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which calculated expectation values for -16 5 7 5 13. 
It must be noted that a11 results are valid for equal 
Z's and n's. Except for the most simple cases, the 
reported expressions are long and tedious. A more re- 
cent article16 presents an algebraic approach to  matrix 
elements; recurrence relations and closed formulas for 
hydrogenlike wave functions were presented for equal 
2 's .  

On the other hand, the screened hydrogenic model 
(SHM) describes the atom by single-particle hydrogenic 
wave functions using two different effective charge pa- 
rameters Zi and Z j ,  for the initial and the final states, 
respectively. 

Whereas Khandelwa12 writes about the usefulness 
of the SHM for isoelectronic sequences i f  and when  ihe  
numer ica l  values of ihe  pararneters Zi and Zf become 
available, Kregar8,g gives an analytical approach (gen- 
eralized in the first part of the present paper) to  find the 
effective charges; the validity of the SHM approach and 
the surprisingly close relation with the Hartree-Fock 
model, were analized by Kregar in the above mentioned 
articles. 

Few a u t h ~ r s ' ~ ~ "  have given general formulas for 
the discrete-discrete (and discrete-continuum) transi- 
tions within the SHM. Menzel17 expressed the bound- 
bound formulas in terms of two  hypergeometric func- 
tions, whereas Fitchardl%sed only one hypergeomet- 
ric function. Unfortunately, the two published versions 
of this ~ o r k ~ ~ ' ~  are not in mutual accordance, and do 
not give the correct results. 

In Section 111, we give a general closed expression 
for the screened hydrogenic radial integrals for arbi- 
trary multipole order, effective charges, and principal 
and orbital quantum numbers without using the hy- 
pergeometric functions a t  all. Finally, in Section IV 
we consider different definitions of effective charges and 
their mutual relation. Effective charges Zi and Zf can 
be found from experimentally established energy lev- 
els or extrapolated along isoelectronic sequences. As 
a consequence of practical interest, a new semiempiri- 
cal method for routine calculation of radial multipole 
matrix elements can be implemented, analogous to  the 
well known Coulomb approximation20. 

11. ~ l o s e d  expressions for obtaining analytic 
screening parameters 

IIa. Theory 

as the atomic model potential energy operator, the 
atomic Hamiltonian describing strongly, interacting 
electrons in a central nuclear field 

is transformed into the Hamiltonian 

that can be interpreted as describing quasi-electrons 
with effective charges qFff = -Zi/Z, moving inde- 
pendently in the non-reduced central Coulomb field 
Z/ri "9. 

The validity of this scaled hydrogenic description is 
explained in the above mentioned papers, but for our 
purposes it is sufficient to  say that the solutions of eq. 
(2) the hydrogen-like single particle wave functions 

are equal (within the central field approximation and 
neglecting relativistic and exchange effects) t o  the cor- 
responding Hartree-Fock wave functions8. 

In this approach, the interaction energy of the elec- 
tron pair s and t (the s t h  electron being equally or more 
strongly bound that  the t th electron) is written 

so that the two-body potential energy operator l/rSt is 
replaced by the sum of effective one-body operators 

In eqs. (4) and (5) gst and f ts  are, respectively, the 
externa1 and interna1 screening parameters, t o  be de- 
termined from 

Tt -CO M 

and 

After neglecting the exchange interaction and subshell 
effects, the effective charges are given by 

Using the viria1 



Brazilian Journal of Physics, vol. 22, no. 3, September, 1992 

where q,, qj are the occupation number of the respec- 
tive (sub)shellij. 

Since screening parameters are determined in terms 
of effective cha.rges an iterative procedure must be used 
for their determination. This procedure is short and 
simple if initi,tl values of gst and f t ,  are determined 
according to  Slater3 ~ e s s i s ~  or Kregar2' rules. 

Introducin,; the parameter 

and using the 'bydrogen-like wave functions given by eq. 
(3) t o  express dq in eqs. (6a) and (6b), the screening 
parameters g,, and ft, can be expressed in polynomial 
form as a.func tion of variables [y/(l + y)] and [1/(1 + 
Y)I 9. 

From the previous worksqQ it is not possible to  de- 
rive screening parameters for more complex configura- 
tions and the published results can be repeated only 
by laborious 8irect integratioh of the above mentioned 
equations. 

In this paper we arrive to  a simple formulation of the . - 

Kregar appro~.ch that  can be programmed in a personal 
computer. 

IIb. The screen ing  parameters in closed f o r m s  

Eqs. (6a) snd (6b) are formally similar and can be 
calculated using the expressions for radial wave func- 
tions for hydr 3genic atoms2' 

where 

and 

is the conflueiit hypergeometric function. 
It is straightforward to  show that we must solve 

2(n5 - e,) - I integrals of the type 

where a = 2 4  + 1,2e, + 2, ..., 272, - 1. 
Therefore 

Now we must solve 2(nt - e,) - 1 definite integrals 
of the type 

(14) 
where 

and b  = 2et + 2, 2et + 3, ..., 2nt .  
Multiplying by ( ~ J / z , ) ,  the final result obtained for 

g,t i~ 

n:nt C C C ~ f ~ ! a ! b !  
gst = - 

2 q Z t  2a+b 

( I ) b + l  -- ( h +  j ) !  ( y ) j  

1 + Y b ! j !  1 + y  
(16) 

where the successive values of C," are: C,, 4CS(cr/y), 
4C,{a(cr + l)/[y(y + I)] + f f2/y2)  , etc. (See eqs. (8), 
(9) and (10)) and similar results are obtained for the 
c; 'S. 

A straighthforward analysis shows that:  (a) [1/(1+ 
y)](2ef+3) is a common factor; (b) the maximum expo- 
nent of y is (2n, - 1) and (c) the remanent exponent of 
[ l / ( l  + y)] is [2(n, + nt - e,) - 31. 

On the other hand, we can write the previous ex- 
pression as 

where k = 0,1,  ..., 2(ns + nt - Ct) - 3 and the param- 
eters Ais  are calculated after comparison between ex- 
pressions (16) and (17) as it is shown in the following 
example for the configurations 2s - 3s. 

Explicitly, we obtain 
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IIc. A n  example: 2s - 3s pair  

Forthepair2.s-3s,a= 1 ,2 ,3 ,b=2,3 ,4 ,5 ,6 ;C,"  = 
1, -2 , l  and C: = 413, -16/3,64/9, -32/9,16/27. For 
the successive values of b, evaluation of eq. (16) gives 

where the common factor [1/(1+ y)I3 wa.a dropped. 
Taking (1 + y)' as the common denominator, we 

h ave 

On the other hand, evaluation of eq. (17) gives 

Comparison between eqs. (18) and (19) gives the final 
evaluation of eq. (16) which is given by 

where ak assumes the values 1, 3, -86, 910, -3810, 7490, 
-7000, 2520 which coincides with the results previously 
published

g
. 

IId. Resul ts  

According to the above analysis for g,, (and for 
ft,) the externa1 and interna1 screening parameters are 
given, as a function of y = Z,nt/Ztn,, by 

k = O  

(216) 
Calculated coefficients ak and bk for electron pairs be- 
yond those reported by Kregar

g 
are given in Tables 1 

and 2. If both electrons belong to the same subshell 
we have y = 1 and then g,; = fii and they are denoted 
by k i i .  Screeriing parameters /cii for ns2,  np2 and nd2 

configurations are given in Table 3. 

111. Screened Hydrogenic rad ia l  integrals for  ar- 
b i t r a r ~  mult ipole o rde r  

As it is well knowZ3, the normalized hydrogenic ra- 
dial functions can be written as a polynomial of degree 
( n - e - 1 )  as 

where 

As we must solve < nlll)rr)n212 >, y being the 
multipole order (y = 1 for dipole, 2 for quadrupole, 
etc.), it is straightforward to show that the product of 
the two radial functions and r? is of the form 
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Table I - Coefficients ak in equation (21a). 

Table I1 - Coefficients bk  in equation (21b). 

Table I11 - Screening parameters knt,nt for hydrogenic wavefunctions 
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where NL E nl+n2-(Cl+C2+2), the bj's and the at-j 's where Z is the atomic number, Sne is the screening 
are the appropriate coefficients of P2(r)  and P l ( r )  re- constant, E, is the energy ionization limit, and R is the 
spectively. T h e  integrals can be calculated using ele- Rydberg constant. This type of effective charges is very 
mentary methods and the result is given by useful in the discussion of isoelectronic ~ e ~ u e n c e s ~ ~ .  

X 
[nlnz/(n& + n1Z2)lt 

(2C2 + 1 + j)!(n2 - C2 - 1 - j)!(2Cl+l + t - j)!(2Ci + t - j)!(nl - C1 - 1 - t + j)!  

where O < t < [nl + n2 - (C1 + C2 + 2)] and max(0;  t + 
1 + C1 - n l )  < j < min( t ;n2  - C2 - 1). 

We remark some merits of using Eq. (24): first, 
we need no hypergeometric function; second, C1 (or e2) 
indicates indistinctly the lesser or the greater angular 
momentum. Furthermore, unlike other formulas 1121 
Eq. (3) is valid for Z1 = Z2 = Z and n l  = n2, repro- 
ducing the well known result 

and also reproduces the results of Shertzer13, 
M i s u ~ h i m a ~ ~  and Moralesl"or diagonal and off- 
diagonal matrix elements. 

IV. Empirical effective charge; a new definition 

Screening constants for many electron atoms are im- 
portant for the calculation of energy eigenvalues, dia- 
magnetic susceptibilities, Born cross sections for elas- 
tic scattering of fast charged particles25, inner-shell 
i ~ n i z a t i o n ~ ~ ,  etc. 

At least two different notions of effective charges 
(and screening constants) can be mentioned in the 
context of Screened Hydrogenic Models (leaving aside 
Slater, Thomas-Fermi or similar rules). One of them 
is related witli the experimental energy levels, and the 
other with the behavior or the wave functions. 

In the first case, we denote by 2:kd the effective 
charge as defined by27 

The second concept of effective charges is concerned 
with wave functions: these are effective Z's such that 
a hydrogen-like wave function using this ZeR, would 
give as good a fit as possible to  the calculated SCF 
wave function, and have been applied for example in 
the Z expansion approximation for the calculation of 
transition probabilities2a. 

If is a typical length, for example r< 
r,[ >= JF rP$(r)dr, and, if for a given (n ,  C) the 
radial wave functions for different atomic numbers Z 
are similar (a  property that  can De called the rigid- 
i ty  of hydrogenic wave functions) the scaling prop- 

erty R:{~P,~(~) = f ( r /Rne)  holds2'. Further more if 
< r H  > is the value of Rne for the wave function of the 
hydrogen atom, then in the Coulomb field of a point 
charge ( Z  - Sne) is 

Similarly, if I denotes a radial integral, then 

The rigidity of the hydrogenic wave functions is sup- 
ported, for example, by the calculation of the total 
binding energy of Argon by ~regar%sing  the SHM 
where the difference between the calculated and the ex- 
perimental values is 2. 2 x 10-4. 

Effective charges can be easily calculated from Eq. 
(25a) if tables of experimentally established levels are 
a t  hand, whereas theoretical screening constants can be 
available after self-consistent c a l c ~ l a t i o n s ~ ~ .  The two 
values are very different, and that  is the reason why 
it is not possible to use effective charges derived from 
a leve1 scheme for radial integrals calculations within 
the SH model. As an example, we show in Table 4 
effective charges for Xe I1 and Ne 111, where the columns 
indicates respectively, the configuration, Zen given by 
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Eq. (25a), tlie ZeE's obtained from MCDF calculations, 
the effective quantum number, and Z,n. as given by Eqs. 
(27) or (29). 

Table IV - EXective charges for Xe I1 and Ne 111 average 
configurations 

Configuration Zeff Zeff n* &,i 
(Eq. (25a)) MCDF (h. (27)) 

The  discrepancy between the effective 2 's  given by 
Eqs. (25a) itnd (25b) was considered also by Slater3 

and explained in terrns of inner and outer shielding. 
These are now related, of course, with the externa1 and 
interna1 screming parameters introduced in the Sec- 
tion 11. Howcver, a very simple connection between the 
two values of' Zen. can be made, that permits the same 
usefulness of the concept of effective charge to isoelec- 
tronic sequerces, and in adition it serves as estimation 
of wave funtims. MCDF calculations using the code of 
I.P. Grant, iridicates that 

< me >e [3nW2 - C(!+ 1)]/2Z0 (26) 
where n* is i,he effective quantum number, and Zo = 
Z - N + 1 is t he core net charge. In Table 5 we indicate 

; ; r *  >. < r > and < r' > values for Xe I1 both from 
Eq. (26) and from MCDF calculations. 

Table V - Expectation values (T') for Xe I1 

Configuraticn Method < I / r  > < T > < r2  > 

5d Eq. (24) 0.309 4.46 22.56 
MCDF* 0.306 4.10 19.61 

7 s  Eq. (24) 0.166 8.97 90.42 
MCDF' 0.135 9.53 101.10 

'From Ref. 40. 

Defining now Z:gw such that 

< I.,, >= [3n2 - !(e + 1)]/2ZtgW, (27) 

means that expressing the energies in Rydberg units we 
obtain 

and taking into account that !(C+ 1) << 3n2 and C(!+ 
l)(E, - Enl) << 32:, then 

which leads t o  

We note that the effective charges, derived from leve1 
values, are very close to  those from MCDF or Scaled 
HF calculations; indeed, for non penetrating orbits n 2 
n* and Z,;fW ZiAd. Even for the highly penetrating 
ground orbitals 5p of Xe 11, Z,"gW E zMCDF, the results 
are relatively close (19.2 vs 17.6) whereas Zefd has a 
value (= 6.2). 

Table VIa - Absolute oscillator strengths for 5s-5p 11 
transitions 

A (A) f(exp) f(Cou1) f (presentwork) Ref. 

Table VIb - Absolute transition probabilities for Xe 11 
transitions 

-- - - 

A (A)  A (exp)' A (Coul.) A (IC-HFS)" (Present work) 

*From Ref. 42: **From Ref. 34. 
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Table VI1 - Summary of measured and calculated values of the lifetimes of the Kr I1 5p 4D7/2 and the Xe II 6p 
4D7/2 levels. IC: intermediate coupling; HFS: Hartree-Fock-Slater; BD: Bates-Damgaard; PP: parametric potential; 
HFRC: Hartree-Fock with relativistic corrections; BF: beam-foil; PEE: pulsed electron excitation; CPC: cascade- 
photon coincidence; BL: beam-laser; BG: beam-gas; PLE: pulsed-laser excitation. 

Ion Source Method Referente Lifetime (ns) 

Marantz et  al. 
Koozekanani et ai. 
E1 Sherbini 
Spector-Garpman 
Helbig 
Fonseca-Campos 
P re sen t  work 

Delgado et al. 
Donnelly et al. 
Mohamed et al. 
Blagoev 
Fonseca Campos 
Ward et  al. 
Le Mond et al. 
Schade et al. 
Mitchell e t  a1 

Garpman-Spector 
Hansen-Persson 
P re sen t  work 

Mohamed et al. 

Theory 

IC-HFS 
IC-HFS 
IC-BD 
IC-HFS 
LS-BD 
LS-BD 
Scaled Hydrogenic 

Experiment 

PEE 
PEE 
CPC 
PEE 
PEE 
BL 
BG 
PLE 
CPC 

Tlieorv 

IC-HTS 
IC-HFRC 
Scaled Hydrogenic 

CPC 
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V. Resu l t ;  and discussions o n  t h e  realiability a n d  
general i ty  of the m e t h o d  

I t  is not the purpose of this paper to present a table 
of calcula~~ed atomic properties, using the newly defined 
Zeff. Mor:over, orthogonalization procedures were not 
carried out, and this question was eluded using average 
Zeff's valces given by 

In the present form, our method is superior at 
least to 3,he Coulomb approximation of Bates and 
Damgaarc 20, and produces good results when it is com- 
pared wit I Intermediate Coupling-Hartee Fock Slater 
(IC-HFS) method, as we will see en Tables 6 and 7. 

In Table 6, we present transition probabilities using 
our radial integrals with pure LS cou~ling, compared 
with e ~ ~ e r i m e n t a l ~ ~ ~ ~ ~  and IC-HFS for Kr 
I1 and Xe 11; we note that our method compares very 
favorably 50th with theory and experiments. 

In Table 7, we show lifetimes calculations for the 
levels of Kr I1 5p 4D712 and Xe I1 6p 4 ~ 7 1 2 .  In the first 
case our viilue (=7.63 ns) is the same as the mean value 
obtained from the experiments quoted in ref. 35 and 
is larger tlien the results of other theoretical works. In 
the Xe I1 case36, our result (=5.85 ns) is exactly the 
average between the calculations of ref. 33 and 36, and 
coincides with the experiments of ~ o h a m e d ~ ~ .  

We als'3 notice that the SHM is able to reproduce 
many atorlic properties, and compares very well with 
the more t:ophisticated calculation techniques and ex- 
perimental results, within a factor less than 1.5. The 
discrepancy can be due not only to the radial values, 
but also to  Intermediate Coupling and Configuration 
Interaction problems. 

When Lhe sums of matrix elements are required 
(e.g., lifetimes, line widths and shifts) the LS-SHM 
yields surprisingly accurate results, because the sums 
are more iiccurate than the individual values; a for- 
tunate circumstance which is connected with the exis- 
tente of sum rules. This fact is a well documented in 
ref. 35, 36 when Bates-Damgaard values were used for 
lifetimes arid in ref. 38 for broadening calculations. 

As it is stated in Ref. 35: "the spread of calculated 
values for lifetimes, perhaps indicates the increased dif- 
ficulty of ir cluding relativistic effects such as spin-orbit 
mixing, ancl the resultant lack of any good approximate 
coupling scheme for heavy ions. A reasonable estimate 
of the relial~ility of the sophisticated calculations would 
be no bettc r than 15-20%". 

For routine calculations as, for example, the colli- 
sions of elcctrons with ions, or when the sum of ma- 
trix elements are needed, our method works very well 
as was sholved in the Tables. For more subtle calcu- 
lations our method must be improved, although it was 
not thoughi, to  compete with refined many body atomic 

theories. However, it must be said that codes based 
in Hartree-Fock rnethods such as H X ~ ~ ,  use adjustable 
parameters, and severa1 least square fits between calcu- 
lated and observed leve1 values are required before other 
properties are calculated. This procedure is well known 
for experimental spectroscopists who used these types 
of codes, and it is also known that good functions for 
energy levels are not necessarily good to calculate other 
quantities (e.g., g-factors, Aij's). Usually fairly small 
changes in the parameters can lead to  large changes in 
some properties36. 

VI. Conclusions 

The screened hydrogenic model (SHM) was formu- 
lated in closed form for wave functions and radial inte- 
g ra l~ .  Analytic screening parameters generalizing the 
published results of Kregar, and a new definition of 
experimental effective charges, were given. A general 
formula for calculating hydrogenic radial integrals for 
arbitrary multipole order was found, valid for equal or 
not equal values of Zi,  Zj ,  n,, nf , l i ,  l j .  From Eq. (24) 
it is possible to calculate transition integrals, mean val- 
ues, anisotropies of the core polarizabilities, and over- 
lapping integrals when y = 0. 

On the other hand, a method to estimate the ef- 
fective charges from experimentally established levels 
is proposed that, for nonpenetrating orbits (n z n) is 
nearly coincident with old definitions, and in general is 
approximately the same as calculated from Dirac-Fock 
codes. It can also be verified that for many impor- 
tant transitions, where (Zeffji x Zeff,f)1/2 N (Zeff,i + 
Zenaj)/2 =< Z >, the transition integrals are in accor- 
dance with the values reported by Shore and Menze13' 
divided < Z > . 
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