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Due to  the development of new techniques it has become possible to control the growth of 
materials atomic layer by atomic layer. Potential profiles and impurity distributions could 
be made with a dimensional control close to interatomic spacing and with virtually defect 
free interfaces. The obtained structures, called naicrostructures, have small dimensions and 
rcmarkable physical properties. Instead of a complete overview we will discuss some of the 
rr,ost important structures with an emphasis on the concept of band structure engineering. 
Some of the new effects discovered in these structures are discussed like the integer and 
fractional quantum Hall effect and Wigner crystallisation. 

In recent years there has been an intense research ef- 
fort on semiconductor heterojunctions. This field is an 
excellent example of how basic science and technology 
interact and influence one another . 

The inver.tion of molecular beam epitaxy (MBE) a t  
Bell Laboratories by Arthur and Chol in the sixties 
has been on the basis for progress in the area of het- 
erojunction structures and quantum devices. Thanks 
to this epitaxial growth technique it has been possible 
to realize multilayered heterojunctions with atomically 
abrupt interfxes and precisely controlled compaitiona1 
and doping profiles over distances as short as a few tens 
of Angstrom;. Most of the fundamental research is con- 
centrated on the 111-V alloys. Such structures include 
quantum wells, which are a key building block of band- 
gap engineering. The transport and optical properties 
of a serniconductor structure can be tailored to a spe- 
cific device application. 

Continuiiig advances in MBE and breakthroughs 
in nanolithography has made it possible to confine 
the electronr; further in more dimensions which leads 
to quasz-one and quasi-zero dimensional semiconduc- 
tor structurw. Quasi-zero dimensional structures be- 
have like artificial atoms. For example quasi-one- 
dimensional MOSFET in silicon have revealed the uni- 
versal condwtance fluctuations due to random quan- 
tum interfermce predicted by Altshuler et a1.2. 

Essential in the physics of these low dimensional sys- 
tems is theii density of states. The latter is the num- 
ber of available electron states per unit energy. Let us 
consider a giis of free electrons in different space dimen- 

sions. From basic solid state physics we can calculate 
the density of states (DOS) which is depicted in Ta- 
ble I and which is graphically represented in Figure l. 
The DOS determines to a large degree the optical and 
transport properties of these systems and changes dra- 
matically with the degree of confinement. 

Table I: The density of states D(E) per unit of volume, 
the Fermi energy EF and the Fermi wavevector kF of 
an electron in different dimensions. n, is the electron 
density and m* is the electron effective mass. 

The concept of selective doping has been fruitful not 
only for devices but also for physical studies. Magneto- 
transport studies on Si/SiOz system and in selectively 
doped AlGaAslGaAs heterojunctions culminated in 
the discovery of two striking quantum phenomena in 
two-dimensional systerns in a high magnetic field: the 
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Figure 1.: The density of states D(E) for an electron gas 
in different dimensions. The arrows in the top part of 
the figure indicate the directions in which the electrons 
are confined. 

integer3 and the fractiona14 quantum Hall effects. The 
quantization of the Hall resistance with a precision of 
one part in 107 has lead t o  a new resistance standard 
and t o  a more accurate determination of the fine struc- 
ture constant which is the coupling strength parameter 
in electromagnetism. The fractional quantization,of the 
Hall resistance instead, has revealed the existence of a 
new quantum fluid of correlated spin polarized elec- 
trons. These discoveries demonstrate that semiconduc- 
tor devices can be exceilent tools for the study of fun- 
damental physical phenomena. 

From a more practical point of view the resonant 
tunnelling transistor is an important new device in this 
field of low dimensional semiconductor structures. The 
resonant tunnelling bipolar transistor was proposed by 
Capasso and Kieh15 in 1984. This type of transistor al- 
lows the implementation of a large class of circuits with 
greatly reduced complexity. Up to now the progress 
of integrated circuits has so far been marked by in- 
creased levels of miniaturization. Due to interconnec- 
tion limitations this scaling strategy will probably ap- 
proach practical limits at a minimum lateral dimension 
of 0.25pm. When these limits are reached electronics 
will have to  find new paths for its evolution in order to 
survive. New devices and circuit architectures will be 
needed. 

The best studied system is the two-dimensional elec- 
tron gas and we will devote a large part of this review 
on this subject and the physics of this intriguing sys- 
tem. A new development is the creation of even smaller 
structures where the electron motion is further confined 
such that the electron has only one free dimension to 
move in: quantum wires. Although already an appri- 
ciable body of work has been done on semiconductor 
quantum wires there is still a lot to be done. F'rom the 

experimental point of view it has been extremely dif- 
ficult to  make the wires sufficiently uniform and most 
of the wires are rather broad. Total confinement of the 
electrons into quantum boxes is in its infancy. One ex- 
pects that when the experimentalists have mastered the 
technology to make high quslity quantum dots (boxes) 
a new range of interesting physics will appear. For ex- 
ample they are similar to atoms, and are also called 
artificial atoms, but with excitation energies which are 
several orders of magnitude smaller than in the tradi- 
tional atoms. Furthermore with these artificial atoms 
a new table of Mendelev can be constructed in which 
there will be no upper bound on the number of electrons 
which can be bound (or rather confined). 

The present paper is organized as follows. First we 
introduce the concept of band structure engineering in 
Section I1 which is the basis for electron or hole confine- 
ment into low dimensional semiconductor structures. 
As examples we discuss quantum wells, superlattices, 
the field effect transistor and heterostructures. As an 
application of these concepts we discuss resonant tun- 
nelling in Section 111. In Section IV special emphasis is 
paid to the properties of the two-dimensional electron 
gas (2DEG) which is very important from the funda- 
mental physics point of view. The system of electrons 
on liquid helium is the purest and most simple example 
of 2DEG which is discussed in Section V. The impor- 
tant discoveries of the integer and fractional quantum 
Hall effect in the early eighties is reviewed in Section 
VI. Finally in Section VI1 we give a short overview of 
the next steps in confinement which leads to quantum 
wires and quantum boxes. 

11.1. Band structure engineering 

For illustrative purposes we confine ourselves to the 
most popular, and successful system which is based on 
the materials GaAs and the alloy Al,Gal-,As. The 
band gap of the latter6 is Eg = 1.520 + 1 . 1 5 5 ~  + 0.37x2 

expressed in eV. With MBE it is possible to  grow lay- 
ers of the alloy AlGaAs. After a while one can stop this 
growth process and start to  grow GaAs. After grow- 
ing several layers of GaAs one can continue to grow 
A1GaAs. The resulting potential profile for the bottom 
of the valence and conduction band is shown in Figure 
2. Because of the small diRerence in lattice constant 
between the two materials (see Figure 3) and the sirni- 
lar chernical composition the interface is very sharp and 
wel defined. The band gap shows a discontinuity at the 
interface of magnitude AEg = (1.155x+0.37x2)eV. Ex- 
perimentally one has found that this discontinuity is as 
follows: 60% drop in the conduction band and 40% in 
the valence band. For example for x = 0.3 the electrons 
will be confined in a quantum well with a barrier height 
of V. = 228meV. 

The electron is now confined into a square well 
where the electron will reside mainly in the GaAs. Be- 
cause of the finite width of the well (W) the electron 
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Figure 2.: 13ottom of the conduction band and top of 
the valence sand in a GaAslAIGaAs quantum well. Eg 
is the band gap in GaAs, and E: and E! are the zero 
point energies for the electron and hole in the quantum 
well, respec ;ively. 
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Figure 3.: 'i'he energy band gap and lattice constant 
for different semiconductors. 

will have a zero-point energy, which approximately is 
given by E, = ? i . 2 h 2 / 2 m * ~ 2  (this is the result in the 
limit of a square well with infinite high barriers). In 
order to  excite electrons into the well we have to  create 
an electron-hole pair by shining light on the quantum 
well. An ehictron is created in the quantum well and 
a hole in the valence band. The energy needed is the 
band gap eriergy corresponding to GaAs plus the zero 
point energies of the electron and the hole. Thus the 
energy a t  wliich the quantum well starts to absorb light 
will depend on the properties of the quantum well, i.e. 
the width o[ the quantum well. Electrons are created 
and electriczl conduction becomes possible which can 
be measuretl electrically. In this way an optical signal 
can be transformed into an electrical one. 

By app1:ring an electric field perpendicular to the 
well, the position of the energy levels can be varied 
and, as a cclnsequence, the energy at which aborption 

starts will be changed. This is the so-called Stark effect 
and can be used in electreoptical devices to convert 
electrical signals into optical and visa versa. 

The reverse process of emission of light is also pos- 
sible. By some externa1 means it is possible to put 
electrons in the quantum well and holes in the corre- 
sponding valence quantum well. They will recombine 
and emit photons. This is the basic principle of the 
quantum well laser. Such a laser is for example used 
in the compact disk player. For optical communica- 
tions, in which optical signals have to traverse optical 
fibers which have a rninimum loss for wavelengths in 
the range 1.3 - 1.55, p m  a quantum well laser with this 
wavelength is needed. Lasers based on the material 
InGaAsP satisfy this requirement because this mate- 
rial has an energy gap in the correct energy range. 

If many quantum wells are grown on top of each 
other and the barriers are made so thin (typically 
< SOA) that tunnelling between the coupled wells be- 
comes important, a superlattice is formed (see Figure 
4). This concept was first proposed in 1969 by Esaki 
and TSU' at  IBM. Superlattices are new materials with 
nove1 optical and transport properties introduced by 
the artificial periodicity. 

Figure 4.: Superlattice with the corresponding mini- 
bands (hatched area). 

The rich variety of available combinations of band 
gaps (see Table I), semiconductor alloys and lattice con- 
stants is the main feature of band-gap engineering. As 
discussed above, we need two materials with a different 
band gap energy and almost the same lattice constant. 
The latter is required in order to  make sure that the 
interface does not contain defects, dislocations, vacan- 
cies, ... If the lattice constants are different then the 
chemical bonding at the interface will try to impose 
the same lattice constant for both materials (or at least 
for the one which is grown on top of the other) which 
leads to strain. Such systems are called strained-layers. 
Examples of such systems are: InxGal-,As/GaAs, 
CdTelMnTe, GaPIGaAs, Pi-, , SilSiGe,  ... 

11.1. Field effect transistor 

Dimensional confinement of charge carriers near the 
interface between two appropriate materials and their 
usage for device operation has been known for a long 
time8. The best known example being the SilSiO2 
bases heterostructure transistor. One exploits the dis- 
continuity between the conduction and valence band 
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energies of S i  and S i 0 2 ,  combined with the bending of 
the S i  band achieved via appropriate doping and bias- 
ing, to  create a 'triangular' potential at  the interface. 
Such a potential well gives rise to confinement of the 
carriers in the direction normal to the interface. When 
its size becomes comparable to  the carrier de Broglie 
wavelength, new quantized energy states for motion in 
the normal direction arise. A gas of eIectrons which is 
restrained to move in two dimensions, i.e. along the 
interface, is formed. 

Most of the early work on two-dimensional systerns 
was done on insulator-semiconductor heterojunctions. 
Examples of such structures are MIS (metal-insuiator- 
semiconductor) and MOS (metal-oxide-serniconductor) 
structures. The most popular and wide spread techne 
logical device is the Si-MOSFET (see Figure 5) which 
was developed in the 1960s and 1970s and used as am- 
plifying and switching devices in integrated circuits. 
It is today one of the major electronic components in 
memory and logic circuits used in modern computers 
and chips. 

Figure 5.: Schematic view of a Si-MOSFET. The t w e  
dimensional electron gas is located on the Si-side of 
the S i /S i02  interface. Current can flow through the 
2DEG by using the source (S) and drain (D) which 
are electrically connected with the 2DEG through the 
heavily doped nt regions. 

11.2. Heteros t ruc tures  

In more recent times, the same notion has been re- 
alized in lattice matched and mismatched combinations 
of epitaxial heterostructures of compound semiconduc- 
tors belonging to the 111-V, 11-VI and group IV columns 
of the periodic table. A particular notion introduced is 
the controlled placement of dopants in the larger band 
gap semiconductor (hereafter called the barrier layer) 
so as t o  achieve spatial separation between the ionized 
dopants and the charge carriers in the well created a t  
the interface

g
. This leads to  reduction of the ionized 

impurity scattering of the carriers in the well. In 
high quality MBE grown G ~ A S / A ~ ~ . ~ G ~ ~ , . I A S  het- 
erojunctions low temperature electron mobilities near 

5.106cm2/Vs have been achieved under suitable con- 
ditions using this notion called modulation doping (see 
Figure 6). Such a heterojunction has been exploited 
for transistor action and is known under high electron 
mobility transistor (HEMT)lO. 

lonised 

Figure 6.: GaAs/Al,Gai-,As heterostructure with re- 
mote doping. Top figure shows the conduction band 
before transfer of electrons. The bottom figure is the 
thermodynamic stable case in which the Si-donors are 
ionized and a two-dimensional electron gas (2DEG) is 
formed at the interface. 

111. Resonant tunnel l ing 

With modern growth techniques (MBE and 
MOCVD) it has been possible to  fabricate tunnel bar- 
riers by band-gap engineering. One can separate two 
GaAs regions by a thin barrier of AIxGai-, As, and 
the tunnel barrier is formed by the conduction band 
discontinuity. In a similar way two or more barriers 
can be combined. Now the small gap GaAs layers 
are actually quantum wells which are weakly coupled 
one to  another. Resonant tunnelling is the quantum 
mechanical concept that the tunnelling probability is 
quite low except for energies which equals the energy 
of the quantum levels in the individual wells (see Figure 
7). This opens up the possibility of negative differential 
conductiviiy in the device characteristics. I t  is possible 
to engineer an entire range of tunnelling and quantum 
structures" within more normal semiconductor devices 
in each case producing nove1 or enhanced performance 
characteristics. 

The concept of resonant tunnelling is illustrated in 
Figure 7. Consider an undoped double barrier sand- 
wiched between two heavily doped contact layers which 
provide the electrons. Electrons originate near the 
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with the harmonic oscillator wavefunction 

&(x) = N ~ - ~ ~ I ~ ' ~ H ~ ( ~ / ~ B ) ,  

where N is a normalization constant 

(4) 

and lg = 
dctL/eBctL/eB the magnetic length which equals l B  = 
2 5 6 . 5 6 A / m  where the magnetic field is expressed 
in Tesla. The momentum ky and the center of the cy- 
clotron orbit x, are related through x, = l B k i .  Naively 
each cyclotron orbit occupies an area TI; which tells 
us that in an area of LxLy we can fit about LzLy/wl; 
orbits and consequently there are L, Ly /(27rli) states 
per Landau level (the two originates from spin). Each 
Landau level contains NL = eB/hc states. Notice that 
NL does not depend on sample parameters, the Landau 
level number n or any broadening of these levels. 

For a given Fermi energy (EF) the number of 
fully occupied Landau levels is n = int(EF/hw,) = 
int(ne/(2eB/h)). The Fermi energy of a 2DEG is given 
by EF = wfi2ne/m* = 3.57 x 10- '~n,(cm-~meV) and 
n, is the electron density. 

A common way to define the state of the system at 
high magnetic fields is in terms of the occupancy factor 
V, which counts the number of filled levels 

where we counted spin states separately. 
In the quantum limit, defined by w,r > 1 the free- 

electron model breaks down as the Landau level struc- 
ture of the single electron density of states becomes 
resolved. This structure is much more dramatic in two- 
dimensional systerns, in which energy gaps exist in the 
density of states for ideal 2D systerns. The number of 
Landau levels filled, v,  is proportional to n,/B. .For 
this reason, many physical phenomena which depend 
upon the DOS at the Fermi level, such as specific heat, 
magnetization and magneto-transport exhibit oscilla- 
tions periodic in n, or 1/B. 

V. Electrons on a liquid helium surface 

Electrons above a liquid helium surface form the 
cleanest example of a two-dimensional electron gas. 
The electrons float in vacuum and are scattered only 
by the heliurn gas atorns above the surface and by pos- 
sible liquid helium surface excitations (called ripplons). 
This leads to  large electron mobilities, large scattering 
times and large mean free paths. Because the elec- 
trons float in vacuum there are no complications due 
to band structure effects. The simplicity of this system 
has made it a testing ground for different theories. 

The reason why electrons can float above a liquid he- 
lium surface and will not fill the three dimensional space 
can be understood as follows. An electron a distance z 
above the helium surface polarizes the helium atoms of 
the liquid which results in an attractive force towards 
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the helium surface. Mathematically this polarization 
can be described by an image charge R at a distance z 

inside the helium. R = (€H, - E, ) /~ (EH,  + E,) = 0.014 
where = 1.0572 is the dielectric constant for He 
and e, = 1 the one of vacuum. A repulsive barrier of 
strength V, l.OeV prevents the electron to  penetrate 
into the liquid helium. The image potential becomes 
V(z) = -Re2/2z the potential of a one-dimensional 
hydrogen atom with a strongly reduced nuclear charge 
of 5112 = 11144. 

The interest in this system stems from the interest in 
2D phase transitions. In 1934 Wigner13 suggested that 
electrons in a three-dimensional Fermi system crystal- 
lize if the electron density can be made sufficiently small 
such that the Coulomb energy dominates the Fermi en- 
ergy. Such an electron crystal is called a Wigner crys- 
tal. No clear observation has been made which demon- 
strates the existing of such a three-dimensional Wigner 
crystal. In 1971 Crandall and Williarns14 realized that 
such a Wigner lattice could probably be realized more 
easily in the 2D system of electrons on a helium sur- 
face. Such a Wigner crystal of electrons was observed 
by Grimes and Adams15 in 1979. There is an essential 
difference between Wigner crystallization in two dimen- 
sions with respect to Wigner crystallization in three di- 
mensions, namely in 2D the crystal is formed when the 
electron density is increased while in 3D the electron 
density has t o  decrease in order to  reach the Wigner 
crystal phase. This shows clearly the importance of the 
dimensionality of the electron gas. 

Another reason for the interest in this system is that 
it is a simple example of a field theoretical problem with 
variable coupling constant. An electric field perpendic- 
ular to the helium surface can push the electrons closer 
to the helium surface. In this way the interaction be- 
tween the electrons and the ripplons can be tuned. This 
interaction is analogous to a field theoretical problem 
in which a scalar particle (the electron) interacts with 
a field (the ripplons) in which the interaction strength 
can be varied continuously. In the present case one can 
go from weak to the strong coupling limit in which the 
electron is ~e l f - t rapped~~.  Experiinentally this transi- 
tion is observed17 as a dramatic change of the mobility: 
a drop of the mobility with at least 5 orders of magni- 
tude. 

From Table I1 it is apparent that the 2DEG on a liq- 
uid helium is in a different region in the physical param- 
eter space than the 2DEG in semiconductor systems. 
Electrons on He are a classical2DEG while electrons in 
semiconductor systems behave typically as a quantum 
2DEG. The electron density above a He film is limited 
because of the formation of a surface instability at high 
electron densities. Only when the He film thickness is 
decreased the surface becomes more stable and higher 
densities are possible. Electrons on thin liquid He-films 
may bridge the gap between the two different regions. 
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Table 11: Some physical parameters for a two-dimensional electron gas in different systems. 

VI. Quantiim Hall effect 

Electrons on He 

Wigner lattice 
Self-trapping 

A very iinportant experiment to  characterize semi- 
conductors is the Hall effect. A schematic view of such 
an experiment is given in Figure 8. A current is driven 
through the sample in the presence of a magnetic field 
which is perpendicular t o  the 2DEG. One measures the 
Hall voltage VH - Ey and the longitudinal voltage 
v - E,. 

Figure 8.: Principle of the Hall effect. A current I = 
I, is drawn t h y u g h  the sample which is placed in a 
magnetic field B = Be',. A voltage V - E, and a Hall 
voltage VH Ey is measured. 

In the presence of a magnetic field the resistivity 
and conductivity become tensors. The resistivities p,, 
and pxy  are related t o  the conductivities uxx and axy  

FQHE 
Wigner lattice 

via the relations 

At high fields E y / E x  = axy /a , ,  = p B  > 1 and we 
can write p,, a x , / u ~ y  and ayx  - 1 /uZy .  Thus in a 
high magnetic field we have the remarkable result that 
the resistivity is proportional t o  the conductivity: zero 
conductivity implies zero resistivity! 

VI.1. Integer quantum Hall effect 

In 1980 Klaus von Klitzing3 a t  the Max-Planck In- 
stitute in Grenoble, discovered that  for certain mag- 
netic field ranges the Hall resistance is constant and 
quantized t o  the values (he received the Nobel prize for 
this discovery in 1985) 

The resistance for n = 1 is also called the one Klitzing 
which is the unit of resistance. 

The most fascinating property of the quantum Hall 
effectl' (QHE) is the fact that frorn a relatively simple 
experiment on a semiconductor a new type of electrical 
resistor R, = 25.8128k.R can be deduced which is inde- 
pendent of the microscopic properties of the semicon- 
ductor and reproducible a t  a leve1 of better than 1 0 - ~ .  
In 1986 the quantized Hall resistance was accepted as a 
new resistor standard and h/e2 i; considered as a new 
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fundamental physical constant. The surprising result 
is that the ratio h/e2 can be measured directly on a 
macroscopic system. 

Another application is the measurement of h/e2 
wliich is identical to another very fundamental constant 
in physics: the fine structure constant. The inverse 
fine structure constant is given by a-' = $& with 
po = 4 ã  x 10-~H/cm the permeability of vacuum and 
c = 2.99792458 x 101Ocm/s the velocity of light. When 
po and c are known accurately we note that an accu- 
rate measurement of h/e2 gives us the fine structure 
constant which resulted into a-l = 137.035968 which 
agrees very well with the result obtained from the gy- 
romagnetic ratio of the proton. An accurate knowledge 
of this fundamental constant is important for different 
areas in physics. Once you have a new value for cr it will 
influence the values of other fundamental constants like 
the electron mass, the Planck's constant, the electron 
charge. 

A qualitative picture of the QHE will be given here. 
Essential for the excistence of the QHE is the pres- 
ente of energy gaps. In a high mobility sample already 
a t  relatively low magnetic fields closed cyclotron orbits 
with discrete energy levels are present. This Landau 
quantization together with the size quantization of the 
2D system leads to the desired energy gaps AE. The 
quantum Hall effect becomes more pronounced if the 
ratio AE/kT  is made larger, which implies low temper- 
atures (small thermal broadening) and high magnetic 
fields because A E  tiw,. 

Another essential ingredient is localization. In the 
presence of disorder electrons in the tail of the Lan- 
dau level are localized (see top of Figure 9) and do not 
contribute to  conduction. Thus as long as the Fermi en- 
ergy is in the area of localized states a,, = 0, because 
only states a t  the Fermi energy contribute to  a,,. For 
a~ the number of free propagating electrons are rele- 
vant. This number does not change if the Fermi energy 
moves through an area with localized states and thus 
a~ is constant. Thus we have that RH is constant when 
p,, N a,, - O as seen experimentally (see Figure 10). 
The existence of broad zero resistance minima in p,, 
suggests that the Fermi energy is pinned in between 
Landau levels for a finite range of magnetic fields. For 
this to  be the case, there must exist electron states in 
the gaps of the density of states. In order for these 
states not to  affect transport phenomena, these mid- 
gap states must be localized. 

VI.2. The Fractional Quantum Hall Effect 

In 1982 Tsui and Stormer4 at Bell Laboratories in 
Murray Hill (New Jersey) investigated a very high mo- 
bility sample grown by Gossard in an attempt to  ob- 
serve the Wigner lattice. An electron crystal state 
which has long been predicted to exist in an ideal 
2D electron system in very high magnetic fields. In- 
stead, they discovered the fractional quantum Hall ef- 

Extended 
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Figure 9.: The density of states, the Hall resistance 
and the longitudinal resistivity p,, as function of the 
position of the Fermi level. 

fect (FQHE) at filling factors V = $ and $. Later obser- 
vations at lower temperatures on higher mobility sam- 
ples discovered new structures at other fractions (see 
Figure 11). Because the value of n in Eq.(7) is no longer 
an integer but a fraction, this effect is called the frac- 
tional quantum Hall effect in contrast to the integer 
quantum Hall effect discover by von Klitzing. It turns 
out that the origin of the FQHE is totally difTerent from 
the one of the QHE. 

Phenomenologically the FQHE resembles very mucli 
the integral QHE. Once again the Hall resistivity is 
quantized and the diagonal resistivity vanishes con- 
cornitantly (see Figure 11). The crucial difference is 
found in the associated quantum numbers which in the 
FQHE are rational numbers. In spite of the superficial 
relatedness of both quantum Hall effects the underly- 
ing physics is very different. Whereas the IQHE rests 
on the quantization conditions for degenerate, non- 
interacting carriers in the presence of a magnetic field, 
the FQHE is a many-particle effect, and the result of 
strong carrier-carrier correlation. It is presently under- 
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MAGNETIC FIELD 

Figure 10.: The magneto '(p,,) and the Hall (p,,) re- 
sistivity as function of the magnetic field at low tem- 
peratures. 

stood in te1 ms of a novel electronic quantum fluid which 
exists excliisively a t  primitive odd-denominator frac- 
tions v = I / q  and v = 1 - l /q .  The wavefunction de- 
scribing this state has been constructed by Laughlinlg. 

In contrast to  the QHE where disorder was essential, 
which in essence is a one particle effect, the FQHE is a 
consequence of the electron-electron interaction. Very 
pure samples with very small amounts of disorder are 
required tc observe the effect. Due to the electron- 
electron interaction many-particle effects are very im- 
portant ancl a new highly correlated ground state is 
possible in 2D. This new electron state constitutes an 
zncompressible quantum fiuid which has a number of re- 
rnarkable properties including a gap for the excitation 
of fractionally charged quasi-particles and holes, and a 
collective excitation gap. The FQHE effect results from 
the transpcrt of fractionally charged quasi-particles in 
the many-e lectron system. 

Laughliiilg has written down an explicit multipar- 
ticle wavefi nction that accounts for most of the pecu- 
liar properiies observed in the fractionally quantized 
Hall effect. The correlation probability resulting from 
this wavefu ~c t i on  goes to  zero as a power law when the 
separation between two electrons tends to zero. This 
extraordinary tendency of the electrons to avoid one 
another results in a very low Coulomb energy of this 
state, much lower than the competing Wigner lattice. 
Unlike other quantum liquids, superfluid helium for ex- 
ample, the fractional quantum Hall states are essen- 
tially inconipressible. To raise the density above the 
fixed rationd fractions of the filled Landau density one 
must overcome an energy gap of a few Kelvin (this is the 
reason why the FQHE can only be observed at low tem- 
perature). This energy gap corresponds to the cost of 

FILLING FACTOR v 

MAGNETIC FIELD (kG) 

Figure 11.: The fractional quantum Hall effect a t  T = 
0.511' manifests itself as plateaus in the Hall conduc- 
tance at fractional values of e 2 / h  (top figure) and dips 
in the resistivity at fractional filling (v) of the lowest 
Landau level. The integer quantum Hall effect occurs 
for v equal to an integer. 

generating the elementary excitations of the quantum 
liquid which are localized quasiparticles of fractional 
electric charge. The excitations of the v = 1/3 ground 
state, for example, are quasi-particles of charge 113. 
The quantum-liquid states are incompressible because 
changing their volume is tantamount to  injecting quasi- 
particles. In contrast to  superfluid helium and super- 
conductivity, the fractional Hall states are not coherent 
macroscopic quantum states. They exhibit no phase 
transition at finite temperature, but they are quantum 
liquids of a very novel sort. 

VII. O n e  a n d  zero  dimensional  s t r uc tu re s  

VII.l. Q u a n t u m  wires 

In many cases two-dimensional electronic systerns 
have been further confined by various lithographic, 
etching, gating and related techniques. High-mobility 
GaAslAlGaAs heterostructures have become the sys- 
tem of choice for these experiments because of the lower 
effective mass and the larger inelastic mean free path. 
The reduction of scattering and the preservation of the 
phase over long distances have yielded a myriad of infor- 
mation on the fundamental aspects of electronic trans- 
port and confinement in artificial structures. 

The understanding of the physics of noise, transport 
phenomena and basic processes such as doping in these 
lower dimensionality structures will be the subject of 
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intensive research in future years. The recent obser- 
vation of the quantized ballistic resistance of a two- 
dimensional electron gas confined to  a short and nar- 
row channel has generated considerable excitement2' 
(see next subsection). 

Quantum interference semiconductor devices have 
recently started t o  attract  the attention of severa1 
investigators21. A very interesting idea is the possi- 
bility of achieving transistor action by adjusting, via 
an applied voltage, the relative phase of ballistic elec- 
trons propagating in two parallel channels. Quantum 
interference phenomena in mesoscopic physics, such as 
the Ahronov-Bohm effect, have of course been the sub- 
ject of considerable investigation in metallic structures 
such as rings and are also well-known in the context of 
Josephson devices. The observation of related phenom- 
ena in semiconductor heterostructures is contributing 
to  bringing together these neighboring fields of investi- 
gation. 

VII.2. Q u a n t u m  point c o n t a c t s  

These are short and narrow constrictions (see Figure 
12) in a two-dimensional electron gas with a width of 
the order of the Fermi wavelength X F  % 400A. Because 
of the high mobility, elastic impurity scattering and 
inelastic (phonon) scattering are of secondary impor- 
tance in the ballistic and adiabatic transport regimes. 
The  transport mean free path is about 10pm. Instead, 
scattering is determined by the geometry of the sample 
boundary. Transport phenomena in the ballistic and 
adiabatic regime can be viewed as scattering or trans- 
mission experiments with modes in an electron wave- 
guide. Quantization, i.e. the discreteness of the 
mode index, is essential for some phenomena but 
not for others. 

Gate 

Figure 12.: Point contact in a two-dimensional electron 
gas. The  gate, which is located above the 2DEG, in- 
duces a constriction in the 2DEG. 

Ballistic transport through point contacts in rnetals 
is known for a long time. They are usually fabricated 
by pressing a metal needle on a metallic single crystal. 
Point contacts in a 2DEG are defined electrostatically 
by means of a split-gate on top of the heterostructure. 
In this way one can define short and narrow constric- 
tions in the 2DEG, of variable width which can made 
comparable t o  the Fermi wavelength, i.e. then it is 

called a quantum point contacl. The  two high-mobility 
2DEG regions are thus electrically isolated from the rest 
of the 2DEG, apart from the narrow constriction, or 
point contact (see Figure 12). Increasing the negative 
gate voltage forces the contriction to  become progres- 
sively narrower. 

The experimental result of the conductance (which 
is proportional to  the inverse of the resistance) through 
the constriction as function of the gate voltage (i.e. 
the width of the constriction) is depicted in Figure 13. 
The average increase of the conductance with increasing 
width is due to  the well-known SharvinZ2 effect. For a 
classical two dimensional gas the conductance through 
a split of width W is given by 

where kF is the Fermi wavevector of the electron gas. 
This experimental result in Fig.13 shows a sequence of 
plateaus and steps. The  plateaus are quantized in units 
of 2e2/h. This quantization is reminiscent of the quan- 
tum Hall effect, but is observed in the absence of a 
magnetic field, and thus can not have the same origin. 
The deviations from exact quantization are typically of 
the order of 1% while in the QHE an accuracy of 1 part 
in 107 is obtained. The exact shape of the plateaus and 
the sharpness of the transition between the plateaus 
vary among devices of identical design, which indicates 
that the detailed shape of the electrostatic potential 
defining the constriction is important. The  quantiza- 
tion of the observed conductance is a consequence of the 
quantization of the wavevector of the electrons which 
are allowed through the constriction. The constriction 
acts like a quantum well and the electron wave parallel 
to  the constriction has t o  be a standing wave according 
to  quantum mechanics. The  number of different al- 
lowed standing waves for electrons with an energy EF 
is N = int(kFW/r).  As a consequence the previous 
classical expression is transformed into the quantum 
result 

VII.3. Q u a n t u m  b o x e s  

Quantum boxes are quasi-zero-dimensional quan- 
tum rnicrostructures which exhibit quantum carrier 
confinement in a11 three dimensions. Individual atoms 
are the microscopic limit for very small, confined- 
electron systerns. As a consequence of the quantum 
confinement in a11 three dimensions the energy levels 
are discrete. Tha t  is the reason why quantum boxes 
are so interesting because they are a new class of ar- 
tificially structured materials with atomic-like discrete 
states which is ideal for use in laser structures. They 
have interesting nonlinear optical properties witli large 
changes in the optical absorption and index of refrac- 
tion. 
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Figure 13.: Conductance of a point contact in the ab- 
sence of a rr agnetic field. 

The prec ictions about the interesting optical prop- 
erties of quzntum boxes are valid for L < 100A in 
which Coulomb effects (which scales as 1/L) are a 
weak pertur >ation to  the quantum confinement effects, 
which scales as 1/ L'. However , significant improve- 
ments in miirofabrication capability is still needed to 
make structiires in this size regime with sufficient uni- 
forrnity. For optical purposes one usually needs an ar- 
ray of typicdly more than a million of identical quan- 
tum boxes. Present day quantum boxes are in the 
L 1000A ~egime where Coulomb effects between the 
electrons are still important (see e.g. Ref. 23). 
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