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A Screened Hydrogenic Model (SHM) is formulated in closed form. Analytical effective
charges for wave functions, radial integrals for arbitrary multipole order, and a new method
for semiempirical calculations are presented. The algorithm for the obtention of screening
constants is derived for hydrogenic orbitals, based on the splitting of the two body potential
energy operators by the sum of effective one body operators. As an example, relevant coef-
ficients for different electron pairs are presented. Further, a general formula for calculating
hydrogenic radial integrals for arbitrary multipole order is found. The result is valid when
initial and final effective charges are different. It is also valid when the principal and/or or-
bital quantum numbers are not equal. A new expression for effective charges calculated from
experimentally established levels is derived which, for non penetrating orbits, approaches the
¢ assic definition Zeg = n[(Eco — Ent)/R]*?. In general the results are very close to effective
charges given by MCDF calculations and to the closed expressions also developed in this
paper. Therefore, our formulation permits: (a) to calculate analytic screening parameters
in closed form; (b) to calculate a new type of empirical effective charges from experimental
le vels; (c) to calculate transition integrals to any multipole order; (d) to calculate diagonal or
oT-diagonal matrix elements < n;,|r"|ng,£; >; for the special cases n; = ny and ¢; = £y,
mean values are obtained, and when ¢; = £; + 2 anisotropies of the core polarizability can
a'so be calculated. Furthermore, when v = 0, overlap integrals are automatically performed.
Comparison with experiments and numerical self-consistent calculations are presented, and

the realiability and degrees of generality of our methods are discussed.

I. Introduction

Hydrogenic radial wave functions and matrix ele-
ments have teen considered for a long time. For the
former, rules for the estimation of the screening from
empirical and for SCF calculations were given by differ-
ent authors and still such orbitals are particularly useful
when preliminary computations are required. Analo-
gously, the study of hydrogenic radial matrix elements
< n'#'|r7|nf > using non relativistic radial wave func-
tions have been widely considered!'?, in general using
the nuclear charge Z to describe both the initial and
the final states of the atomic electron.

There is a wide literature about effective charges,
but for our purposes we distinguish between screened
Slater type and screened hydrogenic type orbitals. For
Slater orbitals, empirical rules?® or direct minimization
of the energizs®® can be used for the estimation of
screening parameters. A simple rule for the calculation
of analytic atomic shielding parameters as functions of
the quantum number (n,£) of each orbital, was given
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by Bessis and Bessis® and the results follow the trends
given by Slater and Burns rules’, and Clementi SCF
calculations*®.

In the Section II of this paper, we treat Screened
Hydrogenic Type Orbitals following the approach given
by Kregar®®. In these works, the author arrived to a
method for the obtention of analytic effective charges
but, from these articles, it is not possible to derive
screening parameters for other configurations although
the results can be repeated by brute force calculations.
Here we present a derivation of the algorithm for an
easy obtention of screening constants and an explicit
example to show how to design a simple computation
program for automatic calculations.

For the matrix elements, we remember that
Gordon!® found a general formula in terms of inte-
grals containing confluent hypergeometric functions®?
and the solution of < n’, £ — 1jr|nf > for n # n' can
be found in advanced textbooks in terms of two hyper-
geometric functions!?, always for Z; = Z; = 1. In
a recent paper, Shertzer'® obtained diagonal and off-
diagonal matrix elements < n,{|r7|n, £ > generalizing

the results of Bockasten!4 and Drake and Swainson?®,
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which calculated expectation values for —16 < v < 13.
It must be noted that all results are valid for equal
Z’s and n's. Except for the most simple cases, the
reported expressions are long and tedious. A more re-
cent article!® presents an algebraic approach to matrix
elements; recurrence relations and closed formulas for
hydrogenlike wave functions were presented for equal
Z’s.

On the other hand, the screened hydrogenic model
(SHM) describes the atom by single-particle hydrogenic
wave functions using two different effective charge pa-
rameters Z; and Z;, for theinitial and thefina states,
respectively.

Whereas Khandelwal? writes about the usefulness
of the SHM for isoelectronic sequences if and when the
numerical values of the pararneters Z; and Z; become
available, Kregar®® gives an analytical approach (gen-
eralized in thefirst part of the present paper) tofind the
effective charges; the validity of the SHM approach and
the surprisingly close relation with the Hartree-Fock
model, were analized by Kregar in the above mentioned
articles.

Few authors!”!® have given general formulas for
the discrete-discrete (and discrete-continuum) transi-
tions within the SHM. Menzel!” expressed the bound-
bound formulas in terms of two hypergeometric func-
tions, whereas Fitchard!® used only one hypergeomet-
ric function. Unfortunately, the two published versions
of this work®!® are not in mutual accordance, and do
not give the correct results.

In Section III, we give a general closed expression
for the screened hydrogenic radial integrals for arbi-
trary multipole order, effective charges, and principal
and orbital quantum numbers without using the hy-
pergeometric functions at all. Finally, in Section IV
we consider different definitions of effective charges and
their mutual relation. Effective charges Z; and Z; can
be found from experimentally established energy lev-
els or extrapolated along isoelectronic sequences. As
a consequence of practical interest, a new semiempiri-
cal method for routine calculation of radial multipole
matrix elements can be implemented, analogous to the
well known Coulomb approximation?®.

II. Closed expressions for obtaining analytic
SCreening parameters

ITa. Theory
Using the virial

w= Y rF = —(1/2) Y VW, (ro, ey ri, rn)
(1)
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as the atomic model potential energy operator, the
atomic Hamiltonian describing strongly, interacting
electronsin a central nuclear field

H=Y (p}/2m=2[r)+) 3 Ury  (20)

is transformed into the Hamiltonian

HY=) H)=) (p}/2m—Z:/r:)  (2)

that can be interpreted as describing quasi-electrons

with effective charges ¢ = —Z;/Z, moving inde-
pendently in the non-reduced central Coulomb field
Z/’l‘i 8’9.

The validity of this scaled hydrogenic description is
explained in the above mentioned papers, but for our
purposes it is sufficient to say that the solutions of eq.
(2) the hydrogen-like single particle wave functions

V(1) = Rue(Zimi)Y" (0, ¢i) (3)

are equal (within the central field approximation and
neglecting relativistic and exchange effects) to the cor-
responding Hartree-Fock wave functions®.

In this approach, the interaction energy of the elec-
tron pair s and t (the s** electron being equally or more
strongly bound that the t'" electron) is written

< st]l/rg|st >=< slgst/rs|s > + < t|fis /it > (4)

so that the two-body potential energy operator 1/r,; is
replaced by the sum of effective one-body operators

1/7'st :gst/rs+fts/rt~ (5)

In egs. (4) and (5) g, and f,s are, respectively, the
external and internal screening parameters, to be de-
termined from

rr

t— 00 oo
gu=(n/2) [ da / dgsfrs,  (6a)
0 Ty

and
Ts— 00 o0
fis = (n2/Z,) / dqs / dgi /7y, (6b)

After neglecting the exchange interaction and subshell
effects, the effective charges are given by

(6c)
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where ¢;, ¢; are the occupation number of the respec-
tive (sub)shells.

Since screening parameters are determined in terms
of effective charges an iterative procedure must be used
for their determination. This procedure is short and
simple if initial values of g,; and f;s are determined
according to Slater® Bessis® or Kregar®! rules.

Introducin,; the parameter

y= ant/Ztnav (7)

and using the 1ydrogen-like wave functions given by eq.
(3) to express dg in egs. (6a) and (6b), the screening
parameters g,, and f;, can be expressed in polynomial
form as a function of variables [y/(1 + )] and [1/(1+
Yl °.

From the previous works®? it is not possible to de-
rive screening parameters for more complex configura-
tions and the published results can be repeated only
by laborious ¢irect integratioh of the above mentioned
equations.

In this paper wearrive toasimple formulation of the

Kregar approzch that can be programmed in a personal
computer.

IIb. The screening parametersin closed forms

Egs. (6a) snd (6b) are formally similar and can be
calculated using the expressions for radial wave func-
tions for hydr >genic atoms??

dg, /vy = C5(Zyr[ng) ! exp(~2Z,r/n,)
X[F(—ns + & + 1,2, + 2,2Z,7/n,)]%,  (8)

where
_ 2L+2(n, + £,)122
Ci = n3[(2¢, + 1)1*[(n, — ¢, — DI}’ (9)
and
Fla,v,2) = (14 (a/y)z

Hla(a+ 1/v(y + DI*/2) + ), (10)

is the confluent hypergeometric function.
It is straightforward to show that we must solve
2(ny — e,) — | integrals of the type

oo
e / (kr)%e™2* dr. (11)

Explicitly, we obtain

/oo(ZJr/na)d exp(—2Z,r/n,)dr =

r

r j
(ns/2°%1Z,) exp(— 2Z3r/n,)z [25 ](12)

i= 0

wherea=2¢, t1,2¢,+2,... 2n, - 1.
Therefore

/ " dgafre = (Cans /22,) exp(—2Z5r/ms)

XZZ 54 ' (2Z,r/n,) . (13)

a j=0

Now we must solve 2(n,
of the type

— £,) — 1 definite integrals

C; /Ooo(Ztr/nt)b exp(—2Z:r/n,) {/roo dq,/r,}dr
(14)

where

2042 (ny + £,)1 2,
n?[(26, + 1))2(ny - £, — 1Y

C = (15)

and b=12¢,%2, 24, F3,...,2n,.
Multiplying by (n%/Z,), thefinal result obtained for

gst 18

CeChalt!
= DRI D

2a+b

(h{y)”“ <b;;l’ (ffy) (16)

where the successive values of C? are: C,, 4C,(a/y),
4C{ala T 1)/Ir(rF D]+ a2/77} | etc. (See egs. (8),
(9) and (10)) and similar results are obtained for the
Cts

A straighthforward analysis shows that: (a) [1/(1 4+
¥))(?4+3) is a common factor; (b) the maximum expo-
nent of y is (2n, — 1) and (c) the remanent exponent of
[1/(1F )] is [2(n, ne - £) - 3].

On the other hand, we can write the previous ex-
pression as

gt = 3 Aly/(1+ 9)]", (17)
k

where k = 0,1, ...,2(n, T n, — £,) — 3 and the param-
eters Ajs are calculated after comparison between ex-
pressions (16) and (17) as it is shown in the following
example for the configurations 2s — 3s.
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IIc. An example: 2s— 3s pair

For the pair 2s—3s,a = 1,2,3,6 = 2,3,4,5,6; C¢ =
1,-2,1 and C} = 4/3,—16/3,64/9,-32/9,16/27. For
the successive values of b, evaluation of eq. (16) gives

b=2 : 143y/(1+y)—6y2/(1+y)?
+30y%/(1 + y)°

b=3 : -6/(1+y)—24y/(1+y)*+
60y%/(1 + y)® - 360y°/(1+ y)*

b=4 : 16/(1+y)?+80y/(1+y)°
—240y% /(1 + y)* + 16801°/(1 + y)°

b=5 —20/(1 + y)® — 120y/(1 + y)*
+420y%/(1 + y)° — 3360y3/(1 + y)°

b=6 : 10/(1+y)*+T0y/(1+y)°

—280y%/(1 + y)® + 252043 /(1 + v)7

where the common factor {1/(1 + y))® was dropped.
Taking (1 y)? as the common denominator, we
have

gse = {{1/(1 + 9)P[(1 +y)"

+(3y — 6)(1 +y)® + ... + 25204°]} /(1 + v)*

= {[1/(1 + v)PP[1 + 10y — 47y? + 560y° ~ 953y*
+726y° ~ 215y° + 28y7]}/(1 + v)". (18)

On the other hand, evaluation of eg. (17) gives
gst = {[1/(1 + y)PP[Ao + y(T40 + Ay)
+y2(2140 + 64; + A2) + ...

e+ Y (Ao + AL+ .+ AN+ )7, (19)

Comparison between egs. (18) and (19) gives the final
evaluation of eg. (16) which is given by

7
g2s-3s = [1/(L+ )P D _arly/(1+9)}*  (20)
0

where a; assumes the values 1, 3, -86, 910, -3810, 7490,
-7000, 2520 which coincides with the results previously
publlshed
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IId. Results

According to the above analysis for g¢,; (and for
fts) the external and internal screening parameters are
given, as afunction of y = Z,n,/Z;n,, by

2(n,+n,—£;)-3

g = [L/A+RP Y

k=0

arly/(1 + y))¥,

(21a)
and

2("’.+"t"ll)"3

fio = /L 9P

k=0

b:[1/(1 + y))*.

(218)
Calculated coefficients ax and by for electron pairs be-
yond those reported by Kregar™ are given in Tables 1
and 2. If both electrons belong to the same subshell
we have y = 1 and then g;; = f; and they are denoted
by ;. Screening parameters k;; for ns2, np? and nd?
configurations are given in Table 3.

II1. Screened Hydrogenic radial integrals for ar-

bitrarsmultipoleorder

Asit is wel know??, the normalized hydrogenic ra-
dial functions can be written as a polynomial of degree
(n—€-1)as

n-£—1
Pu(r) = Cupe™7inpttt 3
—27 k. k
(=2Z/n)"r (22
E 20+ 14+ k) (n—-20—1=k)!
where

Cre = {[2V2 273 (n—£=1)!(n+0)1] /0> +}/2 (22')

As we must solve < nif;|r?|nsfs >, v being the
multipole order (y = 1 for dipole, 2 for quadrupole,
etc.), it is straightforward to show that the product of
the two radial functions and »” is of the form

01(727'“ +8+2+4y

NL {no-t;-1
" t
Z L bjat_jr

Pl(r)r7P2(r) =

t=0 j=o
exp{{~[n221 + n1 Z,]/niny}r},
(23)
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Table | - Coefficients ax in equation (21a).
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11
1s4s 1 3 -75 385 -975 1365 -1015 315
1sép 1 5 -60 210 -315 189
2s4s 1 3 -156 2320 -14880 50400  -98140 110880 -67725 17325
2s4p 1 5 -135 1785  -8925 20979  -23625 10395
2p4s 1 3 6 10 -1470 8610  -22050 29610 -20475 5775
2pdp 1 5 15 35  -1225 4599 -6615 3465
3s4s 1 3 -237 5815 -63975 389865 -1432096 3295216 -4781701 4250401 -2113651 450450
3s4p 1 5 -210 4760 -45185 226359 -633150 990990  -810810 270270
3pds 1 3 6 10 -5925 72345 -380205 1090846 -1839601 1824901  -987525 225225
3pdp 1 5 15 35 -5110 50274 -198765 384615  -363825 135135
3d4s 1 3 6 10 15 21  -13209 79569  -200340 258720  -169785 45045
3d4p 1 5 15 35 70 126  -10773 40887 -56133 27027
4s4p 1 5 -285 9135 -128520 1005984 -4746000 1.399x107 -2.58x107 2.90x107 -1.80x107 4729724
Table II - Coefficients bx in equation (21b).
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 =8 k=9 k=10 k=11 k=12
4s1s 1 3 -18 210 -855 1995  -2380 1260
4s2s 1 5 -450 7350 -3990 11970 -17850 11550
4s2p 1 5 -45 735 -3990 11970 -17850 11550
4s3s 1 3 -178 4530-51915 334495 -1314460 3262140  -5121901 4920300  -2633399 600600
4s3p 1 5 -1453395-32830 172410 -517650 889350 -808500 300300
4s3d 1 7 -841764-11970 43890 -78540 60060
4pls 1 3 6 10 -135 651  -1092 756
4p2s 1 3 6 10 -1185 10101 -35952 65016 -58590 20790
4p2p 1 5 15 35 -630 3906  -8190 6930
4p3s 1 3 6 10 -5035 67151 -388612 1233877  -2297821 2499421  -1469161 360360
4p3p 1 5 15 35 -3897 41706 -182490 399630 -429660 180180
4p3d 1 7 28 84 -1890 14322 -36036 36036
4pds 1 3 5 10-14835 275751 -2276022 1.072 x 167 —3.15 x 107 6.07 x 107 —7.40 x 167 5.69 x 107 —2.49 x 107

Table III - Screening parameters ¥n¢,ne for hydrogenic wavefunctions

n 1 2 3 4 5
Enems 0.3125 0.3010 0.2988 0.2982 0.2979
Enp,np 0.3633 0.3234 0.3114 0.2532
End,nd 0.3872  0.3414
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where NL = ny+ny—(€1+£2+2), theb;’s and thea,_;’s
are the appropriate coefficients of Py(r) and Py(r) re-
spectively. The integrals can be calculated using ele-
mentary methods and the result is given by

/°° Py (r)rY Py(r)dr =
0
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where Z is the atomic number, S, is the screening
constant, E istheenergy ionization limit, and R isthe
Rydberg constant. Thistype of effective charges is very
useful in the discussion of isoelectronic sequences??.

1/2
{22(’"+‘2+2)Zf£‘+3Zgl’+3(n1 - gl - 1)!(71,2 - Zg - 1)!(711 + fl)!(nz + gz)'} /

nf£1+4n§lg+4
X[ning/(n2Z1 + mZz)]l’“’Jra""y

(=2)'Z5Z77 (0 + by + 4+ 2+ 7)!
x> {Z
t

- ini ™ it - j)!

[nina/(n2 21 + n120))

X(2~’32+1+j)!(n2 — - 1= Tt— N Tt-Hn - —1—t )’

where 0 < t < [ny T ny — (£, T £, +2)] and maz(0;t +
1+ ¢, —ny) < j < min(t;ng — £, — 1).

We remark some merits of using Eq. (24): first,
we need no hypergeometric function; second, £; (or £5)
indicates indistinctly the lesser or the greater angular
momentum. Furthermore, unlike other formulas [12]
Eq. (3) isvalid for Zy = Z, = Z and n; = ny, repro-
ducing the well known result

./oo Pn,e(T)TPn,e—1d7° = (—1)5_1(3"/2Z)[£("2—52)]1/2x
i (24)

and also reproduces the results of Shertzer!3,
Misuzhima?%? and Morales}® for diagonal and off-
diagonal matrix elements.

I'V. Empirical effective charge; a new definition

Screening constantsfor many electron atoms are im-
portant for the calculation of energy eigenvalues, dia-
magnetic susceptibilities, Born cross sections for elas-
tic scattering of fast charged particles®®, inner-shell
ionization?®, etc.

At least two different notions of effective charges
(and screening constants) can be mentioned in the
context of Screened Hydrogenic Models (leaving aside
Slater, Thomas-Fermi or similar rules). One of them
isrelated witli the experimental energy levels, and the
other with the behavior or the wave functions.

In the first case, we denote by Zo¢ the effective
charge as defined by?”

2% = (Z = Spe = n[(Eo = Eat)/R)'* (250)

(24)

The second concept of effective charges is concerned
with wave functions: these are effective Z’s such that
a hydrogen-like wave function using this Z.s, would
give as good a fit as possible to the calculated SCF
wave function, and have been applied for example in
the Z expansion approximation for the calculation of
transition probabilities®®.

If Rne is a typical length, for example R,.; =<
tag >= [y rPZ(r)dr, and, if for a given (n,Q the
radial wave functions for different atomic numbers Z
are similar (a property that can De called the rigid-
ity of hydrogenic wave functions) the scaling prop-

erty R,II/ZQPn((r) = f(r/R,:) holds®®. Further more if
<ryg > is the value of R, for the wave function of the
hydrogen atom, then in the Coulomb field of a point

charge (Z — Spy) is
Rpe=<ry > /(Z = Sne). (255)
Similarly, if | denotes aradial integral, then
I=1Ig/(Z - Snt). (25¢)

Therigidity of the hydrogenic wave functionsissup-
ported, for example, by the calculation of the total
binding energy of Argon by Kregar® using the SHM
where the difference between the calculated and the ex-
perimental values is ~ 2 x 1074,

Effective charges can be easily calculated from Eq.
(2ba) if tables of experimentally established levels are
at hand, whereas theoretical screening constants can be
available after self-consistent calculations3®. The two
values are very different, and that is the reason why
it is not possible to use effective charges derived from
a level scheme for radial integrals calculations within
the SH model. As an example, we show in Table 4
effective charges for Xe Il and Nelll, where the columns
indicates respectively, the configuration, Z.g given by
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Eq. (25a), tlie Z.a’s obtained from MCDF calculations,
the effective quantum number, and Z.q asgiven by Egs.
(27) or (29).

Table IV - Effective charges for Xe II and NeIlIl average
configurations

Zcff n' Z

Configuration Zest off
(Eq. (252)) MCDF (Eq. (27))
Xe 11 6s 4.951 11.050 2.424 12.256

5p 4.276 8.901 2.805 9.143

.5d 3.933 8.418 2.542 7.735

Ts 4.039 7.711 3.466 8.156

Ne II 3d 3.047 3.184 2.954 3.095

The discrepancy between the effective Z’s given by
Egs. (25a) and (25b) was considered also by Slater®
and explained in terrns of inner and outer shielding.
These are now related, of course, with the external and
internal screzning parameters introduced in the Sec-
tion I1. However, a very simple connection between the
two values of Z.g can be made, that permits the same
usefulness of the concept of effective charge to isoelec-
tronic sequerces, and in adition it serves as estimation
of wave funtions. MCDF calculations using the code of
[.P. Grant, iridicates that

< The >& 307 = L+ 1))/2Z, (26)

where n* is the effective quantum number, and Zy =
Z - N*+1isthe core net charge. In Table 5 we indicate
. i/r >. <r>and < r~ > values for Xe II both from
Eqg. (26) and from MCDF calculations.

Table V - Expectation vaues (r™) for Xell

Configuraticn ~ Method <1/r> <r> <r?>
5d Eq. (24) 0309 446 2256
MCDF* 0.306 410 19.61

7s Eq. (24) 0166 897 9042

MCDF 0.135 953 10110

*From Ref. 40.

Defining now ZZ5" such that

< rpe >=[3n2 — g+ 1))/225%", (27)

means that expressing the energies in Rydberg units we
obtain

new _ [31’1.2 — e(f + 1)](E0° - Enl)

eft 322 — €({ + 1)(Eoo — Ent)

} Zo,  (28)

and taking into account that £(¢+ 1) << 3n? and £(£+
1)(Es — Ene) << 323, then

2% > n?(Eo — Ene)/Zo, (29)
which leads to
ZIg" = (n/n*) 2% (30)

We note that the effective charges, derived from level
values, are very close to those from MCDF or Scaled
HF calculations; indeed, for non penetrating orbitsn =
m* and Zig® = Z34. Even for the highly penetrating
ground orbitals 5p of Xell, Zne" ~ ZMCDF theresults
are relatively close (19.2 vs 17.6) whereas Z%¢ has a
value (= 6.2).

Table VIa - Absolute oscillator strengths for 5s-5p 11

transitions
XA (A)  f(exp) f(Coul) f (presentwork) Ref.
4832  0.585 0.307 0.390 41
4739 0.546 0.250 0.318 41
4619 0.518 0.409 0.519 41
4615  0.495 0.341 0.433 41
4431 0577 0.345 0.438 41
4300  0.114 0.116 0.147 41
4292 0.216 0.216 0.274 41
4154 0.095 0.071 0.090 41

Table VIb - Absolute transition probabilities for Xe 11
transitions

A (A) A (exp)* A (Coul.) A (IC-HFS)"* (Present work)

5438 0.801 0.835 1.016 0.721
5419  0.406 0.888 1.018 0.766
5372  0.665 0.911 1.004 0.786
5339  0.457 0.884 0.868 0.763
5292  0.561 0.905 0.460 0.777
5261 0.723 0.988 1.018 0.853
5191  0.606 0.958 1.121 0.827
4921  0.981 1.102 1.399 0.950
4887  0.504 1.117 0.557 0.966
4883  0.688 1.119 1.101 0.967
4844  0.607 1.154 1.475 0.996
4603  0.921 1.373 1.356 1.185

*From Ref. 42: **From Ref. 34.
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Table VII - Summary of measured and calculated values of the lifetimes of the Kr II 5p *D7;, and the Xe II 6p
4Dy, levels. IC: intermediate coupling; HFS: Hartree-Fock-Slater; BD: Bates-Damgaard; PP: parametric potential;
HFRC: Hartree-Fock with relativistic corrections; BF: beam-foil; PEE: pulsed electron excitation; CPC: cascade-

photon coincidence; BL: beam-laser; BG: beam-gas; PLE: pulsed-laser excitation.

lon Source Method Reference Lifetime (ns)

Kr I Theory
Marantz et al. IC-HFS 35 68+14
Koozekanani et al. IC-HFS 35 6.08
El Sherbini IC-BD 35 5.6
Spector-Garpman IC-HFS 34 6.1
Helbig LSBD 35 7.13
Fonseca-Campos LS-BD 35 6.9
Present work Scaled Hydrogenic 7.63

Experiment

Delgado et al. PEE 35 8.50
Donnelly et al. PEE 35 7.70
Mohamed et a. CPC 35 7.22
Blagoev PEE 35 8.80
Fonseca Campos PEE 35 7.00
Ward et al. BL 35 7.04
Le Mond et al. BG 35 8.0
Schade et al. PLE 35 7.2
Mitchell et al CPC 35 7.0

Xe Il Tlieorv
Garpman-Spector IC-HTS 33 9.3
Hansen-Persson IC-HFRC 36 7.01
Present work Scaled Hydrogenic 5.85

Experiment

Mohamed et al. CPC 37 58402
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V. Result; and discussions on the realiability and theories. However, it must be said that codes based

generality of the method

It isnot the purpose of this paper to present atable
of calculated atomic properties, using the newly defined
Z.g. Morzover, orthogonalization procedures were not
carried out, and this question was eluded using average
Zegg's valces given by

< Zep >2< Z8 + 29 > )22 28 5 2 S12
(31)

In the present form, our method is superior at
least to the Coulomb approximation of Bates and
Damgaarc 2%, and produces good results when it is com-
pared wita Intermediate Coupling-Hartee Fock Slater
(IC-HFS) method, as we will see en Tables 6 and 7.

In Table 6, we present transition probabilities using
our radial integrals with pure LS coupling, compared
with experimental®32 and IC-HFS values®33¢ for Kr
Il and Xe II; we note that our method compares very
favorably Hoth with theory and experiments.

In Table 7, we show lifetimes calculations for the
levelsof Kr II 5p 4D7/2 and Xell 6p 4D7/2. In thefirst
caseour viilue(=7.63 ns) is the same as the mean value
obtained from the experiments quoted in ref. 35 and
is larger tlien the results of other theoretical works. In
the Xe II case®®, our result (=5.85 ns) is exactly the
average between the calculations of ref. 33 and 36, and
coincides with the experiments of Mohamed®”.

We als> notice that the SHM is able to reproduce
many atoraic properties, and compares very well with
the more sophisticated calculation techniques and ex-
perimental results, within a factor less than 1.5. The
discrepancy can be due not only to the radial values,
but also to Intermediate Coupling and Configuration
Interaction problems.

When the sums of matrix elements are required
(e.g., lifetimes, line widths and shifts) the LS-SHM
yields surprisingly accurate results, because the sums
are more accurate than the individual values; a for-
tunate circumstance which is connected with the exis-
tente of sum rules. Thisfact is a well documented in
ref. 35, 36 when Bates-Damgaard values were used for
lifetimes and in ref. 38 for broadening calculations.

Asit isstated in Ref. 35. "the spread of calculated
vaues for lifetimes, perhaps indicates the increased dif-
ficulty of ir cluding relativistic effects such as spin-orbit
mixing, and the resultant lack of any good approximate
coupling scheme for heavy ions. A reasonable estimate
of the reliability of the sophisticated calculations would
be no better than 15-20%".

For routine calculations as, for example, the colli-
sions of electrons with ions, or when the sum of ma-
trix elements are needed, our method works very well
as was showed in the Tables. For more subtle calcu-
lations our method must be improved, although it was
not thought to compete with refined many body atomic

in Hartree-Fock rnethods such as HX?3, use adjustable
parameters, and several least square fits between calcu-
lated and observed level values are required before other
properties are calculated. This procedure iswell known
for experimental spectroscopists who used these types
o codes, and it is aso known that good functions for
energy levelsare not necessarily good to calculate other
quantities (e.g., g-factors, A4;;’s). Usually fairly small
changes in the parameters can lead to large changes in
some properties36.

V1. Conclusions

The screened hydrogenic model (SHM) was formu-
lated in closed form for wave functions and radial inte-
gral~.Analytic screening parameters generalizing the
published results o Kregar, and a new definition of
experimental effective charges, were given. A genera
formula for calculating hydrogenic radial integrals for
arbitrary multipole order was found, valid for equal or
not equal valuesof Z;, Z;¢, n;, ny, £;, £y. From Eq. (24)
it is possible to calculate transition integrals, mean val-
ues, anisotropies of the core polarizabilities, and over-
lapping integrals when v = 0.

On the other hand, a method to estimate the ef-
fective charges from experimentally established levels
is proposed that, for nonpenetrating orbits (n ~ n) is
nearly coincident with old definitions, and in general is
approximately the same as calculated from Dirac-Fock
codes. It can aso be verified that for many impor-
tant transitions, where (Zers X Zer ;)% =~ (Zegs T
Zew,1)/2 =< Z >, the transition integrals are in accor-
dance with the values reported by Shore and Menzel3®
divided < Z > .
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