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We report calculated elastic differential cross sections for electronscattering by H 2 0  at 15, 20 
and 30 eV, using the iterative Schwinger variational method in a fixed-nuclei static-exchange 
approximation. Our results compare very favorably with recent experimental and theoretical 
~esu l t s  at  a11 angles above 30 degrees. Nevertheless, as used here, this approximation can 
xiot describe correctly the differential cross sections in the forward direction, whose behavior 
i j  associated with the dipolar nature of the molecular potential. 

I. Introduction 

Despite its relevancy to severa1 fields of researchl, 
mainly biology, atmospheric physics and astrophysics, 
only recently low-energy electron scattering by water 
vapour has 1 een more extensively studied. Early mea- 
surernents include total2 and differentia13 elastic scat- 
tering cross sections. This latter is restricted in angular 
range and electron impact energies (Eo) . Danjo and 
Nishimura4 liave measured absolute elastic differential 
and momentiim-transfer cross sections in the 10- 120 de- 
grees angular range, with E. ranging from 4 to  200 eV; 
Shyn and Clo5  reported measurements of absolute vi- 
brationally elastic differential and inomentum-transfer 
cross sections, extending the angular range to  15-165 
degrees, for impact energies from 2.2 to 20 eV; Shyn 
e t  aL6 have reported vibrationally inelastic cross sec- 
tions for e- - H20  collisions and, finally, Johnstone 
and ~ewel l '  have measured vibrationally elastic differ- 
ential, integral and niomentum-transfer cross sections 
in the 6-50 (:V energy range. Additional experimen- 
tal results of total cross sections have been reported by 
Sokolov and Sokolova8, Sueoka e t  aL9, Szmytkowski e t  
al.1° and Zecca e t  al.". Theoretically, elastic differen- 
tia1 and mornentum-transfer cross sections have been 
calculated bq Fujita e t  a1.12 using Glauber approxima- 
tion for E0 > 50 eV, by Gianturco and ~ h o m ~ s o n ' ~  us- 

ing a local exchange and model polarization potentials, 
by Brescansin e t  a1.14 using a static-exchange approx- 
imation in a multichannel extension of the Schwinger 
variational method and recently by Gianturco15 using 
a parameter- free model interaction. 

A reliable theoretical study of the e- - H 2 0  collision 
requires accurate descriptions for both short- and long- 
range potentials. A fixed-nuclei treatment of electron 
scattering by polar molecules is known to lead to  di- 
vergent differential cross sections (DCS) in the forward 
direction, due to  the slow falloff of the partial-wave T- 
matrix elements for large 116. This is an essential prop- 
erty of the potential associated with the polar nature 
of the target. This divergence can be removed only by 
the introduction of the nuclear motion in the Hamil- 
tonian. However, most of the calculations performed 
in the fixed-nuclei approximation are usually truncated 
at a given I,,,, although the description of that diver- 
gente would require the inclusion of hundreds of partial 
waves17. Even so, the low partial wave fixed-nuclei de- 
scription is directly useful, since it can provide good 
DCS at large scattering angles. Furthermore, these 
low-partial-wave cross sections can then be adequately 
corrected by laboratory-frame Born c a l c ~ l a t i o n s ~ ~ .  

In this paper we report calculated differential cross 
sections for elastic scattering of electroris by H 2 0 ,  for 
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incident energies of 15, 20 and 30 eV. We used the 
fixed-nuclei and static-exchange approxiinations to ob- 
tain scattering amplitudes via tlie iterative Schwinger 
variational methodlg. 111 this energy range, the static- 
exchange potential can be expected to  describe well 
these low-partial-wave collisions. 

The  details of this niethod are presented in Section 
11. In Section I11 some aspects of the calculations are 
presented, wliile our results along with some recent data 
available for comparison are shown in Section IV. 

11. The Method 

The  Schrodinger equation for the continuum scat- 
tering orbitals can be written (in atomic units) as: 

where U ( 3  = 2 V ( 3  and V(?+) is tlie interaction po- 
tential between the target and the scattering electron. 
I t  is equivalent t o  work with the Lippman-Schwinger 
equationslg 

with GL*) beiiig tlie free-particle Green's operator with 

outgoing (Git)) or incoining (C:-)) wave boundary 
conditions. In order to  take advantage of the C2, 
symmetry of tlie target, symmetry adapted functions 
A';:(?) are used. Tliese functions can be expandedZ0 
in terms of tlie &,,(i.) as: 

Here p is an irreducible representatiou (IR) of the 
molecular point group, p is a component of this rep- 
resentation and h distinguishes between different bases 
of the same I R  corresponding t o  the same value of I .  
Tlie coefficients Yln,, satisfy important orthogonality 
conditions and are tabulated in Ref. 20. Using these 
symrnetry adapted functions, PF)(F') can be expanded 
aS21,22. 

The Schwinger variational expression for the T-matrix 
can be written in the bilinear form as: 

witli BF) denoting Iria1 scattering wave vectors. Us- 
ing a partial-wave expansion similar to (4) for both 

and tlie free-particle wave vector @L*), a partial 
k 

wave on-shell T-matrix (diagonal ili botli p and p) is 
obt aneid: 

-. 
where k = 1 $ J = 1 k' 1 for the elastic process. 

The initial scattering wave functions can be ex- 
panded in a set R. of L2 basis functions 
cri(r) = < T I  cri >: 

@':,r ( r )  = C a!:,'" (k)cri(T). 

(*IP' Using (6) and (7), variational Tk,lh:l, h, matrix elements 
can be derived as: 

where 

and the corresponding approximate scattering solution 
with outgoing wave boundary condition becomes: 

As in the case of linear moleculesl\ converged solutions 
of (10) can be obtained via an iterative procedure. The 
method consists i11 augmenting tlie basis set R. by tlie 
set 

where 1, is the maximum value of 1 for whicli the ex- 
pansion of tlie scattering solution (4) is truncated, and 
h, _< 1,. A new set of partial wave scattering solutions 
can now be obtained froin: 

where qjso)(f) is any furiction in t l i ~  set R1 = R0 USO 
and M is tlie number of functions in R l .  This iterative 

( 5 " )  

procedure continues until a converged @$r* ( 3  is 
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acliieved. Iii an actual calculation we compute the con- 
(sn) 

verged partia1 wave K-matrix elements, Ií:Th;l,h,. Since 
no bouiidarj conditions are needed to  be imposed on 
the trial scattering functions in tlie Scliwinger varia- 
tional iterative method, these I<-matrix elements can 
be obtained by replacing D ( ~ )  for D(+) in (9), where 

with GY) denoting the principal value free particle 

Green's function. Hence, the corresponding partial- 
wave T-matrix elements caii be calculated from 

(14) 
Finally, after squaring the laboratory-frame (LF) scat- 

tering amplitudes and averaging over a11 molecular ori- 
entations with respect to  the incident beam, the DCS 
can be written as: 

where 0 is tht: scattering angle. The  coefficients AL(k) 

in (15) are given by the formula 

(11010 1 i;O)(l;Ol10 I LO)(ll - m l l m  I L - M )  

(1;míl'm1 I L M ) ,  (16) 

where ( j l  m l  j:!m2 I j3m3) are the usual Clebsch-Gordan 

coefficients and the auxiliary amplitudes ay/,llh,(k) are 
defined as 

111. N u m e r i c a l  p r o c e d u r e  

The static-exchange potential used in (2) is con- 
structed from an SCF wave function of the ground state 
of H 2 0 .  For this SCF calculation we used the stan- 
dard [ 3 ~ 2 ~ , 2 s ]  contracted Gaussian basis of Dulining 
and Hay23 aiigmented by one uncontracted d function 

(exponent 0.34) on tlie Oxygen nucleus and one un- 
contracted p function (exponent 0.13) on the Hydrogen 
nuclei. At the experimental equilibrium geometry of 
R(O - H) = 1 . 8 1 ~ ~  and @ ( H  - O - H )  = 104.5deg 
(Ref. 24), this basis gives an SCF total energy of - 
76.0199 a.u. and an electric dipole moment of 0.761 
a.u., compared with the Hartree-Fock (HF) limit of - 
76.0632 a . ~ . ' ~  and tlie experimental dipole moment of 
0.724 a . ~ . ~ ~ ,  respectively. Tlie orbital energies for l u l ,  
2ai ,  3ul ,  1b2 and Ibl orbitals are -20.563, -1.358, -0.582, 
-0.717 and -0.512 a.u., respectively. In our method, a11 
the r-dependent functions appearing in eqs. (4-9) are 
expanded as in (4). A11 partial-wave expansions were 
truncated a t  1, = 10 and a11 possible values of h _< 1 
were retained for a given I. The  resulting orbital nor- 
malizations were better than 0.9999 for a11 bound or- 
bitals. In Table I we show the basis set corresponding to 
Ro. Our results shown below were a11 converged within 
four iterations. 

IV. R e s u l t s  and discuss ion 

In Figures 1-3 we show our calculat,ed elastic DCS 
for incident electron energies of 15, 20 and 30 eV, 
along with the published experimental values of Danjo 
and Nishimura4, Shyn and Cho5 and Jolinstone and 
Newe117 and theoretical results of Brescansin et al.14 
and Gianturco15. General good agreement witli the 
experimental results is observed in the entire angu- 
lar range for a11 incident energies. Comparison with 
the theoret,ical results of Brescansin e t  al.14 sliows a 
good agreement for scattering angles above 35 degrees. 
However, the present iterative metliod provides a bet- 
ter description than the Schwiriger multichannel (SMC) 
method14 in the small angle region, where an enliaiice- 
ment of the DCS due t o  the long-range dipole poteii- 
tia1 of the target is expected. On the other hand, al- 
though the theoretical results of Gianturco15 seem to 
reproduce the experimental data  a t  small scattering an- 
gles his method clearly understimates the DCS a t  lasger 
scattering angles. 

The present method was also applied to lower im- 
pact energies (2.2 - 10 eV). Our DCS curves for these 
lower energies (results not shown) exhibit some oscilla- 
tions wliich can be attributed to  the non-fully converged 
partial-wave expansions resulting from tlie truncation 
to 1, = 10. According to Jain and ~ h o m ~ s o n ' ~ ,  full 
convergence in sucli cases can be reached possibly only 
after hundreds of partial wave components liave been 
taken into account. This is obviously impossible t o  be 
done, for the moment, in our method. A possible way to 
surpass this difficulty is t o  replace the l-iigli-1 scattering 
amplitudes by the corresponding first Born approxinia- 
tion partial wave scattering amplitudes. This method 
has already been successfully applied for elastic elec- 
tron scatt.ering by C2H2 (Ref. 18). Its extension for 
e -  - HzO scattering is under way. 
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Table I: Cartesian Gaussiana basis sets used in separable potential 

Scattering Center Cartesian Gaussian Exponents 
Symmetry Functiona 

a Cartesian Gaussian basis functions are defined as 

4 a 1 L , m 1 n 9 A  ( r )  = N(Z-A~) '  ( Y - ~ , ) m ( z - ~ , ) n  e ~ ~ ( - a l r - A 1 ~ )  

with N a normalization constant. 

Scattering Angle (deg) 

Figure 1.: (a) Differential cross sections for E. = 15 eV. Thick solid line, present results; thin solid line, theoretical 
results of Brescansin et al. (Ref. 14); thin dashed line, theoretical results of Gianturco (Ref. 15); solid circle, 
experimental results of Shyn and Cho (Ref. 5); triangles, experimental results of Johnston and Newell (Ref. 7); 
squares, experimental results of Danjo and Nishimura (Ref. 4). 
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Scattering Angle (deg) 

Figure 2.: Same as Fig. 1 for E. = 20 eV 

Scattering AngL (deg) 

Figure 3.: Same as Fig. 1 for E. = 30 eV. 
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