3 clearly shows that there
is no more a stable ferromagnetic phase at low temper-
atures, as predicted by Carneiro et a3 in their mean
field calculations. Finally, figure 4 shows the behavior
of the critical temperature of the ferromagnetic phase
as afunction of theconcentration p. Aslongasp > 5/6,
only the paramagnetic phase is stable for large values
of D.

Before concluding it would be interesting to point
out some features of this simple mean field renormal-
ization group calculation. The exact solution, based
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Figure 22 'Typical (¢, D) phase diagram for 0.8132 <
p < 5/6. Ilere p= 0.82, z = 4; A and B are critical
end-points.
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Figure 3: Phase diagram in tlie (¢, D) plane for values
of p>5/6. lere # = 4 and tlie sccond order lines end
al tricritical points.

on tlie Curie-Weiss version of tlie mean field3, givesan
expression for the free energy tliat permits to deter-
mine all tlie lines of first and second order transitions.
With this renormalization group calculation only con-
tinuou-transitions can be determined. In this way we
are not able ;o determine tlie two coexisting ferromag-
netic phases at low temperatures in the figures 1 and
2, as was dore by Carneiro et als, Unfortunately, with
only a single order parameter, it is not possible to de-
rive a complete flow diagram, because in this problem
it would be necessary to use tliree independent order
parameters. Nevertlieless, it is possible to obtain a
flow diagram in tlie context of the mean field renor-
malization group. For instance, for the two-parameter
Ashkin-Teller model, where two order parameters can
be defined, a complete flow diagram was determined?®
using this mesn field renormalization group. Contrary

Figure 4 Critical temperature of the ferromagnetic
pliase asafunction of pfor large valuesof D. Ifp> §/6,
tlie only stable pliase at low temperatures is tlie para-
magnetic one.

to tlie mean field calculatioiis?, where tlie slope of sec-
ond order line at tlie tricritical point cliangesfrom neg-
ative to positive values within a small range of values
o p, here tlie slope goes to infinity at tlie tricritical
region. In fact, tlie condition tliat dt/dD — —oo was
used by Benyouseff et al? to separate this sniall range
of values of p. In tliis work a reentrant plienomenon
is observed only for tlie values of p tliat correspond to
figure 2. This is the main motivation to identify tlie
poiiits A and B in figure 2 as being critical end-points
as in the mean field approach.

In this work tlie mean field renormalization group
is applied to the Blume-Capel model when tlie crystal-
field is diluted. Depending on tlie valucs of dilution
tliree different typcsof phase diagramscan be obtained.
For p<0.8132 tlie transition lines are all of second or-
der with a stable ferromagnetic phase for very large
values of anisotropy. Meanwhile, for 0.8132 < p < 5/6,
the transition lines are second order, except at a very
narrow region of values of anisotropy, where first order
transition must be present. For p > 5/6, tlie transi-
tion line ends at a tricritical point and tlie ferromag-
netic phase is absent for large values of the crystal-field.
As expected, this behavior is due to the fact tliat the
mcan field renormalization group takesinto account, to
some extent, tlie spin fluctuations whicli are neglected
in tlie mean field approximation. Use of bigger clusters
of spins improve only a litlle the results of this work
as was shown by De Alcantara Bonfim® for the pure
Blume-Capel model.
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