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Sevcral areas of experimentation usingd = 2 aiid d = 31siig antiferromagnets with quenched
randomness are reviewed. Tlie randomly dilute Fe,Zn,_,Fy aiid Rby,Co, Mg, Fy sys-
tcns in zero ficld siow excellciit random- exchange Ising bcliavior for two and three di-
mensions, respectively. Tlie same systems in a field are the bcst experimental examples of
random-field Ising systems. Low-temperature domain wall dynamics have becn studied in
tlie Fey,Zni_, F5 system. Spin glass-likc bcliavior is observed in Fe, Zn;_, Fy near tlie per-
colation tliresliold, tliougli tlie system is not a canonical spin glass. Tlie canonical Ising spin
glass model isrealized in tlie d = 3 1sing antiferromagnet FepMn;_,TiO3. Tliese examplcs
are chosen to demonstrate tlie opportunity of studying various Ising modcls with quenched

randomness Using insulating antiferromagnets.

I. Iutroduction

liisulating antiferromagnetic crystals provide arich
testing ground for theories of phase transitions. Tliis
is made possible by tlie universality of critical parame-
ters cliaracterizing phase transitions. Tlie only proper-
ties needed to describe tlie asymptotic bcliavior upon
approach to a phase transition are the basic symme-
trics of the system, for example tlie spatial dimension
or the lattice geometry. Hence, theorists may study tlie
simplest Hamiltonians having only tlic necessary sym-
metries alid experimentalists need only to study simple,
well undcrstood magnetic systems witli tlie correspond-
ing symmetrics. Insulating antiferromagnets are often
ideal in tliisregard. Tlie interactions between tlie mag-
netic spins decrease extremely rapidly with distance.
Therefore, only a very few (often onc or two) inter-
actions chara:terize tlie beliavior of many insulating
magnetic crystals extraordinarily well. This simplicity
lias helped both theorists and experimentalists make
tremendous progress on pure systems and those with
quenched disordcr. Tlie subjcct of tliis review is tlie
bcliavior of Is ng systerns witli quenched disorder wliicli
can be studied in insulating antiferromagnet by growing
crystals from a mixture ol two isomorphic substanccs.
Tor example, a mixed antiferromagnetic and diamag-
netic crystal results in a system in which each possible
magnetic site is randomly occupied or not. Aside from
tlie quenched randomness, sucli asystem may still prove
quite simple in its microscopic description, with only a
very few interactions needed. Tlie rich macroscopic be-
havior of suci simple systems is surprising and some
aspects of the transitions are still not well understood.

Experiments in non-equilibrium states at low temper-
atures also are niost rcadily studied in dilute magnetic
systcms since tlic interactions are very simple and easy
to model. Tliose aspects of tlie problems that are now
understood can be applied to much more complicated
substances by virtue of universality.

Tlie simplicily of tlie Hamiltonians nceded tO de-
scribe Ising transitions in randomly dilute antiferro-
magnets lends itself well to Monte Carlo siniulations.
Such siiiiulations describe tlie observed beliavior ex-
tremely well. TIliis lias lead to better understanding
of tlie thcorics aiid experiments in many cases.

We will dcscribc some experiments, tlieories and
simulations relaling to dilutcd and mixed antiferromag-
netic crystals. We will hopefully give aflavor of some of
tlieiiitcresting propcrties associated witli quenched ran-
domness. Some of tlie topics of current interest in this
field will be exemplified by the examples chosen for tliis
review. For this particular discussion, we will largely
lirnit ourselvcs to tlie simplest, best characterized and
most studicd crystuls. We will add comments about
rclated systems when they add to the understanding
o tlic models. Other systems have been discussed in
previous reviews!—3.

We begin by briefly reviewing tlie critical behavior
of I'e 'y, wliicli is an excellcnt example of a pure three-
dimensional (d = 3) Ising model system, and K:CoFy
aiid Rb,ColFy, wiliicli are cxcellent examples of pure
d = 2 lsing model systems. Tliis will lielp to place
the experiinents in tlie random systems into context.

We tlien discuss tlie random-exchange Ising model
(REIM), wliicli lias becn most accurately studied for
d = 3 in tlie magnetically dilute Fe;Zn,_.Fs system
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well above the percolation thresliold z, = 0.24 witli
no applied magnetic field. Tlie experimental critical
beliavior measured in this system, both static and dy-
namic, will be compared witli theoretical results for
critical exponents and amplitude ratios. Tlie evolu-
tion of metastable domains at low temperaturcs in tlie
FeyZny_.Fs systemin zerofield will be discussed asan
example of the dynamicsof ordering well below Tn. For
d = 2, the best studied Ising case is itbsCo, Mgy Fy.
Again, excellent comparisons can be made betwcen tlie-
ory and experiment.

We will briefly discuss tlie random-field Isiiig model
(RFIM), which can be generated by applying a mag-
netic ficld to tlie dilute antiferromagnet Fe,Zny_ . F>
systemfor d = 3 and Rb;Co, Mg, Fy for d = 2. Even
though many problems have bcen resolved, tlicre are
fundamental open questions about the d = 3 RFIM
tramition after years of intense experimental aiid the-
oretical study.

We will discuss tlie beliavior of thc three-
dimensional 1sing model closeto tlie percolation thresh-
old, primarily using the rcsults from the Ising system
FeyZn,_.Fs system. Upon approach to tlie percola-
tion tlirediold in tlie Ising system, spin glass-like be-
liavior becomes dominant. This iS surprising since, al-
though tlie systcm possesses randomness, it apparcntly
lacks tlie othcr essential ingredicnt of true spin glasscs,
namely frustration.

A particularly clear and simple Ising spin glass
system is tlie mixed antifcrromagnet Fe;Mni_,TiO3.
In tliis insulator botli frustration and randomness are
present in tlie sliort-range interactions and much of tlie
prcdicted spin glass behavior®® has been clearly ob-
served.

II. Tlie Pure Ising Model

Tlie Ising niodel is one of the simplest systems ex-
hibiting a phase transition, witli eacli spin having only
two possible states. Tlie simplicity of tlie system on
a microscopic scale belies tlie intricate and rich behav-
ior on the macroscopic scale, especially witli quenclicd
site randomness. A simple pure Ising antiferromagnetic
model Hamiltonian is

H= > JSS;, (1)
<i§>

where there is only one essential iiiteraction betwecn
neigliboring spins of strength J > O and S§; = *1.
In a real system universality dictates tliat tlie asymp-
totic critical bchavior will be described by tlie sim-
ple Hamiltonian above as long as the interactions are
sliort-range. For weaker anisotropy, longer-range in-
teractions, or multiple interactions, one must simply
mcasure the behavior closer to tlie transition, i.e. the
system will eventually cross over to the correct asymp-
totic behavior.

D. P. Belanger

Tlie pure FeF, system lias becn shiown to be an
excellent d = 3 Ising system. Tlie critical exponent o
and amplitude ratio A*/A~ for tlie specific hcat

Cp,=A*t|*+B (2)

from birefringence aiid pulsed specific licat techniques!®
agrce preciscly witli tlic results of many theoretical
tecliniques. Tlic corrclation length for fluctuations

E=&rl™ (3)
and tlie staggered suscepiibility

Xs = x5 l™ €
have been obtained from neutron scattlering
experiments!!, tlic staggered magnetization

M, = Moltf? (5)

wliicli is only nonzero for t < 0, from Méssbauer
experiments'?, and tlic dynamic critical beliavior for
tlie relaxation times

T8 (6)
from spin-eclio neutron scattering techniques®3. All of
tlie critical behavior measured ovcr tlie critical range
[t] < 0.02 in pure FeF, is in supcrb agrcement with
theory*4=18, Tlie obscrvation of asymptotic behavior
over sucli a largc range of ¢} is a result of tlic strong
single-ion anisotropy aiid tlie simplicity of tlie magnetic
interactions in pure FeF,. Tlie magnetic ions form a
tetragonal body-centered lattice and tlie excliangc in-
teraction between tlie body center and corner ions is
tlie only significant onel®.

Tlie critical paramctcrs measurcd for tlie purc Ising
model using tlie FeF; system are summarized in Table
| along witli relevant theorctical results. 1t is important
toredlize tliat the universal ratios of tlie amplitudes are
just asimportant in cliaracterizing tlie critical behavior
as tlic cxponcents. Tlic rcsults demonstrate tliat eFs
is an exemplary Ising system and, upon dilution, an
ideal one to study the eflects of random-excliangc aiid
random-fields for d= 3.

Tlie pure d = 2 Ising transition is very well rep-
rescnted by tlie isomorphic antiferromagnets KoColy
and Rb;CoFy. Tlie interactions between the planes of
magnetic C2* ions are extremely small coinpared to tlic
interactions within tlie planes. Tlie specific heat beliav-
ior lias been measured?® using birefringence tecliniqucs
in RbyCoFy. From tlie Onsager solution?! of tlied = 2
Ising model, we expect tlie specific licat to be consistciit
with tlie asymptotic logarithmic form

Cp=Aln(jt))+ B . (7)

The data indeed agree well witli this form. Thc criti-
cal behavior of €, xs and M, have been obtained using
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ncutron scattering techniques??. Tlic static critical be-

Javtor exponents and amplitude ratios arc consistent

with theory?b:?3. lii addition, tlic two-scale universal
- 24

ratio

R, = ,\'0+/c5’ d/Mo , (8)

22,25

lias Leen demonstrated in these compounds. The
results of experiments oii these systems and compar-
isons to theory are summarized iii Table |. These sys-
tems, when di uted, arc obvioiis clioiccs for investigat-
ing random-exchange aid random-ficld effects in two
dimensions.

Table I: Experimental aid Theoretical Pure Isiiig Crit-
ical Parameters. The definitions for tlic exponents aiid
amplitudes can be found iii Eq. (2-8). Ml d = 3 ex-
perimental pa-ameters are obtained from FeFs. Tlie
parameters foi d = 2 were obtained using RbaColy or
KoCoFy. Superscripts + or - refer to tliosc obtained for
v and ¥ using only data for 1> O and 1 < 0, rcspec-
tively.

d =2 PURE ISING

Experiment Theory
@ 0.00£0.01%  0O(log|t])®
At/A~ 1.01 £ 0.00° 1(log |t])®
v 1.0240.05%° 1°
1.2+ 1.137¢
wE /ey 0.54 4 0.06°¢ 1/2¢
v 1.8240.07%¢ 7/4¢
1.92+£0.20"¢
e /xg  826+3.7° 37.33¢
B 0.155 £ 0.02¢ 1/8°
Ry 0.0565¢,0.043° 0.051f

d=3 PURE ISING

Es:;periment Tlicory

@ 0..140.005¢ 0.1140.003"
At/4- 054 £005 0. 55"

v 0.64£ 0.0  0.6300.001
wd /ey 0.5340.017 0.52¢

5 1.253%0.027 12404 0.001"
xe/xo 4.64+0.2 4.8

Jéj 0.32540.005" 0.3254 0.001%

Z 21401 1.0540.07™

a)ref.[20]; b)ref.[21]; c)rel.[22]; d)ref.[23,17]; e)ref.[25];
Nrel.[24]; g)ref.[10]; h)ref.[14]; i)ref[15]); j)ref.[11];
k)ref.[12]; Dref {13]; m)ref.[18].

An importznt point should be made concerning tlie
mecasurement of tlie staggered magnetization with neu-
tron scatteriiig techniques. lii tlie d = 3 case, tlie sam-
ples are typically of such high crystalline quality that
those neutrons aligned well enough to Bragg scatter do
soiii tlie first fow microns of tlie crystal. This results in

asaturation effect in tlic obscrved scattcring intensity,
an effect known as extinction. Recently, ncutron Bragg
scattering in epitaxial thin filns lias becii successful in
showing the propcr behavior® of the staggered magne-
tization iii pure and dilute Isiiig antiferromagnets. For
tlie case of d = 2 magnelic systems, extinction is not a
problem because tlic order parameter scatiering takes
place along onc-dimensional rods iii reciprocal space
aiitl iiot at points as is tlic case for d = 3. 11saresult,
tlic scatteriiig isiiot saturated iii bulk samples aiid tlie
propcr critical behavior is observed.

111 Tlic Random-Exchange Isiiig Moddl

A siniplc random-exchange Ising model Hamilto-
nian for a single iiitcractioii site-diluted antiferromag-
net is

H= Z JC,'EJ'S,'SJ' s (9)

<ig>

erwisc. NO external ficld is applied in this model aiid
there are no frustrated iiitcractioiis. This model can be
realized to high accuracy for d = 3in tlic FeyZny_,I%
antiferromagnet®”.  Similarly, tlic corresponding two-
dimensional REIM isextremely well represented by the
magnetically dilute antiferromagnet Rb,Coz Mg, Iy,

Tlic most basic effect of dilution on an unfrustrated
Isiiig system is the lowering of tlic traiisitioii tempera-
ture Ty (2). There is a limit, tlie percolation threshold
at concentration z,, bclow which no traiisitioii can take
place since tlie magnetic spins cannot form along-range
network. For concentrations well above z,, it is found
from both CPA theory?® and experiments®® in tlie
d = 3Ising system Fe, Zny_ .y tliat T, (2)/Tn (1) ~ X.
For tlie d = 2 system RbyCo,AMgy1_.F4 an approxi-
mately linear decrease iS obscrved above tlic percola-
tioii threshold39. Tlietraiisitioii temperature inevitably
drops precipitously near tlic percolation tlircsliold for
both d = 2 aiid d = 3.

Tlic specific heat critical beliavior inad = 3 REIM
system is fundamentally different from tlie pure case.
As first pointed out by Harris®, tlie specific hicat can-
not be positive for a system with quenched dilution if
tlie hyperscaling relation 2 — vd = a holds, asit doesin
tlie REIM. (It does not hold for tlie RFIM.) lii tlied = 3
Isiiig case this implies a crossover from tlic pure tran-
sition for wliicli @ > Q Tlie greater tlic dilution, tlie
larger tlie region of reduced temperature over which
tlie REIM behavior is observed. Contrary to early
theoretical expectations®?; tlie crossover occurs quite
rapidly3>3*. The new, REIM specific heat critical be-
Liavior lias been measured? for Feg gZng 4F2 and more
recently®® for Feg ssZna 15F2, using tlie optical birc-
fringence technique®’. Tlie lattcr case is shown in Tig.
1 Tlie most recent preliminary result ¢ = —0.94:0.02,
using Eq. 2 agrees very well with theory®3° aiid tlie
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previous experiment. The most recent amplitude ra-
tio, A*/A~ = 1.55 % 0.15 agrees well with the previ-
ous result but does not agree with theories*®4! which
yield A* /A~ < 0. The predicted behavior is unusual.
The specific heat would appear as an inflection rather
than a cusp. The experimental results are completely
incompatible with such behavior for reduced tempera-
turesassmall as [t] = 10=*. Thismost likely reflects an
inadequacy of the theory and remains an outstanding
tlieoretical problem.
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Figure 1: The temperature derivative of the optical
birefringence d(An)/dT, which is proportional to tlie
magnetic specific heat®?, vs. T for the d = 3 Ising anti-
ferromagnet Feg.ssZno.15F2. The solid curves indicate
afit toseveral setsof data using the power law behavior
in Eq. 2yielding the parameters givenin TableI1. The
data indicate a cusp and not the inflection suggested
by theory*!.(Wang and Belanger).

Quasielastic  neutron  scattering  studies®?
of TFeq 46Zng 54F9 have ylelded the critical param-
eters for & and x using Lorentzian line shapes,
which work well despite predictions for non-Lorentzian
contributions?3. Mossbauer experiments334 have been
used to determine the exponent for M, . Spin-echo neu-
tron scattering techniques!® have shown that the crit-
ical dynamics of Feg 46Zng.54F2 are wel approximated
by conventional theory!®, but with relaxation times two
orders of magnitude longer than for pure Fefs. All of
the measured critical parameters and their calculated
values#~47 for the d = 3 REIM are listed in Table II.

The d = 2 specific heat, best exemplified by mea-
surements using the optical birefringence technique*® in
tlie RbyCog 55 M go.15F> system, isa marginal case with
respect to the Harriscriterion, sincein the pure system
a is zero (logarithmic divergence). Theories*®:46 for the
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random-exchange behavior predict tlie asymptotic be-
havior

Cp ~ log(log([¢])) (10)

The experimental data are well dcscribed by a loga-
rithmic divergence, as diown in Fig. 2. It would be
incredibly difficult in experiments to distinguisli bc-
tween fits of tlie data to tlie double logarithm in Eqg.
10 and fits to tlie siiigle logarithin o Eq. 7. Hence, tlie
experiments are consistent with tlie theories, tliough
perhaps not a definitive test of them. In the two-
dimensional system Rb,Co, Mg, . Fy, Neutron scattcr-
ing measurements®® provide the critical beliavior of ¢, x
and M,. In addition, a two-scale universality analysis
yields a value close to that obtained in tlie pure mate-
rial. Tlie experimental and tlieoretical results are sum-
marized in Table II.

Table II: Experimental and Theoretical Random-
Exchange Ising Critical Parameters. Tlie definitions
for tlie exponents and amplitudes can be found in Eq.
(2-8). All d = 3 cxpcrimental paramcters are obtaincd
from Fe,Zn;..F.. The parameters for d = 2 were
obtained using Rb;Co, Mg;_.Fs. Superscripts + or -
refer to those obtained for » and 4 using only data for
t >0andt <0, respectively.

d =2 RANDOM-EXCHANGE ISING

Experiment Theory
o ~ O(log [t))® =~ O(log(log |t]))®
At/A-  005+010"  1(log(log |t]))®
v 1.08 £ 0.06%¢ 19,1002¢
1.58 + 0.52~°¢
kt/ky  0.98+ 002
¥ 1754 0.071¢ 1.753¢
26£0.6°
xd/xs  19.1+5.0° -

I¢] 0.13+ 0.02 -
R, 0.062 + 0.01' -

d =3 RANDOM-EXCHANGE ISING

Experiment Theory

o —0.09 4 0.02/ —0.099,-0.03" — 0.01¢
At/A-  155+0.157 -05

v 0.69 =+ 0.014 0.709,0.68",0.67¢
k¥/ky  0.69+0.027 0.83

¥ 1.31+ 0.03/ 1.399,1.34" 1.32¢
X3¢ /xo 28+£0.% 1.7

B 0.35+ 0.01*  0.349 =+ 0.002",0.348¢

Z 1.7+0.2 2.3™

a)ref.[48]; b)ref.[45,46]; c)ref.[49]; d) pure vaue
e)ref.[47]; [)ref.[36]; g)ref.[38]; h)ref.[39]; i)ref.[40];
J)ref.[42]; k)ref.[33,44]; Dref.[13]; m)ref.[18].
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Figure 22 d(An)/dT vs. T for tlied = 2 Ising anti-
ferromagnet RbyCog 35Mgg.15F4 in applied fields | ' =
0,0.5, 1.5, and 2.07". The data sets are offset for clarity.
Tlie H = 0 peak is approximated by a symmetric loga-
ritlimic divergence. Tlie rounding of tlie peak increases
with H and occurs in equilibrium, indicating that the
transition is destroyed by tlie random-field. (Ferreira,
et al.[48]).

IV. Tlie Random-Field | sing Model

A randomnfield jIsing ferromagnet may be repre-
sented most simply by a Hamiltonian such as

H== Y JSiS;—> hSi, (11)

<i,5> i

where the field satisfies the conditions [A;]s, = 0 and
[h2]av = h2, with [ ]ay Signifying an average over tlie
guenched diso:der. It is quite difficult to realize such
a Hamiltonian directly in a real magnet with a con-
trollable random-field strength. Instead, the RFIRI is
studied in dilute Ising antiferromagnets with a uniform
field applied in the spin ordering direction. A simple
Hamiltonian corresponding to an antiferromagnet with
random field is

H= Z Jijei€; SiS; — ZHQ'S{ , (12)
<4,5> i

where H is a uniform field. The analogy df tlie two sys-
tems was first pointed out by Fishman and Aharony3?.
In the original random-field ferromagnetic model®°, tlie
local fluctuations in the net random field compete with
tlie long-range ferromagnetic order. In the dilute an-
tiferromagnet, the local iiuctuations in tlie sublattice
populations tends locaily to favor one sublattice over
the other to point along tlie uniform field, in direct
competition with tlie antiferromagnetic long-range or-
der. This analogy was taken further by Cardy®!, wlio
diowed that tlie static critical behavior of a ferromag-
net in a random field is ideiitical to tliat of a dilute
antiferromagnct in a uniform field. Tlic random and
uniform fields are related by

2 = T TR SHJETY
' (L5 OM(2)/TT ’

where x is tlie concentration, TM¥ is tlie pure system
mean-field transition temperature and @ tlie Curie-
Weiss susceptibility parameter.

Tlie early investigations of tlie RFIM were marked
by a controversy over whether a phase trausition ac-
tually took place for d = 3. Tliis was a particularly
difficult theoretical question to answer, though some of
tlie first experiments®?, using the birefringence tech-
nique to measure tlie specific heat critical behavior,
yielded strong evidence for a transition. In contrast
to tliese conclusions, poor sample quality and a poor
appreciation for tlie strong liysteresis in tlie dilute an-
tiferromagnets did result in some groups claiming that
tlie transition was destroyed. Tlie rigorous theories of
Imbrie®® and Bricmont and Kupiainen® proved tlie va-
lidity of the conclusions of the early birefringence mea-
surements.

Efforts now are being made to fully calculate®® and
measure the d = 3 RFIAI critical behavior. From neu-
tron scattering measurements®®, the correlation length
appears to diverge with an exponent v & 1, and the
exponent for € is approximately ¥ = 1.75. The specific
heat appears to be close to a symmetric, logarithmic
divergence®?. Curiously, these values are all close to
those of the pure d = 2 Ising model. Early theoretical
works in fact predicted an effectivedimensional reduc-
tion in tlie critical behavior57=%9. However, it was sup-
posed to be from three to one dimension. Since there
is no transition in tlie d = 1 Ising model, tlie impli-
cation was that there would be no transition for the
d = 3 RFIM, a result later shown to be incorrect. Di-
mensional reduction is no longer generally supported
by theorists.

The one exponent which is still only roughly
determined®® is the staggered magnetization exponent,
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B. This is primarily a result of tlie scvere extinction
of thie neutron scattering intensity encountered in tlie
d = 3 crystals. Tlie mecasurcment of this exponent is
of crucial importance for testing tlie RFIAI critical be-
havior tlicorics.

Tlic crossover from tlic random-exchange to the
random-field Ising behavior depends upon tlic strength
of tlie random-ficld which in turn varics lincarly with
tlie strength of tlie applied field®. Tlic random-ficld
scaling behavior dictates tliat tlie traiisition boundary
in tlic I = T phase diagram varics as

T(J) — Ty ~ 112¢ (14)

where the crossover exponent 4 2 1.1 witli 4 being tlie
random-exchange staggered susceptibility exponent®!.
This behavior has been verified® by experiments on
FeyZny_, Iy, with tlic results v = 1.31 4 0.03 aiid tlie
value from many measurements® ¢ = 1.4240.03. Some
of the carlicr experiments leading to tlie conclusion tliat
tlic pure value of ¥ were adversely affected by concen-
tration gradients and tlic practicc of taking tlic transi-
tion to be at tlic pcak in tlie specific Leat, as shown by
simulations®?,

The dynamics of tlie d = 3 RFIAI have now
bcen convincingly demonstrated, using ac susceptibility
measurements®®©® to be activated in FeyZn,_ Iy in
agreement with theory®™. Spin-ccho neutron scat-
tering measurements show!® tliat, on tlie very sliort
time scale of nanosccoiids, tlie system crosscs over to
random-fleld dynamics at much larger reduced tem-
peratures and much lower applicd ficlds than measure-
ments which are conducted on time scales of scconds,
such as specific heat or quasiclastic neutron scattering.
Extremely slow dynamics are manifest in two distinct
ways ncar tlie transition. First, when cooling in aficld
(FC) or heating in a ficld alter cooling in zero field
(ZFC), equilibrium is lost iicar tlie traiisition. Upon
FC, the system cannot achieve long-range order aiitl
tlic data differ from tlic ZFC data below an equilibrium
boundary Teq(11) which lies just above T.(I7) aitl scales
iii precisely the same manner. Of coiirse, with a small
enough random field and limited instrumental resolu-
tion, the FC proccdure will appear to yield long-range
order®.

Closcr to T,(II), tlic critical beliavior is roundcd by
tlic critical slowing, as exemplified by tlic ZFC Faraday
rotation data” in Fig. 3. Shapiro™® has proposed a
tlicory bascd on tlie slow dynamics which predicts tlie
obscrved critical exponents.

Tlic neutron scattering linc shapes obscrved in tlie
d = 3 RFIM systems are far from tlic Lorentzian forin
which adequately describcs tlie scatiering iii pure FeFy
aiid in Fe,Zn;_ I in zero fidd well above tlic perco-
lation threshold. Mean-field tlicory predicts a squared
Lorentzian line shape and it has been commonly as-
sumed tliat tlie mean-field argument adequately ex-
plains tlic unusual observed line shapes. IHowever, al-
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de/d7 (deg/mm K)
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Figure 3: df/dT, which is proportional to the magnelic
specific heat™, vs. logio(Jtf) upon FC in tlic d = 3
Ising antiferromagnet ega7Zngsaf> for I = 2,34
and5T in (@), (b), (c), and (d), respectively. In cach
figure the filled symbols are for T < T,(I) and tlie
opcn ones for T > T.(II). Tlic right arrow iiidicntcs
where tlie random-exchange to random-field crossover
occurs. Tlic left arrow in cacli case indicates tlic onsct
o rounding from RF dynamics. Both tlic region of RF
dynamics and tlic rcgion of RFIM critical behavior in-
crease in size witli increasing ficld. Data between tlie
arrows in cach case are scen to approximate a symmet-
ric, logarithmic divergence. (Pollak, ct. al.[70]).
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though tlic squared Lorentzian works well for low tem-
pcrature FC scans and scans above T, it does not work
wellS? for ZFC scans below T,(II). Furthermore, non-
Lorentzian liiie sliapcs are obscrved® at zero ficld in
tlic nonequilibriuin region near tlie percolation thresh-
old but not observed™ in tlie d = 2 case for IT > 0
necar Tn where tlie destruction of tlie transition oc-
cursin equilibrium. All of these observations suggest a
nonecquilibrium origin to tlie non-Lorentzian line shapes
iicar T,(II) for d = 3.

For tlie d = 2 RFIM system RbyCogp ss M go.151%,
tlic transition is observed to be destroyed?®, as shown
in Tig. 2, iii agrcement with theory®®. No hystere-
sis or extremely slow dynamics are observed near tlie
destroyed transition, indicating equilibrium beliavior.
At low tcmpcratures, however, metastable long-range
orcler induced by ZFC decays only when tlie rounded
traiisitioii is approached sufliciently closcly. Tliisoccurs
closer to the transition as tlie measurement time scale
decreases, as iiidicated by tlic comparison of high ficld
pulsed magnetization experiments™ aiid neutron scat-
tering measurements?® wliicli differ in tlie measurement
time scale by eight orders of magnitude.

V. Metastable Domain Wall Dynamics

Random-exchange interactions not oiily affect tlie
phase transitioii tolong-range ordcr in a profound way,
but also tlie eqiiilibratioii dynamicsfor T << Ty. Tlie
fact tliat tlic interactions in Fep Zny_ Fy areso well un-
derstood and are very simple makes tliis system ideal
for investigaling tlic dynamics of metastable domain
walls at low f.emperature. Domain walls may be conve-
nicntly introduced into the system by FC. The length
scale associaled with tlic domains, as evident from tlie
widths of neatron scattering liiie profiles™, decreascs
as tlie strength of tlie applied field upon FC increascs.
Two distinct kinds of dynamics can be investigated.
VWith a ficld applied tlic evolution of tlic doniains will
bc influenced by pinning from tlic random field as well
as from vacancies. Oiice tlie ficld is removed, on tlie
otlier hand, the oiily pinning remaining is from tlic va-
cancies. We shall discuss tlie latter case first.

At low erough temperatures, it lias been shown
from ncutron scattering”” and Faraday rotation
experiments”™ 70 tliat tlie domain walls do not move
macroscopically even after tlic field isremoved. A com-
mon misconception is tliat tlic width of tlic neutron
scattering profiles yields directly tlie size of metastable
domains. Computer simulations” demonstrate, how-
ever, tliat tlie magnetic systein forms essentially only
two domains tliat are incredibly intertwined, as shown
in Fig. 4. A’ best, tlie non-Lorentzian width repre-
sciits tlie typical distance nceded to pass from one do-
main to tlie otlier. Nowak and Usadel® suggest tliat
tlic domains arefractal iii structure. The linesliapelias
bcen studied vwith Monte Carlo simulations®* and has

some unusual properties associatcd with tlic fractal like
structure,

Tlie fact tliat tlie domain structure does not evolve
oii a macroscopic scale at low temperatures indicates
tliat tlie thermal fluctuations are iiot strong enough
to overcome tlie vacancy pinning. The walls cvolve
on a microscopic scale, however. Early experiments™
showed a time dependence to tlie remanent magnetiza-
tion after tlie ficld is turned off at low temperatures.
Tlie remanent magnetization originates from tlie do-
main walls formed upon FC. Tlie domain walls Lave
magnetization since, iipon cooling in a ficld, tlie spins
on cither side of tlic domain wall are parallel to tlic
ficld to rcduce tlic local random-field [ree energy. Once
tlie field is removed, there is no energetic advantage to
alignment with tlic ficld. Tlie domain wallsthen evolve
in sucli a way as to locally minimize tlie exchange en-
ergy, i.e. tlic siirfacc area of tlie wallsisreduced. Spins
along tlic wall which were predominantly aligned with
tlic field will flip as tlie wall translates by oiie lattice
spacing. Tliis providcs tlie mechanisiu by wiliicli micro-
scopic wall movements, driven by tlie exchange encrgy,
rcducc tlic net magnetization®®,

Nattermann and Villain®®? initiated tlie idea tliat
iiiicroscopic wall movements aiid not macroscopic mo-
tion constituted the mechanism for tlic dccay of tlie re-
manent magnetization and attempt to explain tlic orig-
inal experimental results. Tliey proposed tlic decay

A, = Myln([t))% + B, (15)

where ¥ ~ 04 aiid B is a constant volume term
wliidli is small, to describe tlie experimental results™
for Feg.474ng.53F%. Later Monte Carlo simulation data
obtained by Nowak and UsadclS' usiiig a simple-cubic
lattice showed bctter agreement with tlie power law be-
havior

M, ~ [t|™® (16)
aiid attributed tlic beliavior to alack of a cliaracteristic
length scale associated witli tlie fractal doniaiiis.

Further experimental studies® and Monte Carlo
simulations®? indicate aiiotlicr expression wliicli does
an cxcclleiit job of describing tlie data for tlie body-
centered tctragoiial lattice of dilute Feg 47Zng saFo and
a simulated body-cciitered cubic lattice. Tlie expres-
sion,

M, = Moy exp[(—Aln |t)¥1, (17)
yiclds exceptionally good fits of tlie data witli y inde-
pendent of tlieficld aiid temperature. A suitable tlieory
for tliis form is lacking.

Tlie dynamics associated witli domain wall pinning
by random ficlds have been studied®™" by employing tlie
FC procedure at temperatures not far below T (JI') and
measuring tlie time dependence of tlie uniform magne-
tization in tlie presence of tlie fidd usiiig SQUID tech-
niques. Apparently, at sucli temperatures tlie random-
ficld pinning dominates over tlie vacancy pinning aiid
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many of the observations are consistent witli the the-
oretical models for low-temperature random-field ac-
tivated dynamicsS’. This implies that there must be
many small activated domains asopposed to thefractal-
like, two-dnmain, frozen structure existing at low tem-
perature.

VI. Tlie Percolation Threshold in the Ising
Model

Thed = 3Ising model system Fe, Zn;_,F; near tlie
percolation threshold provided some experimental sur-
prises. Earlier experiments®® on the weakly anisotropic,
isomorphic antiferromagnet Mn,Zn;...Fe were inter-
preted in terms of a geometric correlation lengtli, «q,
aiid a thermal correlation lengtli. For all concentra-
tions above the percolation threshold in the weakly
anisotropic system, long-range order was observed and
equilibrium behavior seemed to prevail for all tempera-
tures. Suck is not the case for tlie Ising system. In
zero field, even a few percent above the percolation
tlireshold, long-range order does not develop. Instead,
near tlie percolation threshold a spin glass-like pliaseis
encountered”®%%, Yet tliis system cannot be consid-
ercd a canonical spin glass wliicli requires two ingredi-
ents, randomness and frustration. In zero field, there
is little or no frustration!® in FeyZn;_,Fs. Neverthe-
less, in tlie H — T phase diagram there is a bound-
ary wliicli is completely analogous to tlie spin glass de
Almeida-Thouless (AT) boundary®! including tlie scal-
ing exponent ¢ ~ 3.4. This was first observed in mag-
netization studies by Montenegro, et al. 3. Even in
zcro field no long-range order develops™ for x < 0.27
and unusua line sliapes are evident for T < 12K. A bit
further above tlie percolatioii threshold, at X = 0.31,
both tlie usual random-field beliavior at low 11 and tlie
spin glass-like beliavior at higher H exist®%:°2, as shown
in tlie H — T phase diagram in Fig. 5. Tlie random-
field beliavior at low 11 is tlie same as that seen for
all / at higher concentrations ¢ > 0.46. At higher
fields, tlie equilibrium boundary scaling with ¢ =~ 3.4
appears. No long-range order persists in the region at
high field. It has been shown™ in Monte Carlo simula-
tions, in which it is assured that there are no frustrat-
ing interactions, that a phase diagram very much like
tliat seen in FezZny.,Fy emerges. It is interesting to
note that the observation of such behavior may bein-
dicative of quenclied randomness rather tlian simply a
manifestation of aspin glasssysteni, asis commonly as-
sumed. The underlying physics causing the spin glass-
like behavior in Fe,Zny_.Fy must be related to tlie
extremely dow dynamics associated with tlielsing per-
colation threshold®®. A complete understanding of the
behavior in this system is important in itself and may
shed light on the spin glass problem as well.

D. P. Belanger

Figure 4: A computer simulation of a dilute (x = 0.5)
antifcrromagnet cooled in a magnetic field to low tem-
perature. Tlie lattice size is 99 x 99 X 98 and it was
FC witli H = 3J. Tlie light and dark sliades represent
spins bclonging to the two connected domains wiliicli in-
terweave in a fractal-like structure. (Nowak and Usadel

[79)).
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Figure 5. 1L vs. T phase diagram for Feg a1 Zno.69 2.
For H < 1.5T, Te,(H) and T.(H) scale witli ¢ = 1.4,
tlie RFIM crossover esponent. For K > 2T, T (H)
changes curvature and scales witli ¢ = 3.4. Tlie region
below T,(H) exhibits aiitiferromagnetic long-range or-
der. The region below T,,(#) and above T.(#) is not
antiferromagnetic. (Montenegro, et al.[92]).
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Figure 6: "The x — T phase diagram for the spin glass
system Fe,. Mny_,Ti03. For concentrations 0.4 < x <
0.6, a spin glass phase is encountered as T is lowered.
Just to either side of this region, upon lowering T, a
transition from paramagnetism to antiferromagnetism
occursand, at lower T, a mixed antiferromagnetic/spin
glass region is entered. (Yoshizawa, et al.[96)).
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Figure 7: The H — T phase diagram for the spin glass
systein Fegs: Mnp357903. At H = 0, the system un-
dergoes a trar sition to antiferromagneticlong-range or-
der and then, at lower T enters the mixed region. At
liigh H, a spin glass region separates tlie mixed re-
gion from the paramagnetic region. There are signifi-
cant similarities and differences between tliis spin glass
phase diagrani and the one for near the Ising percola-
tion threshold shown in Fig. 5. (Yoshizawa, et al.[96]).

VI1I. Ising Spin Glass in Mixed Antiferromagnets

Finally, we discuss an example of an Ising spin
glass system, Fe,Mn;_,Ti0Os, formed by the ran-
dom mixing of two Ising antiferromagnets®~%. The
pure systems FeTiO3 and MnT'iO3 are both Ising an-
tiferromagnets with spin alignments along the same
crystaline axis but witli very different spin arrange-
mentsin the ordered state. In the mixed system, each
spin encountersa random environment of ferromagnetic
and antiferromagnetic interactions with its neighbors.
Hence, interactions in tlie mixed system possess botli
randomness and frustration, tlie two essential ingredi-
ents for a canonical spin glass. This is perhaps the
finest example of an insulating antiferromagnetic Ising
spin glass.

Mean-field tlieories for spin glasses yield a phase di-
agram in which tlie spin glass transition is encountered
as the temperature decreases in the prcsence of a large
amount of randomness. For the case of less random-
ness, the sample undergoes a transition to antiferro-
magnetic long-range order and then, at lower tempera-
ture, a mixed region is entered as the AT boundary is
crossed. Tlie mixed region corresponds to toth long-
range order and aspin glass order. Between the mixed
region and the spin glass region is a vertical boundary.
In the Fe, Mn;_,Ti03 system®, the spin glass region
occurs for concentrations between x = 0.4 and 0.6 as
shown in the x — T phase diagram in Fig. 6. Thisis
the region of greatest randomness. Antiferromagnetic
regions, with mixed regions at lower temperatures, ex-
ist toeither side of the spin glass region, consistent with
the mean-field diagram.

Elastic scattering measurements at the antiferro-
magnetic scattering point in sample at a concentra-
tion x = 0.60 in the antiferromagnetic/mixed region
show an abrupt increase in intensity at the Bragg point
upon lowering the temperature through the antiferro-
magnetic transition, as would be expected for a transi-
tion to antiferromagnetic long-rangeorder. Then, upon
crossing the AT line, tlie intensity sharply decreases.
In the mixed region, the width of the Bragg scattering
peak remains resolution limited and no sign of hystere-
sisisobserved. Thisindicates that the observed behav-
ior isthe equilibrium behavior and, therefore, the long-
range antiferromagnetic order decreases upon entering
the mixed region. Concomitantly, the short-range an-
tiferromagnetic order increases as the mixed phase is
entered. The correlation length for antiferromagnetic
fluctuations appearsto diverge at the antiferromagnetic
transition and shows another maximum at the crossing
of the AT line. At low temperatures, the diffuse scat-
tering profiles have a width reflecting a geometric dis-
order which appears to vanish at the boundary between
the mixed and spin glass phases. Sharp excitations are
supported® by the system only for q < xg.

The H — T phase diagrams of this material for
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z = 0.6, 0.65 and 0.75 have bcen measured®. An cx-
ample is shown in Fig. 7. At low ficldSan antiferromag-
netic region exists but a spiii glass region dominates nt
higher ficld. Some aspccts of this phase diagram re-
scible that of Feg 3y Zng 69 /% shown in Fig. 5. There
is @ transition from paramagnctism to antiferromag-
nctism at low fields aiid at high ficlds there isan AT-like
borindary between tlie paramagnetic and spiii glass re-
gions. However there are significant differences. No
clear reentrance region is defined in tlie Feg 3, Zng go Fo
system as there is in FeggsAng ss7t0s. Tlic Bragg
scatlering shows Nno hysteresis in FegssMng 35T o3,
whereas il is evident in Feg 31 Zng 69F>. Lorentzian line
shapes are adequate for Feg asMng 35103 for I = 0,
but not for Feggy Zng.eola at low temperatures. The
differences and similarities are intcrcsting and neced to
be understood for a complete understaiiding of botls the
spin glass aiid Isiig percolation threshold models.

VIll. Concluding Remarks

We have scen several examples of miodels of ran-
dommess realized by simple insulating antiferromagnets.
The experiments done on these aiid other antiferromag-
nets with quenclied randomness have helped tremen-
dously iii tlic understanding of tlie general role ran-
domness plays in phase transitions and the behavior of
ordcrcd systems. Tlie simple nature of tlic interactions
lias allowed theoretical ireatments aiid computer simu-
lations toelucidate tlieobserved behavior. Experiments
on d = 3 REIM systems confirmed tlie prediction of a
crossovcer to a new universality class. Only minor prob-
lems still need to be solved to bring REIM cxperiments
and tlicory iiito complete agreement. Strong evidence
for tlie d = 3 RFIM transition was obscrved in some
experiments long before theorists finally proved its ex-
istence. Theories, simulations and experiments are now
dirceted at understanding tlic phase transitioii iii detail.
Near tlie percolation threshold tlic observation of spiii
glass-like behavior in Ising antiferromagnets has bcen
corroborated by computer simulations and iSindicated
by some tlicory, but a complete understanding is still
lackiiig. A belter understanding of tlie common appear-
ance of a AT line in canonical Isiiig spin glasses and
iii dilute Ising antiferromagnets necar the percolation
threshold is needed. Tlie decay of tlie remanent mag-
iictization in dilute Ising antiferromagnets for T' < Ty
may lcad to a bettcr understanding of nonequilibrium
processes if praper tlicories can be developed to explain
tlic obscrved behavior. Tlie Isiiig spiii glass lias been
well rcalized in a mised Ising antiferromagnet. Most of
thie predicted spin glass beliavior has been verified by
the experiments. Antiferromagnets will surely continue
to play a crucial rolein future investigations of systems
with quenched disordcr.

D. I. Belanger
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