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The numerical renormalization group approach to the computation of physical properties of
irr puritiesin metalsis reviewed. The physical basis supporting the mathematical procediire
is discussed and illustrated with a simple example: the numerical diagonalization of the
analytically soluble U = 0 Anderson impurity Hamiltonian. Applications of the method
aimed at determining (i) the fixed-point structure, (ii) the thermodynamical properties
and (iii) the excitation properties of impurity Hamiltonians are surveyed. The method is
compared with alternative approaches in the theory of localized excitations in metals.

|. Introduction

The intera:tion of a localized orbital with the con-
duction states in a metal raises intriguing questions.
Studies of dilute magnetic alloys' first called attention
to such interactions, but more recently it has become
clear that they dominate the physics of chemisorption?
and of a list & materials including valence-fluctuation®
and heavy-fermion* compounds, and the superconduct-
ing oxides. It was early understood that, due to thein-
terplay between correlation in the localized orbital s and
their coupling to the conduction bands, measurements
at different energy - or time - scales may yield qualita-
tively different physical interpretations. For example,
at room temperature, the impurity contribution x;mp
to tlie magnetic susceptibility of adilute CuFe aloy fol-
lows tlie Curie law characteristic of free-Fe d orbitals.
In the Kelvin range, however, as the temperature T is
lowered, the product T'x;mp approaches zero, which in-
dicates that th= magnetic moment has been quenched.
Given the dilution of the impurities, the conflict be-
tween the two physical pictures cannot be attributed
to phase transitions. When such discrepancies were
first found, they seemed puzzling, and single-particle
concepts appeared inadequate.

To the theorist, the coupling of the localized or-
bitals to the extended states posed yet another chal-
lenge. Traditicnal perturbation techniques proved in-
applicable and special methods - in most cases adapted
from particle physics - had to be developed to handle
the strongly correlated electrons. That they were nec-
essary, it was iealized in the early seventies®, but the
first quantitative acliievements were reported only in
1975.

In tliat year, several authors used the numeri-
cal renormalizetion group approacli to calculate the

temperature-dependent magnetic susceptibility for the
Kondo® and Anderson” models for dilute magnetic al-
loys, as well as the low-temperature impurity contri-
bution to the specific heat. The method identified
the different high-temperature and low-temperature be-
haviours of the impurity magnetic moment with dif-
ferent fixed points of a renormalization-group transfor-
mation, thus solving the puzzle formed by the experi-
mental data. Uniformly accurate over the parametrical
spaces of the models, the procedure moreover provided
aunifying view that gave proper perspective to previous
theoretical results, such as the Schrieffer-Wolff canon-
ical transformation of the Anderson Hamiltonian into
the Kondo Hamiltonian 3.

In the last decade other approaches, analytical®=!!
or numerical’? ones, have fully born out those results
and extended them to more complex impurity Hamilto-
nians. Unfortunately, each of these latter methods has
proved fruitful only in certain applications. The Bethe
ansatz, for instance, has thoroughly surveyed the ther-
modynamical properties of a number of single-impurity
Hamiltonians®3, but it has been much less succesful
in dealing with dynamical properties and with impu-
rity clusters. In view of such shortcomings, interest in
the numerical renormalization group method has been
continued, and the procedure has been extended to di-
agonalize two-impurity Hamiltonians'*=17 and to cal-
culate excitation properties!?18,

This review is dedicated to the numerical renormal-
ization group. The problerns it has solved are exam-
ined, its limitations are indicated, and the perspectives
for applications to more complex problerns discussed.
Emphasis is placed on a particular aspect of the proce-
dure: its ability to associate fixed points with a given
Hamiltonian and thus to relate the physical properties
o the model to special limits transparent to physical
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interpretatiori.

Nine sections constitute this paper. Sections II and
[II discuss the physical foundation of the mathematical
procedure. The general concept of scale invariance and
its application to the metallic environment enclosing
the impurities is examined. In Section 1V, the proce-
dure isoutlined. The approximations - all of which are
fully controllable - needed to make a model Hamilto-
nian numerically tractable are discussed. As an illus-
tration, Section V diagonalizes the U = 0 Anderson
Hamiltonian.

The next three sections review the three classes
of results the numerical renormalization group method
has produced. Section VI surveyscomputations of ther-
modynamical properties, Section VII discusses diago-
nalizations of model Hamiltonians, and Section VIII de-
scribes calculations of excitation properties. The final
Section | X contains a brief evaluation of the approach
and compares it with other methods.

I1. Experimental Motivation

Thefirst signals that the competition among energy
(or time) scales can dominate the physics of impurities
in metals came from the laboratory. In retrospect it
is easy today to identify elements of scale-invariance
breaking in a variety of experimental data, an example
being the different magnetic moments of Fe in Cu at
high and at low temperatures. In certain cases, how-
ever, the signals were so clear that the classification of
the dataintoenergy (or time) regimes was suggested at
once. The most striking example is that of the valence-
fluctuation compounds.

In the seventies, valence fluctuations were observed
in a series of compounds of the lanthanides Ce, Sm,
Eu, Tm, Yb, and of the actinide U. An often-quoted
example is SmS, a semiconductor at amospheric pres-
sure that turns metallic at hydrostatic pressures above
6kbar '°. Insolids, the samarium ion is generally found
in one of two valence states: Sm*? (4% configuration)
or Sm*3 (4f° configuration). Hund’s rules associate
no magnetic moment with the forrner f-level configu-
ration and approximately one Bohr magneton with the
latter®?2. The ionic radius of Sm*t? is 1.14 A, signifi-
cantly larger than the 0.96 A of Sm™3. At atmospheric
pressure, the valence of the samariumion in SmS is +2.
The transition to the metallic phase is accompanied
by a reduction to an ionic radius intermediate between
those of Sm*? and Sm*3. This reduction might be at-
tributed to avalence change, the pressure having forced
part of the ions into the higher-valence, smaller-volume
state. Thisseemsindeed confirmed by x-ray photoemis-
sion spectra®®, which can be divided into two spectra
separated by several eV: one characteristic of the 4f®
configuration, the other characteristic of the 4f> con-
figuration.

Nonetheless, the isomer shift measured with
Mossbauer spectroscopy shows that the ionic valence,
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uniform throughout the sample, lies between +2 and
+3: instead of the two shifts characteristic of the 4f°®
and of the 4f ® configurations, the Mossbauer spectrum
for SmS shows a single shift between them?!. Together,
the two sets of data— photoemission and isomer shift—
suggest that the valence of each Sm ion fluctuate be-
tween +2 and +3 at rste r; of, say, 10'?s™!. The
characteristic rate r.;, of the experimental technique
(in spectroscopy, the characteristic rate is simply the
typical width of a resonance divided by Planck’s con-
stant) must then be compared with »;. If it is much
larger than r;, then each ion will be photographed in
one of the two integer-valence states, part of them being
pictured as Sm*? and the rest as Sm*3. This explains
the photoemission spectra, for their characteristic rate
isof theorder of 10*®*s~!, much larger than r;. On the
time scale of the fluctuations, photoemission is fast.

By contrast, Mossbauer spectroscopy involves slow
measurements, with a characteristic rate of the order
of 10°s~!, significantly smaller than r;. During the
emission of the gamma-ray, the ion fluctuates severa
times between the two configurations, the result being
an intermediate isomeric shift. One sees, therefore, that
r; divides the rate, or energy axisinto two regimes. the
fast and the slow domains.

That the same division characterizes the energetical
dependence of other properties, it is shown by the sus-
ceptibility plots?3 for three Sm compounds in Figure 1.
In SmTe and in SmS at P = 0, the samarium ion is
divalent; in SmPdg, it is trivalent. The susceptibility
plot for the latter shows a Curie behavior, a tempera-
ture dependence that is expected, given the magnetic
moment of the 4f ® configuration. For the former two,
the weakly temperature-dependent susceptibility isdue
to low-lying excited states?2.

Compare those three curves with the plot for SmS
under pressure. At each temperature T, the exchange
of temperature with the thermal reservoir occurs at the
rate rp = kpT/h, which is then the characteristic fre-
guency of a thermodynamical measurement. At high
temperatures (T > 50K), tlie thermal rate r¢ is much
larger than ry; like the photoemission spectrum, the
susceptibility is a statistical average between x for the
4f% and the 4% configurations and hence must lie be-
tween the two. The SmS (P> 7.5kbar) plot in Figure
1 confirrns this reasoning.

At low temperatures (T « 50K), on theother hand,
rp is smaller than ;. Now, as in the Mosshauer mea-
surement, the Sm ion has time to fluctuate between
the two valences during a measurement; it is therefore
found in a quantum state that isalinear combination of
the 4f ¢ and 4f ® configurations. The measured suscepti-
bility is a quantum average - i. e., an average including
interference — between the two valences and needs not
be intermediate between the Sm*? and Sm*3 suscepti-
bilities. Figure 1 bears this out, too.

As this example shows, the concept of competi-
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Figure 1.: Susceptibility (in esu/mole) as a function
of temperature for three Sm compounds, adapted from
Ref. 23. In SmTe and SmS at zero pressure, the Smion
is divalent (45¢ configuration). In SmPds, it is triva-
lent (4f°) and its magnetic moment accounts for the
Curie behavio:. At pressures above 6 kbar, the Sm ion
in SmS isin a1 fluctuating-valence state. As discussed
in the text, at high temperatures (T > 100K), the sus-
ceptibility is a statistical average between those for the
416 and the 4¢5 configurations and must lie between
them. At low temperatures (T < 20K), however, the
susceptibility rneasurement probes alinear combination
between the 4% and 4f ® configurations.

tion between energy scales is germane to the valence-
fluctuation prcblem and more extensively to the prob-
lem of strongly correlated electrons in metals. It should
not come as a surprise, therefore, that a numerical
method exploring scale invariance should be accurate or
that it should provide physical insight even into models
whose physical properties technical difficulties prevent
it from computing.

Valence fluctuations, for example, are described by
the Anderson impurity model?*, whose Hamiltonian
was diagonalized and whose thermodynamical proper-
ties were calculated by the numerical renormalization
group method sver a decade ago™?5. At the time, the
numerical protedure that computes excitation prop-
erties still undrveloped, and the photoemission spec-
trum could not be calculated. Nevertheless, on the
basis of the insight provided by the numerical diag-
onalization of she model Hamiltonian combined with
a few exact results and sum rules, Wilkins*® provided
a semi-quantitetive description of the spectrum, later
perfected by | /N-expansion®” and renormalization-
group'® compu:ations.

Another example is the heavy-fermion problem.
Certain compounds of lanthanides (e. g., CeCusSis,
CeAls, YbCuAl) or actinides (e. g., UBejs, UPtg,
NpBe;3) show anomalously high linear specific-lieat co-

efficients v at moderately low temperatures (typicaly,
T > 1K)?; the highly-massive low-energy quasiparti-
cles in such systems have been named heavy fermions.
In disparity with normal metals, for which v is of the
order of ImJ/molK?2 22 the coefficient for a heavy-
fermion compound is larger than 100mJ/mol K2: for
CeCusSis, the first-discovered heavy-fermion system,
4 = 1000mJ /mol K2, Such enormous y's, as shown
in Section VI, are expected of strongly correlated im-
purities in metals, and indeed the physical properties
of heavy fermions measured at moderately low ener-
gies are well described by the Anderson single-impurity
Hamiltonian, the 4f orbitals of thelanthanide or the 5f
orbitals of the actinide represented by impurity levels.

Nonetheless. the rare-earth ions are not im-
purities?®. They are part of the lattice, and this has
clear experimental consequences. at sufficiently low
temperatures (typically, T < 1K) the heavy-fermion
systerns deviate from the impurity behavior, becoming
superconductiveor antiferromagnetic. The different be-
haviors at moderately low and at very low temperatures
define two temperature regimes and point to a charac-
teristic energy separating them, of the order of kgT™,
wliere T* ,the coherence temperature, is of the order
o 1K. Clearly, kgT* defines an effective coupling be-
tween f levels on neighboring sites. For T > T* ,that
coupling is negligible, and the f orbitals behave as in-
dependent impurities. For T < T', on the other hand,
the intersite coupling dominates the physics. In Section
VIII, a simple model will provide a concrete illustra-
tion of these concepts. Although too crude to describe
even qualitatively the physical properties of the heavy
fermions, that model helps one to understand the suc-
cess of the impurity Hamiltonians3°.

These examples serve as motivation for a scaling
analysis, but fail to identify the characteristics of a
metal that make one such approach productive. The
following section searches for those characteristics and
show that the energy scale invariance of the conduction
band accounts for the achievements of the numerical
renormalization group method.

IT1. Theoretical Motivation
A. Scale Invariance

The theory o the renormalization group explores
the scaling properties of physical systems. Many sys-
tems are invariant under scale transformations. In con-
densed matter physics, the most widely known example
is theferromagnet at criticality. At any ternperature T,
distances in aferromagnet can be compared with two
characteristic lengths: the lattice parameter a and the
correlation length £. An experimental technique prob-
ing asample at the length scale L will in general yield
results dependent upon the ratios L/a and L/¢. At
the critical temperature T, the correlation length di-
verges, and the latter ratio vanishes. If in addition L is
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large on the atomic scale, then L/a is essentially infi-
nite, and two measurements taken at the length scales
L and L' = AL (wliere A is any number larger than
unity) should yield qualitatively the same results. By
contrast, at temperatures different from 7, the correla-
tion length is finite, so that the outcomes of two mea-
surements at thescales L < £ and L' > £ will in general
show qualitative differences.

In renormalization-group analyses of amodel for the
ferromagnet, thescaling L — AL is constructed mathe-
matically, which defines a renormalization-group trans-
formation. A temperature T is then considered, and
the transformation is applied repeatedly to the model
Hamiltonian H. If onestartsout with L = Ly = a, then
after n transformations the system is being probed at
thescale L, = (A)"a.

As n increases, the Boltzmann weight of any given
eigenvalue of the Hamiltonian will in general change.
A schematical plot of the n dependence of one such
weight for a temperature somewhat below the critical
temperature appears in Figure 2. The plot divides the
horizontal axis into four domains with boundaries at
n = N, Nq, and N3. For small n tlie weight shows a
weak n dependence, which dies out as the index grows.
As n becomes larger than Ny, the Boltzmann weight re-
mains nearly invariant for several transformations. As
it approaches N2, however, it begins to grow out of that
plateau; between n = N, and n = Ng, it rises rapidly,
to saturate at a higher level.
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Figure 2.. Dependence of Boltzmann weight W =

exp - £ /kgT on the renormalization-group transforma-
tion index n (schematical). E is an eigenvalue of the
model Hamiltonian, and n is the number of times the
model has been subject to the scaling transformation
L — AL. Asdiscussed in the text, the two plateaus,
between n = Ny and n = N,, and for n > Ng, re-
spectively, are associated with fixed points. The rapid
change between N, and Nj is a crossover.

Scaling concepts explain this evolution. In the first
transformations, the length scale L, is comparable to
the lattice parameter a. The Boltzmann factor, as well
as the physical properties of tlie model, are therefore
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expected to depend on the ratio L, /a. which explains
theinitial n dependence in Figure 2. With growing L,,
that ratio becomes larger and larger; as it approaches
infinity, it influences less and less the Boltzmann weight.
The lattice parameter is an irrelevant length, a feature
of the model that becomes immaterial for sufficiently
large n.

For n = Ny, thelattice parameter negligible in com-
parison with L,, the plot in Figure 2 reaches the first
plateau. Here, albeit much larger than a, the length
seale L, ismuch smaller than the correlation length £.
If & were infinite, there would be no length scale, and
the Boltzmann weight, invariant under scaling, would
be a fized point of the renormalization-group transfor-
mation. For N; < n < N,, the weight is close to that
fixed point since L,, /¢ is very small.

As n increases, however, L, /¢ grows. Eventually,
for n & N, the ratio becomes significant and affects
the Boltzmann weight. In the first plateau (close to
the fixed point) the coherence length is relevant: its
importance grows exponentially with n, and it drives
the model away from the fixed point.

In the crossover region (N, < n < N3), the Boltz-
mann weight changes rapidly as the ratio L,, /¢ grows
from much smaller than unity to much larger than
unity. After that, less and less significant in compar-
ison with L,, the correlation length is irrelevant, and
the weight approaches a second fixed point.

B. Conduction States

The physical properties of a metal contaning im-
purities are markedly different from those of a ferro-
magnet. In special, the impurities can cause no phase
transitions. Nonetheless, the two systems have similar
scaling properties. Figure 2 describes metallic impuri-
ties as well as it describes the ferromagnet.

For the metal, the scaling involves energies, in-
stead of lengths. The only characteristic energy in a
metallic conduction band is the Fermi energy ¢r. The
pure metal is therefore akin to the ferromagnet at the
critical temperature, which has a single characteristic
length scale—the lattice parameter. If the pure metal
is probed at the energy ¢ < ep, then its properties are
qualitatively independent of ¢.

Impurities, which generally have characteristic en-
ergies, break this scale invariance. A metal with im-
purities is analogous to a ferromagnet somewhat be-
low (or above) the critical temperature. In Section IV,
a renormalization-group transformation will be intro-
duced that amounts to thescaling ¢ — e¢A, where again
A is any number larger than unity. Given a model for
a metal with impurities, one starts out at the energy
€0 = £p and scales down to the energy ¢, = ¢p/A™.
At a given temperature T, the Boltzmann weight as-
sociated with any eigenvalue of the model Hamiltonian
changes with n according to the pattern in Figure 2.
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As in Seciion IITA, scaling concepts help us under-
stand that behaviour. Suppose that a thermodynami-
cal property 's measured at a variety of temperatures,
ranging from very high, comparable with the Fermi en-
ergy, to very low. At each temperature, the system is
probed at the energy scale kgT, where kp is the Boltz-
mann constant. Hence the sequence of measurements
then can be p aced in correspondence with the sequence
of energies ¢,,. For small n, the conduction band is
probed at large-energy scales, energies comparable to
the Fermi encrgy. The Boltzmann weight associated
with the temperature 7 such that kT = ¢, depends
on the ratio tgT/er = €, /ep and therefore changes
with n. As the index grows, however, ¢, diminishes,
and the ratio ¢, /ep becomes negligible. Consequently,
as n approaches N;, the Boltzmann weight tends to
stabilize. The Fermi energy is irrelevant.

For a pure metal, the first plateau in Figure 2
would be infinite. In the absence of characteristic ener-
gies, the Boltzmann weight remains invariant under the
renormalization-group transformation, i. e., it is a fixed
point of the transformation. The end of the plateau
in the illustration is due to an impurity with a small
energy splittirg A. For small n, the energy scale ¢, is
much larger than A, so that the splitting is unimpor-
tant. After successive renormalization-group transfor-
mations, however, ¢, is so reduced that the ratio A/e,
becomes significant. This indicates that, in the first
plateau, A is a relevant energy.

Subsequent, increases in n drive the Boltzmann fac-
tor away from the fixed point, as the crossover in Fig-
ure 2 indicates. After a few more transformations, the
weight is again independent of €,, for the ratio A/e,
is essentially infinite. The weight reaches the second
plateau in the figure; here, A is irrelevant.

As this discussion indicates, the renormalization-
group theory of impurities in metals explores energy-
scale invariance. Since experiments have characteris-
tic energies, the connection between flow diagrams for
such systems and experimental results is particularly
tight. In special, plots analogous to the one in Fig-
ure 2 assist the interpretation of laboratory data, and
the fixed-point structure of a model Hamiltonian ex-
plains qualitatively its physical properties. This aspect
of the renormelization-group approach will be further
discussed in Se:tions VI-VIII; before that, however, the
mathematical foundations of the procedure must be in-
troduced.

IV. Mathematical Procedure
A. Logarithmic Discretization

Although ultimately relying on a numer-
ical  diagonalization of the model Hamilto-
nian, the 1enormalization-group method is by no
means one of brute force. Prior to the diagonalization,
the conduction-band Hamiltoman H, is projected on a

special basis, defined to preserve the energy-scale in-
variance of the conduction band. This paves the way
to the definition of a renormalization-group transfor-
mation. Moreover, the chosen basis ensures that the
projection does not affect the coupling of the conduc-
tion band to the impurity; with this, uniform accuracy
over the parametrical space of the Hamiltonian is guar-
anteed. Finally, although the basis is incomplete with
respect to the conduction states, so that the projected
Hamiltonian is an approximation to H., a parameter
A gives full control over that approximation. The re-
sulting numerical procedure is essentially exact: typi-
cally, maximum deviations of a few percent are obtained
when a thermodynamical (excitation) property is com-
puted at any given temperature (frequency).

The impurity Hamiltonians to which the procedure
applies have the form

H = Himp + Hc + Himp—os (1)

where Hipp, He, and Himp-. are the impurity Hamil-
tonian, the conduction-band Hamiltonian, and the
impurity-to-band coupling, respectively. An example is
the spin-degenerate Anderson Hamiltonian, for which

Himp = 9 €} 4050 + Unyynygy, (2)

m

where ¢; is the impurity-orbital energy, U is the
Coulomb repulsion at the impurity site, and ny, =
c}#cf,, denotes the p-spin impurity occupation. The
coupling to the conduction band is

Himp—e = V2V'>_ flepu+H. ¢, (3)
L

where the normalized Fermi operator fo, is a shorthand
for a sum over the conduction states:

fou =1/V2Y crp. (4)
k

The conduction band Hamiltonian describes non-
interacting spin-degenerate electrons:

HC:ZEkc}wcku. (5)
kp

The energies ¢; are measured from the Fermi level, and
the momenta k from the Fermi momentum kpg. Since
one is interested in small energies, a half-filled band
with the linear dispersion relation

Ek:k/k‘pD (—D<€k <D) (6)

is traditionally considered.

The continuum of the conduction levels being un-
wieldy for numerical treatment, the conduction band
must be discretized. The logarithmic discretization in
Figure 3 preserves scale invariance. Its definition in-
volves two dimensionless parameters, A and z. The
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former must be larger than unity, but is otherwise arbi-
trary. The latter can be any number between 0 and
1. The original definition®? of the renormalization-
group procedure makes no reference to z (to recover
that definition, one must set z = 1in Figure 3). As it
will be shown below, however, in calculations of excita-
tion properties the recently introduced parameter®3!
is indispensable. A discussion of the generalized (z-
dependent) procedure seems therefore appropriate.

The definition of the discretized basis follows the
prescription spelled out in Ref.6. For each o the
conduction-energy intervals A~™7% > e /D >
A-m—-1-z (M ="0,...,00) in Figure 3, a single nor-
malized Fermi operator 4 is defined, equal to the
most localized state around the impurity site that can
be constructed out of the ¢i’s:

f DA—™"*

ams = (1 - A'l)‘”"’/ crdk.  (7)

iDA—-m—l—l

For the two intervals closest to the band edges, one
defines

+D
ay = +(1 - A“Z)’”Z/ cwdk.  (8)

+DA-=

The basis of the a4 is evidently incomplete with
respect to the ¢;. In the following section, the model
Hamiltonian will be projected on this incomplete ba-
sis. Justification for this approximation is provided
by a two-step argument due to Wilson® and Krishna-
murthy et al.”. These authors first observed that, for
A — 1, the conduction-band Hamiltonian projected on
the basis of the a+ is equivalent to the Hamiltonian
(5). Next, they presented three evidences that ther-
modynamical properties calculated with A > 1 con-
verge very rapidly to the continuum limit: (i) near fixed
points, where physical properties of model Hamiltoni-
ans can be computed analytically, the deviation of a
thermodynamical average computed at given tempera-
ture with given A from its continuum-lirnit value ispro-
portional to exp(—=2/InA); (ii) for special parametric
choices (see Section V), the Anderson Hamiltonian can
be diagonalized analytically; when its thermodynamical
properties are calculated for given A, they again deviate
from the continuum limit by amounts proportional to
exp(—n2%/1n A); (iii) for parametrical choicesimpeding
analytical diagonalization, any thermodynamical aver-
age (A) calculated numerically at a given temperature
isfound to have the following A dependence:

(A) = Ag +ce™™ InA, (9)

where Ag is independent of A, and c depends only
weakly on the discretization parameter. Since the pub-
lication of Ref. 6, a substantial mass of numerical and
analytical results has accrued on these findings, and in
Ref. 31 it was found indications that the convergence
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of excitation properties to the continuum limit is even
faster. Such findings show that calculations carried out
with, e. g., A = 3 are representative of the continuum
limit. To check this conclusion by studying the A de-
pendente of computed physical properties is a routine
procedure in renormalization-group calculations. With
this indispensable precaution, the discretization is jus-
tified.

B. Basis Transformation

The operators az. and am+ (M= 0,...,00) form a
basis onto which the conduction-band Hamiltonian can
be projected. The projected Hamiltonian is an infinite
series, more convenient than the continuum in Eq. (5),
but still unfit for numerical processing. The series has
to be truncated.

Before that, however, attention must given to the
coupling to the impurity. As(3) indicates, Himp--
involves the Wannier state f;,. In order to preserve
the integrity of the coupling Hamiltonian, the trunca-
tion must not affect that ferrnionic operator. Accord-
ingly, prior to being truncated, the discretized Hamil-
tonian is subjected to a Lanczos transformation3?: a
second orthonormal basis of fermionic operators f,,
(n=190,1,...) is defined, each a linear combination of
theay and ams (m=0,1,...). Here, fo, is the operator
in Eq. (4), and the remaining £, are defined®? to make
the conduction-band Hamiltonian H, tridiagonal:

[ee]

Ho= Y Ul ufarru+Hoc)  (10)

#,n=0

The coefficients ¢/, are determined by solving recur-
sively the following equation®! :

N
[T(e2)? = Fv(z, A) = [(Hne)™ ¥, (10)

n=0

where the term within the square brackets on the right-
hand side is the 2N + 2th power of the tridiagonal ma-
trix

M s1lis = €16 j-1+€ 1651 (4,7 =1,2,---, N+1).

(12)
Thefirst term on the right-hand-side of Eqg. (11) isthe
function

(1-A"1) i AT x

FN(Z)A) =
m=0_
A+AY
e
—a\12N+32
+(1—A”)X[D-(1—+2—A——)} (13)

For N = 0, the matrix #; contai nsasingle element,
[H1]11 = 0, so that the last term on the right-hand
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Figure 3.: Logarithmic discretization of the conduction band. A must be larger than unity and r must lie between

0 and 1; otherwise, the two parameters are arbitrary.

side of Eg. (11) vanishes. That equation can therefore
be solved for ¢§. For N > 0, once the €,...,eh_,
have been calculated, Eq. (12) determines the matrix
‘Hn+1, and the right-hand side of Eq. (5) can again be
computed. On the left-hand side, the only unknown is
¢4, which can therefore be computed. For large N, it
can be shown®! that €% decreases exponentially with
N:

&~ (1+A7Y/2)DA-NZ (N> 1), (14)

This conipletes the basis transformation. Eq. (4) is
substituted for H, in Eq. (1). The result is the model
Hamiltonian projected on the basis of the operators fr,
(n=0,1,...)and ¢su:

[ve]

> € flufarin+H )

pun=0
+\/§V(fguc“ +H.c)

+foc}ucfu+Unanfl. (15)
u

H =

C. Truncaticn and Diagonalization

Equation (15) isin appropriate form for truncation.
According tc Eq. (14), €4 decays exponentially with n.
If one is interested, for instance, in a thermodynami-
cal property at the temperature T, then energies much
smaller than kg7 are unimportant. It follows that the
infinite series on the right-hand side of Eq. (15) can be
truncated at n = N — 1, where N is an integer such
that €3 < k3T

To be more specific, one reverses the relation be-
tween N and T. For given N, one defines the energy

Dy = (1 + A™1/2) DA-B+V=3)/2] (16)

which is approximately equal to €% _, (the symbol Dn
isareminder that, for N = 1, thisenergy is comparable
to the half bandwidth D), and chooses the temperature
T so that

kpT = Dy /a, (17)

where 0 is a small constant, o = 0.1 for iiistance. This
guarantees €3 to be rnuch smaller than k7.

To a good approximation, then, the Hamiltonian in
Eqg. (15) can be written

N-1

> € (fifarr+H. )

n=0

+V2V (et H. c)

+Ze;c}ucfﬂ+Un”n“. (18)
;4

H =

One is now in position to define a renormalization-
group transformation. To this end, the truncated
Harniltonian is divided by the factor Dy, which defines
the scaled, dimensionless Hamiltonian

N-1

}: & (fl fagr +H. )

n=0

+V2V(f e+ Ho )

Hy =

+Z€fc}llcf“ +U7’Lf1nfl /DN, (19)
n

in which the smallest Lanczos coefficient, €%, _,/Dn, is
approximately equal to 1. As N grows, new conduction
terms are added to the truncated Hamiltonian, but the
scaling ensures that each new term is of the order of
unity. Thus, if there were no impurity, the smallest
energies in the scaled Hamiltonian would be indepen-
dent of N, i. e., scale invariant. Since the coupling to
the impiirity [the second term on the right-hand side of
Eqg. (19)] and the irnpurity terrns (the third and fourth
terms) grow with N, the impurity can break that in-
variance, as anticipated in Section I11.

Notice that, in view of Eq. (17), the scaled Hamil-
tonian is proportional to the exponent H/kgT of the
Boltzmann factor:

e~ HIkBT = g—aln (20)

afeature that simplifies the computation of thermody-
namical properties.

Mathematically, the renormalization-group trans-
formation 7 is defined by the changes Hn undergoes
as N increases:

T[HN] = Hyyr = VAHN + ¢ (fl fner +H. ¢.)/Dy.
(21)
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The form (19) is also appropriate for numerical di-
agonalization. This iterative procedure starts out with
N = 0, so that the conduction-band Hamiltonian [the
first term on the right-hand side of Eq. (18)] vanishes.
The remaining terms can be diagonalized analytically
(Hamiltonians more complex than that of the Anderson
model may call for numerical computation even at this
early stage; nonetheless, since the impurity Hamilto-
nian comprises only a few terms, its diagonalization is
aways a simple numerical exercise). From each eigen-
value, thesmallest one issubtracted, so that all energies
are measured with respect to the ground state.

The Hy-4 Hamiltonian is a 16 x 16 matrix, since
sixteen many-body basis states can be constructed out
of the operators fo, and cs,. To proceed to N = 1,
one has to add f;, to that list. In other words, out
of each eigenvector |¢) of Hy, four basis states have to
be constructed: |¢}, ffT|¢), fhld)), and f{TflTlMS). In
the basis of these states, the truncated Hamiltonian is
a 64 x 64 matrix that can be diagonalized numerically.
Again, from each resulting eigenvalue the smallest one
is subtracted. Out of each eigenvector |}, four new
basis states (Ip), £1;l), 1,1}, and 1, £],[¢)) are con-
structed. The entire cycle is repeated for N = 2, and
then for N = 3, and so forth.

Clearly, the number of basis states increasesin pro-
portion to 4V. If unchecked, such a growth would
rapidly exhaust even the richest computational re-
sources. Practical considerations are therefore neces-
sary, to restrict the number of states taken into account
in each iteration.

As an illustration, consider the computation of a
thermodynamical property, at the temperature T. Ac-
cording to Eq. (17), the smallest energy resulting from
the diagonalization of the model Hamiltonian will be
of the order of ¢, = akpgT, to which corresponds
a Boltzmann weight exp(—¢min/kT) = exp(—«), ap-
proximately equal to unity (since a is small). Larger
energies will be associated with smaller Boltzmann fac-
tors. If one chooses to neglect weights below aminimum
Wmin, then energies above a maximum ¢ such that
exp(—€maz/k8T) = wmin can be disregarded.

Thenumerical diagonalization determinesthe eigen-
values of the scaled Hamiltonian H . Each of these is
equal to an energy scaled by A*t(V=3)/2 Iy particular,
the smallest scaled eigenvalue, proportiona to €;n, IS
of the order of unity, while the largest eigenvalue that
must be taken into account is

Bz = €mae MYV 2 6o Jakp T, (22)

In practice, therefore, a band of eigenvalues,
bounded below by unity and above by E,,, isconsid-
ered after each numerical diagonalization. If Hy were
afixed point of the renormalization-group transforma-
tion, the number of eigenstates between 1 and E,
would be rigorously independent of N. Since Hy is
generally not afixed point, that number may vary with
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N: the variations are nevertheless small, so that ma-
trices of essentially the same dimensions have to be di-
agonalized in each iterations. The computational cost
grows linearly — not exponentially — with N.

To further reduce the computational effort, prior to
each diagonalization the basis states are combined into
eigenstates of the electronic charge, and spin (and axia
charge!®1% if the model is particle-hole symmetric)—
which are conserved; this reduces substantially the di-
mensions of the matrices to be diagonalized. For the
spin-degenerate Anderson model, these rneasures re-
duce the CPU time required for a full diagonalization
of the model Hamiltonian on a VAX-6400 to a few
minutes. Models with larger numbers of degrees of
freedom can be considerably — and often prohibitively—
more demanding.

This concludes our discussion of the general aspects
o the mathematical procedure. Asan illustration, Sec-
tion V discusses the diagonalization of the Anderson
Harniltonian for ¢, = U/ = 0. More interesting results
are discussed in Sections VI-VIII.

V. The ¢, = U =0 Anderson Hamiltonian

The only quartic term in the Anderson Hamilto-
nian is proportional to the Coulomb repulsion U. For
U = 0, the quadratic Hamiltonian can be diagonalized
analytically’. One then finds that the coupling V to
the conduction band broadens the impurity level to a
width

l=xv?/D. (23)

With €; = 0, this width isthe only characteristic energy
associated with the impurity.

The coupling to the impurity phase shifts the con-
duction levels. Those removed in energy from ¢; are
not affected, but those in the region | — ¢;) < T are
strongly shifted. In particular, for e = ¢;| < T, the
phase shift is 7 /2.

Consider now the renormalization-group treatment
of the model Hamiltonian. For vanishing orbital energy
and Coulomb repulsion, the scaled Anderson Hamilto-
nian in Eq. (19) becomes

IN-1

Hy = [Ze;(f;fmm c)

n=0

+VIV(flcru+ he)| /Dy (24)

The 1 and | spin indices, labeling states that are de-
coupled from each other and degenerate, can be disre-
garded.

The quadratic form (24) can be diagonalized by a
straightforward procedure, one that issimpler than the
iterative method in Section IV C. We rewrite its right-
hand side as a matrix:

Hy = v'Ho, (25)
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where the ve:tor v is defined by the equality
ot = (A, (26)

and Hisa (131 2) x (N * 2) codiagonal matrix whose
elements are

Hiz=Hy1 = V2V/Dn, (27)

and

n=12,... N).
(28)

When Hp isdiagonalized numerically, N + 2 eigen-
values are found. Since Hy in Eq. (24) is particle-hole
symmetric, i. e., it remainsinvariant under the transfor-
mation f, — (=1)**1f! (n=0,1,...), for each eigen-
value n there must be a symmetric eigenvalue —7. For
even N, then, the N +2 eigenvaluesform two symmet-
rical groups, hdf of them being positive and haf nega-
tive. For odd N, one must be zero, and the remaining
ones again form two symmetrical sets.

Figure 4 shows an example. For clarity, only the
odd-N pattern is shown. The pattern for even N is
analogous (although different). The eigenvaluesin the
figure were calculated for I' = 10~*D. The non-zero
eigenvalues are denoted £n, with j =1, 2,... (N +
1)/2, in order of increasing absolute value.

As N grows, new eigenvalues appear, but the ones
closest to zero show a clear pattern. After the first few
N, those eig:nvalues stabilize and remain essentialy
fixed until N = 20. Rapid changes follow, but for N >
25, the eigenvalues again become independent of N.

This behaviour reproduces the main features of Fig-
ure 2. In thefirst plateau (N < 20), the scaled Hamil-
tonian is close to a fixed point, but a relevant energy
drives it away from it, towards a second fixed point, to
wliich H» comes close in the second plateau.

Physically, the two fixed points reflect the energy
scaling invari ance of the conduction band, broken only
by the broadening I', of the impurity energy by the con-
duction state:;. For large energies ¢ (i. e., for small N),
that width is negligible, so that the coupling to the im-
purity can be disregarded. This approximation reduces
the model Hamiltonian to the conduction Hamiltonian,
which is a fixzd point.

This interpretation is confirmed by the inset. Here,
the energies ¢;, associated with the eigenvalues nJN by
the scaling

Hn+1,n+2 = Hn+2,n+1 = fn—-l/DN (

¢; = Dy (29)

are plotted as functions of N. While the main plot
shows the n closest to zero, the inset shows all en-
ergies, only tie ones that are largest in absolute value
being well resolved. Inspection of the plot shows that
it reproduces quantitatively the logarithmic discretiza-
tion of the conduction band in Figure 3. Cl-arly, the
energies farthest away from zero are the energy levels

_|o b
C('U'O
r=10"%p N
e L [A=3]2Z+1 *‘"
o 1 1 1 —e—tf—a—t ..
(6] 5 10 15 20 25 30

Figure 4.. Eigenvaues of the matrix Hpy, defined by
Egs. (27) and (28), for V = 0.01 and A = 3. Theeigen-
values are plotted as functions of (odd) N. For N = 1
and 3, all eigenvalues appear. For N > 5, only the 5
ones closest to the Fermi level are shown. The dashed
lines indicate the (odd N) eigenvalues for V = 0, and
the dotted lines the eigenvalues for V. — oo. The in-
set shows the energy levels—equal to the eigenvalues of
Hy multiplied by the scaling factor Dy—as functions
o N. AsN — N *2, two additional eigenvalues ¢;
appear close to the Fermi level (for N > 7, these new
eigenvalues are so close to zero that they cannot be
distinguished from the eigenvalue ¢; = 0 on the scale
o the plot). For increasing N the discrete eigenval-
ues thus probe of the vicinity of the Fermi energy with
progressively finer resolution.

in the conduction band. On the main plot, the dashed
lines are those levels, scaled according to Eq. (29).

As N grows, the diagonalization probes progres-
sively smaller energies ¢. Eventually, ¢ becomes small
in comparison with the width I'. At this point, letting
V — oo in Eg. (24) should be a good approximation.
The characteristic energy I' then diverges, making the
Hamiltonian Hy again invariant under scaling, i. e., a
fixed point. The dotted lines coming to the right-hand
vertical axis on Figure 4 coincide with the eigenvalues
7; of the Hamiltonian in Eq. (24) diagonalized for very
large V. Notice that the 7; are shifted with respect
to the eigenvalues for V. = Q This is expected: for
I' — oo, all conduction levels should be strongly cou-
pled to the impurity, hence phase shifted by =/2; the
displacements of the #; relative to the eigenvalues for
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N < 10 reflect this phase shift.

The numerical diagonalization thus identifies two
fixed point Hamiltonians, obtained from Eq.(24) by set-
tingV = 0 and V = oo. First found in Ref. 7, these
fixed points have been named the free-orbital and the
frozen-impurity fixed points, respectively. Due to the
differences between the even-N and odd-N patterns,
the eigenvalue structure of either fixed point is repeated
under the double transformation 72[H ] = Hn 42, Not
under the transformation 7. This evidence that the
fixed-point Hamiltonians are double-cycled has no prac-
tical consequences.

As this discussion of Figure 4 indicates, the
diagonalization of a model Hamiltonian by the
renormalization-group approach locates fixed points of
the renormalization-group transformation. The fixed
points are usually simple Hamiltonians constituted of
non-interacting quasi-particles decoupled from impu-
rity levels. Quite independently from its ability to
determine thermodynamical or excitation properties,
therefore, the renormalization-group approach gives in-
sight into the physical properties of impurity models.

VI. Thermodynamical Properties
A. Computational Procedure

The iterative diagonalization of a model Hamilto-
nian was described in Section . Given a small constant
a, each iteration N corresponds to a thermal energy
kT = Dn/a [see Eq. (17)], and the truncated Hamil-
tonian was divided by Dy to make its smallest eigen-
values of the order of unity.

The net result of iteration N isa band of eigenvalues
ranging from unity to E,,,—corresponding  toenergies
ranging from Dy to E, Dx. The Boltzmann weights
of the largest energies in this band are of the order of
exp(—Fmax DN [kBT) = exp(—FEmaz/a), hence negli-
gible, so that the eigenvalues above E,  (which are
not calculated) would contribute insignificartly to the
thermodynamical averages.

The weights of the smallest energies, on the other
hand, are of the order of exp(—~Dy/kpT) = exp(—c).
Since « is small, the weights of the (scaled) eigenvalues
smaller than unity (which are not calculated in iter-
ation N) are approximately equal to 1, so that those
eigenvalues can be equated to zero. For a proof of this
statement, based on a perturbative treatment of the
first Lanczos coefficient neglected in Eq. (18) (i. e., of
the coefficient ¢} ), see Refs. 6, 7.

The iterative diagonalization classifies the eigen-
states by spin (and by charge). It is then a simple
matter to compute the impurity contribution to the
magnetic susceptibility, given by

Ximp = (g/“B)z/kBT [(S?) - (‘SSO>] ) (30)

where the brackets () indicate thermal averaging, S, de-
notes the z component of the total (impurity plus con-
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duction electrons) spin and S, that of a free electron
gas (i. e., of apure conduction band), g istheelectronic
gyromagnetic ratio, and g is the Bohr magneton.

Likewise, the impurity contribution to the specific
heat is

Cy = kg (Dn/ksT)? [(H}) - (HZ)] (31)

where Hyy is the scaled Hamiltonian for the free con-
duction band.

B. Flow Diagram for the Symmetric Anderson model

The temperature-dependent impurity susceptibility
for the spin-degenerate Anderson Hamiltonian (1-3)
was computed by Krishna-murthy et al.’:25. Ref. 7
considered the synmet ri ¢ model, defined by the condi-
tion e; = —U/2, which makes the impurity — and hence
the Hamiltonian— particle-hole symmetric, i. e., invari-
ant under the transformation c¢; — c}. Theasyrnmetric
model was studied in Ref. 25.

Theflow diagram for the symmetric model is shown
in Figure 5. Of specia interest are the three fixed
points, indicated by filled squares. Two of them, the
free-orbital (I' = U = ¢; = 0) and the frozen-impurity
(U =¢ =0, and T = oo) Hamiltonians, have been
discussed in Section V. For U = ¢; = 0, the flow in
Figure 5 is restricted to the vertical axis. The free-
orbital fixed point is unstable, so that even a very small
width T" will drive the scaled Hamiltonian to the frozen-
impurity fixed point, asillustrated by Figure 4.

I T FROZEN-IMPURITY
[ J

LOCAL —MOMENT

FREE~—-ORBITAL v

Figure 5.: Flow diagram for the symmetric Ander-
son model. The free-orbital fixed point is the model
Hamiltonian for vanishing impurity-orbital width I' and
Coulomb repulsion U; this fixed point is unstable with
respect to I' and U perturbations. For I' = 0 with
U — oo, the Hamiltonian turns into the local-moment
fixed point, unstable with respect to I' perturbations.
For T' — oo with U = 0, the Hamiltonian is the (stable)
frozen-impurity fixed point.

The third fixed point in Figure 5 corresponds to
U =~2¢; — oo, whileI' =0. Since V =0, the impu-
rity is decoupled from the conduction band. Moreover,
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U = oo (¢4 = —oo) makes the doubly-occupied f? (the
empty f°) configuration inacessible. The two remaining
configuratiors, f1 and f!, are degenerate, which leaves
the impurity devoid of characteristic energies. The re-
sulting Hamiltonian is invariant under scaling, that is,
a fixed point of the renormalization-group transforma-
tion. '

In contrast with the free-orbital (four-fold degen-
erate) and the frozen-impurity (non-degenerate) fixed
points, the lc cal-moment fixed point is doubly degener-
ate, the impurity found in one of its two magnetic con-
figurations, ;T or f!. This residual degeneracy makes
the local-moment fixed point unstable: for large, but
finite U/, and small, non-zero T, virtual excitations be-
tween the magnetic impurity configurations and the
non-magnetic ones are allowed. When the impurity
coupling to she conduction band, Himp—., is treated
to second order as a perturbation, the following anti-
ferromagneti: coupling between the impurity spin and
the spin of the Wannier state centered at the impurity
site results:

Hoppeo = =21y f3,ufou - S, (32)

(14

where § is the impurity spin operator, the components
of the vector & are the Pauli matrices (& = 6,2+ 0,7+
0, %), and the coupling J is given by the Schrieffer-Wolff
relation

J = 4T/ ApnU. (33)

Here the factor A, is defined as
Ax = (A+1)InA/2(A - 1); (34)

it converges rapidly to unity in the continuum limit,
A—1 ’

C. Kondo Limit
The sum of H/,,_. with the conduction Hamilto-
nian yields tte Hamiltonian

Hk = =27 fl.Guwfo-S
9%

+ 3 @l ufariu+Hoe),  (35)

u,n=0

first diagonalized by Wilson®. This relation between the
Hpg and the Anderson Hamiltonian was first obtained,
on the basis of a canonical transformation valid in the
U > T limit, by Schrieffer and Wolff®.

The flow ciagram in Figure 5 shows that the antifer-
romagnetic coupling in Hy drives the scaled Hamilto-
nian from the local-moment fixed point to the frozen-
impurity fixel point. The coupling constant J, how-
ever, does not introduce a relevant energy, but a
marginal one. To understand this, it is convenient

to consider the rate of impurity-spin flips caused by
Hfmp-c’ computed in a golden-rule approximation. To
this rate », which is proportional to (pJ)?, where p =
1/ D is the density of conduction states, only contribute
the conduction states within kT of the Fermi energy,
so that r is proportional to the temperature. Thus,
although the coupling J introduces the characteristic
energy €, = rh, as the temperature is lowered that en-
ergy reduces in proportion to kpT". In the golden-rule
approximation, at all temperatures, €, is smaller than
kgT by exactly the same factor, proportional to (pJ)?,
hence small. In contrast with relevant energies, which
expand under renormalization-group transformations,
and with irrelevant ones, which diminish, the marginal
energy €, remains invariant.

Marginality, however, is a delicate balance. Ener-
gies marginal to leading order in perturbation theory
frequently turn out to be either relevant or irrelevant
in higher orders. In special, higher-order perturbative
calculations® and numerical computations®7? show that
¢ is relevant. Since it grows very slowly under the
renormalization-group transformation (21), many iter-
ations in the diagonalization of the model Hamiltonian
are required to make it effective; eventually, however,
it drives Hy from the local-moment fixed point to the
frozen-impurity fixed point. The crossover takes place
at the energy

Tx =2.63D+/p|J]exp(1/pd )1+ O(pT)). (36)

In this expression, the two nonanalytical functions of
pJ on the right-hand side {\/p|J| and exp(1/pJ)] are
universal, i. e., independent of the band structure.

At the temperature T = Ik /kp, the impurity—spin-
flip rate r equals kg7. For thermal energies smaller
than Tk, the spin-flip rate is large, as it would be if
J — —o00. The impurity spin is strongly coupled to the
spin of the conduction electrons around it and forms a
singlet. The spontaneous creation of the characteristic
energy I'r and the formation of the singlet dominate
the physical properties of the model for energies € com-
parable to, or smaller than I'x: thermodynamical prop-
erties are universal functions of the ratio kgT /T g, and
dynamical properties are universal functions of w/Tk.

That in the regime € < I'y the Hamiltonian Hk lies
beyond the reach of ordinary diagrammatic expansions,
it was recognized long before the diagonalization of the
Hg. The first symptomatic divergence was found in
Kondo’s perturbative calculation of the impurity con-
tribution to the resistivity of a dilute magnetic alloy!.
After him, Hg is nowadays called the Kondo Hamil-
tonian. A few years afterward, Abrikosov33, Suhl 34,
and Nagaoka3® found evidence that the antiferromag-
netic coupling between the impurity and the conduction
band enhances the density of state near the Fermi level.
Ik [see Eq. (36)] is the width of that resonance, which
used to be named after them (it is now more frequently
called the Kondo resonance, hence the symbol T'x).
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D. Numerical Results

Figure 6 shows two illustrative susceptibility curves
for the symmetric model. In both cases, U = 1073D =
—2¢¢. For curve 1 the conduction-band-to-impurity
coupling is V = 103D, giving an impurity-level width
I = 3.1x 107%D, comparable to U. For curve I1,
in contrast, V. = 2.8 x 1073D corresponds to T' =
2.5x 1078 D, much smaller than U. Each plot showsthe
product T'ximp as afunction of temperature. This pre-
sentation of the numerical data is convenient, because
fixed points are identified by plateaus [thisfollowsfrom
Eqg. (20), which shows that the Boltzmann weights de-
pend only on the eigenvalues of the scaled Hamiltonian
Hx, which are independent of N at fixed points].

The two plateaus in curve |, the ordinate approxi-
mately equal to 0.125 for kg7 > 1073D and approxi-
mately equal to zerofor kT < 10~5D, correespond to
the free-orbital and to the frozen-impurity fixed points,
respectively. In thiscase, I comparableto U, the scaled
Hamiltonian never comes close to the local-moment
fixed point. For thermal energies large compared to
T or U, theimpurity energies are unimportant, all four
impurity configurations are thermally accessible, and
the average ((S:™?)?) equals 1/8. For thermal energies
small compared to T, in contrast, only the bonding com-
bination of the impurity orbital with the Wannier state
centered at the impurity site becomes thermally accessi-
ble. This being non-magnetic, the product Timp, van-
ishes.

In addition to these two plateaus, curve II displays
a third one: for 107°D < kT < 10~%D the ordinate
lies between 0.20 and 0.25. In this range, the scaed
Hamiltonian is near the local-moment fixed point. At
that fixed point, only the magnetic impurity configura-
tions would be thermally accessible, so that ((Si™?)?)
would equal 1/4. The marginal coupling between the
impurity and the conduction band pushes the ordinate
somewhat below 1/4. As the temperature is lowered,
the marginal energy slowly builds up—as if the cou-
pling J were increasing—and the ordinate drops fur-
ther below 0.25. At sufficiently low temperatures the
impurity—spin-flip rate I'x becomes comparable to the
thermal energy kpT. Further lowering of the temper-
ature makes the the impurity spin so strongly coupled
to the conduction electrons that its contribution to the
product T'x;m, drops to zero.

It was observed above that the crossover from the
local-moment to the frozen-impurity fixed point is con-
trolled by the characteristic energy I'x, with the result
that all thermodynamical properties are functions o
the temperature scaled by T'x. They are analogous to
the thermodynamical properties of the /' = ¢; = 0 An-
derson model, which are functions of the ratio kgT/T.
In fact, wel before the diagonalization of the Kondo
Hamiltonian, a scaling analysis by Toulouse had es-
tablished an equivalence between the two models at
low energies3®. For thermal energies comparable to or
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smaller than Tk, the thermodynamical properties of
the Hamiltonian (35) are remarkably similar to those
of the U = ¢; = 0 Anderson Hamiltonian with cou-
pling V chosen to make I' = I',. As an illustration,
the dashed line in Figure 6 shows the crossover to the
frozen-impurity fixed point in curve | as afunction of
(kgT/D) x (I'/T k). The agreement with curve I is so
close that, on the scale of the plot, for kg7 < 10~1'D
the two curves cannot be distinguished. A numerical-
renormalization-group calculation of the specific heat
for the Kondo model found equally good agreement,
provided only that the specific heat for Hx be com-
pared with the specific heat per spin for the uncorre-
lated Anderson Hamiltonian3”.

At thermal energies much lower than the 'k, the
scaled Hamiltonian is near the frozen impurity fixed
point. Here the antiferromagnetic coupling between
impurity and conduction electrons around it forms a
singlet effectively decoupled from the remaining con-
duction states. As required by the Friedel sum rule,
at the Fermi level the latter are then phase shifted by
§ = w/2. Since a particle-hole transformation takes
the phase shift at the Fermi level from é to —6, and
since the symmetric Hamiltonian remains invariant un-
der the particle-hole transformation, the only possible
phase shifts are § = 0 and 5 = x/2 (which is identi-
ca to 5 = —=/2, since the phase shift is only defined
mod~). From this, it is concluded that the Fermi-level
phase shift— and hence the low-temperaturefixed point
that the scaled Hamiltonian approaches—is always the
same, independently of the flow of Hy.

The scaled Hamiltonian approaches the frozen-
impurity fixed point asymptotically. For large ¥, the
difference between Hy and thefixed-point Hamiltonian
can be treated perturbatively, and the impurity contri-
bution to the thermodynamical properties can be cal-
culated analytically®?. For kgT <« T'g, the Kondo-
resonance width is an irrelevant energy; in the absence
o characteristic energies, one expects the thermody-
namical properties to be powers o the ratio kgT/Tk.
The perturbatively derived expressions for the impurity
contributions to the low-temperature magnetic suscep-
tibility and the specific heat are

Ximp = (9B)* /27T, (37)

and
Cimp = (1/3)k3T/T k. (38)
When the latter expression is compared with the
specific heat of a simple metal, G = w2k4Tpp/3 22,
where pp is the density of states at the Fermi level, the
result is an effective Kondo-resonance density of states

px = 1/7Tk. (39)

This confirms that the coupling to the magnetic impu-
rity in the Kondo Hamiltonian introduces a resonance
of width T's, just as the coupling to the impurity level
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Figure 6.: Magnetic susceptibility for the spin-degenerate syrnrnetric Anderson model, from Ref. 7. The impurity
contribution o the susceptibility is multiplied by the temperarture, so that fixed points of the renormalization-
group transformation appear as plateaus. At the free-orbital fixed point, the ordinate would equal 1/8; at the
local-moment fixed point, 1/4; at the frozen-impurity fixed point, it would vanish. Two plots are shown, both for
U = —2¢ = 073D, the impurity-level width being I'; = 3.1 x 104D for curve | and I';; = 2.5 x 107°D for curve
II. Since T’y is comparable to U, in case | the scaled Hamiltonian flows directly from the local-moment fixed point
to the frozen-impurity fixed point. In case 11, it flowsfirst to the vicinity of the local-moment fixed point and then
to the frozen-impurity fixed point. The dashed line shows the crossover in curve | displaced horizontally by the
factor ', /Ty, to show that T'x defines an effective resonance width.

in the U = ¢; = 0 Hamiltonian introduces a resonance
of width I'. Nonetheless, if from Eq. (39) and from
the expressioa for the Pauli susceptibility of a simple
metal, x = (guB)?pr/4 %2, one tries to obtain the low-
temperature susceptibility for the Kondo Hamiltonian,
the result [x = (gpB)?/(47Tk)] is only one half the
right-hand side of Eq. (37). To emphasize this point,
which indicates that the Kondo resonance enhances the
magnetic configurations of the conduction states rela-
tive to the non-magnetic configurations, Wilson® de-
fined the ratis

Rw = (4n/3)[k3T/(918)* Ximp/Cimp = 2, (40)

in contrast with simple metals, or with the uncorre-
lated Anderson model, for which Rw = 1 Yamada
and Yosida later showed that this equality follows from
Ward identities in a diagrammatic expansion in the
U — oo limit38, while Noziéres, on the basis o Fermi-
liquid theory, proved that Rw = 2 follows from the
requirement that the thermodynamical properties of
the model remain invariant under infinitesmal shifts
of the Fermi level®®. The Bethe ansatz and the 1/N-
expansion solutions of the Kondo problem have gen-
eralized Eq. (40) to larger orbital degeneracies. For
impurity degrneracy 2S + 1, the Wilson ratio, defined

Rw = [7%/S(S + D]kET/(guB) Ximp/Cimp, (41)

is given by®
Rw = (25T 1)/25; (42)

only for small degeneracies is it significantly different
from unity.

E. Asymmetric Anderson Model

In the symmetric spin-degenerate model, the f ® and
2 impurity configurations are degenerate. The asym-
metric Hamiltonian breaks this degeneracy, the split-
ting A = ¢; T U between the 12 and the f! configu-
rations being different from —¢;. Thus, while in the
syrnrnetric model U, €, or A set the same scale, in
the asymmetric case ¢, and A are two characteristic
energies. The parametrical choice I' = A = 0 with
€; = —oo—a combination not allowed by the symmet-
ric model —makesthe Hamiltonian invariant under scal-
ing, since the impurity is decoupled from the conduction
band and devoid of characteristic energies. The result-
ing scaled Hamiltonian is called the valence-fluctuation
fixed point, a nomenclature attentive to the unequal va
lentes of the degenerate f 2 and f! configurations. Of
course, the opposite extreme, I' = ¢; = 0 with A = oo,
isequally important; asit has been shown?®, however, a
particle-hole transformation interchanges the f © and f 2
configurations, so that a complete study of the asym-
metric model requires only analysis of the parametrical
half-space A > —¢;.

The valence-fluctuation fixed point is unstable. It
is easy to recognize that any positive A will grow un-
der scaling and drive the scaled Hamiltonian towards
the local-moment fixed point. Nevertheless, in anal-
ogy with the formation of the characteristic energy
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(T'x) in thesymmetric Hamiltonian, a characteristic en-
ergy is generated in the crossover between the valence-
fluctuation and the frozen-impurity fixed points. Under
the assumption U + 2¢; > T, aperturbative treatment
identifies the energy A* determined by the transceden-

tal equation®?5

A* = A -T/rIn|es/A*]. (43)

A*  the effective splitting between the f2 and the
two f! configurations, can be significantly different
from A. To show this, Figure 7 plots both sides of
Eq. (43), divided by T', as functions of A*/T for
¢ = —01D, T = 001D and three A’s: (a) =0 05D,
(b) 00050, and (c) 0050. For A =¢;,i e, U =20
(not shown), Eqg. (43) would admit a single solution,
A* = A. For fixed ¢; and T, however, as A (i. e,
U) grows, A* becomes progressively smaller than A.
For-case (@), the difference be'tween the renormalized
splitting and the bare one is insignificant. In case (b),
however, while A is positive, A* isnegative. Infact, as
the figure indicates, Eq. (43) aways admits a negative
solution, which approaches zero as A becomes much
larger than T'. Under these circumstances, A* can be
neglected on theleft-hand side of Eq. {43), which shows
that

A* = ¢pexp(—mA/T). (44)

This is precisely what the exponential on the right-
hand side of Eq. (36) —which defines the width
of the Kondo resonance—yields when the Schrieffer-
Wolff transformation is carried out on the asymmetric
Hamiltonian®?®. For A > T, therefore, the character-
istic energy A* defines a Kondo resonance, just as in
the symmetric model.

Figure 7 dliows that for A > T Eqg. (43) has two
additional, positive roots. One of them— the one closest
to zero—is approximately the symmetric of the solution
in Eq. (44); this is again the Kondo resonance, which
is centered at the Fermi level and therefore spreads to
both positive and negative energies. The other root is
A* = A,

In summary, as long as |A| > T, there is aways
a cliaracteristic energy A* approximétely equal to the
baresplitting A; for A < 0, the nonmagnetic configura-
tion f 2 predominating in the ground state, that energy
controls the crossover from the valence-fluctuation to
the frozen impurity fixed point. For A > Q in contrast,
the magnetic f! configurations are predominant, and
the crossover occurs in two stages: as kgT approaches
A, the scaled Hamiltonian is driven from the valence-
fluctuation to the local-moment fixed point; further
reduction of the temperature makes kT compara-
ble to, and then smaller than A* = [e;|exp(—7A/T)
and drives Hpy from the local-moment to the frozen-
impurity fixed point. For [A| < T, on the other hand,
the crossover is controlled by the energy scale in Eq.
(43). These features, first identified in the impurity
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Figure 7.: Graphical solution of Eq. (43). Both sides
of that relation, divided by I', are plotted as functions
of A*/T for T = 0.010, ¢, = —0.1D, and three f! -2
splittings: (a) A = — 0.050, (b) A = 0.0050, and (c)
A = 0.050, which correspond to the three parametri-
cal choices in Figure 8. The solutions of Eq. (43) are
identified by circles. Cases (a) and (b) have one solu-
tion each, with A* < 0. Case (c), A = 5T", has three
solutions. As discussed in the text, the two roots clos-
est to zero reflect the Kondo resonance; the third one
shows that, asin case (a), for |A| > T thereis aways
asolution with A* = A.

magnetic-susceptibility curves in Ref. 25, appear more
clearly on the spectral-density plots discussed in Sec-
tion VIII.

F. Extensions of the Anderson Hamiltonian

Renormalization-group calculations of thermody-
namical properties for extensions of the Anderson
model have been carried out by various authors. Al-
lub et al.#! pioneered a study of a model*? with two
magnetic configurations: conduction-band-to-impurity
charge transfer augments the impurity spin from S =
1/2 to S = 1. The Hamiltonian is rotationally invari-
ant. The impurity takes different energies, Ey/, or E,
depending on its spin. This model describes crudely
compounds of such rare-earth ions as Tm, whose two
lowest configurations (4f*2 and 4f !3) are magnetic
and some of whose compounds seem to have a mag-
netic ground state?3. The fixed-point structure of the
model Hamiltonian is similar to that of the Ander-
son Hamiltonian. A valence-fluctuation fixed point,
two local-moment (with S = 1/2 and S = 1, respec-
tively) fixed points, and a frozen-impurity fixed point
arefound. Near the valence-fluctuation fixed point the
energy splitting A = £ - Ey, isrenormalized asin Eq.
(43). Unlike the ground state of the Anderson Hamil-
tonian, however, the ground state of the Hamiltonian
studied in Ref.41 is doubly degenerate: tlie conduction



Brazilian Journal of Physics, vol. 22, no. 3, September, 1992 169

electrons arcund the impurity couple antiferromagneti-
caly toit ard reduce its maximum spin from S=1to
S=1/2. At low temperatures (kgT smaller than any
energy scalel, then, the magnetic susceptibility follows
the Curie law.

This conclusion seems inevitable for a model in
which the orbital degeneracy of the conduction elec-
trons IS smeller than that of the impurity. A more
realistic model, with orbitally degenerate conduction
electrons, has been formulated*®. That model can-
not be diagonalized by the Bethe ansatz. 1/N ex-
pansions have been carried, indicating that the ground
state is nondegenerate®* 45, a result supported by the
renormalization-group calculation of the magnetic sus-
ceptibility by Shimizu et al.*¢. More recently, however,
on the basis of a narrow-band (or strong-coupling) ap-
proximation. Balifia and Aligia have concluded that the
ground state is nonmagnetic only for j — j coupling, a
magnetic ground state resulting from Russel-Saunders
coupling®”.

Another extension of the Anderson Hamiltonian
considered a localized (i. e., momentum-independent)
electrostatic interaction G between theimpurity-orbital
charge and the conduction electrons®®*°.  This po-
tential phase shifts the conduction states and there-
fore modifies the conduction-band energy. Since the
strength of the potential depends on the impurity oc-
cupation, G affects the thetmodynamical properties by
modifying tlie splittings e; and A between the 4f°
and 4f! and between the 4f! and the 4f2 configura-
tions, respectively. The differences between the ca-
culated susceptibility curves for G # 0 and those for
G = 0 are rinor*®. Frota and Mahan*® (who calcu-
lated the grcund-state impurity occupation) neverthe-
lessfind that, for G = U, the Coulomb repulsion U/ >0
can become sffectively negative, U — U,y < 0. The
consequerices of this pairing interaction remain to be
explored.

VIl. Diagoralizations of Model Hamiltonians

A. General Aspects

Section IV presented theiterative procedure that di-
agonalizes the spin-degenerate Anderson Hamiltonian.
Only minor modifications are required to adapt the
technique to more complex impurity Hamiltonians, but
the computational cost increases so steeply with the
degeneracy of the orbitals and with the number of im-
purities that only a few more general models have been
investigated.

As pointed out in Section IV C, in the diagonaliza-
tion of the spin-degenerate Anderson Hamiltonian, the
number of basis states np required in iteration N to
compute thermodynamical properties is approximately
independent >f N. That number turns out to be a few

hundred, so that when the basis is divided into inde-
pendent subspaces classified by charge and spin, the
largest matrices that must be diagonalized are of di-
mension 100.

Unfortunately, orbital degeneracy augments those
numbers enormously. It wasshown in Section IV C that
each Lanczos operator f,,, multiplied the number of ba-
sisstates by afactor of 2. For spin degeneracy and fixed
n, the operators are two { f,; and f.}), so that each f»
introduces a factor of 4. For Nj-degenerate electrons,
each operator introducesafactor 27 instead of 4. Sim-
ilarly, the number of basis states in each iteration in-
creases fromn, ~ 300to nf,v’/Ns. Evenfor N5 = 6, cor-
responding to orbital degeneracy Ny = 3, the number
of states will be enormous— tens of millions. Exactly
the same problem appears in many-impurity compu-
tations: for spin-degeneracy, for instance, the number
of basis states grows from n; to n,{v', where N; is the
number of impurities. For two impurities, the number
of basis states would be close to 100,000.

Such calculations are obviously impossible, and the
renormalization-group approach would seem applica-
ble only to one impurity and spin-degenerate electrons.
However, if instead of computing thermodynamical (or
excitation) properties one is content with diagonaliz-
ing a model Hamiltonian, the procedure has a broader
scope. Since the Boltzmann factor is then immaterial,
the upper bound E, of the band of energies kept in
each iteration can be substantially reduced. The num-
ber of basis states is likewise reduced, ten-fold for the
single-impurity spin-degenerate problem, a hundred-
fold for the two-impurity model. If the calculation of
excitation properties for a given model will not fit in
one's computational budget, diagonalizing the model
Hamiltonian is an attractive alternative.

To this expedient first resorted Cragg and Lloyd®°.
They studied two generalizations of the Kondo Hamil-
tonian diagonalized in Ref. 6, introducing (i) a poten-
tial scattering term G3}_, fgufou, (if) a spin-S impu-
rity (S> 1/2) coupled to one or two channels of spin-
1/2 electrons. The former modification turns out to be
unimportant, for the potential scattering merely phase
shifts the conduction electrons. The latter, however,
showed that a single channel of spin-1/2 electrons are
unable to compensate the larger impurity spin, so that
the ground state has spin S— 1/2. When two channels
are considered, for S> 1/2 the ground state has spin
S- 1, which indicates that each channel subtracts1/2
from tlie impurity spin. For S = 1/2, with two chan-
nels there is overscreening: the degenerate channels
combine to form two sets of free electrons: one phase-
shifted by 7/2 (an electron from this set having formed
a singlet with the impurity) and the other not phase-
shifted. Ref. 50 provided testgrounds for Noziéres's
and Blandin’s general discussion of orbitally degen-
erate magnetic impurities in metals®!, whose findings
were afew yearslater confirmed and complemented by
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Bethe ansatz computations of thermodynamical prop-
erties for the generalized Kondo Hamiltonian™. Inter-
est in the case S = 1/2 with two electron channels
was revived by the recent suggestion®? that crystal-field
effects might give rise to a quadrupolar Kondo effect
in uranium heavy-fermion compounds (such as UPts),
which is equivalent to that overscreened model. Con-
sequently, a renormalization-group calculation oriented
towards high accuracy was combined with a conformal
field-theoretical analysis of that problem to bear out
and to extend (e. g., by including a magnetic field) the
earlier conclusions®3.

Another, rather original application of the numer-
ica renormalization group procedure is reported in
Ref. 54, which takes advantage of the (approximate)
equivalence®® between the single-impurity Anderson
Hamiltonian and a model Hamiltonian describing the
Coulomb blockade in mesoscopic tunnel junctions to
calculate the ground-state energy for the latter. That
work is mentioned only in passing, as it lies off the
mainstream of this review.

B. Two-Impurity Kondo Problem

The clearest demonstration that the renormaliza-
tion group diagonalization of a model Hamiltonian is
sufficient to give quantitative insight intoits basic prop-
erties was provided by Joneset al.'4~16 who have stud-
ied the two-impurity Kondo model. That problem has
a long history, dating back to the work of Alexander
and Anderson®® on interacting localized states in met-
al ~lnstead of one, the model considers two impurities
in a metallic environment, separated by a distance R.
Each of them is coupled antiferromagnetically tos-wave
conduction states centered at the impurity site. Thefull
Hamiltonian is

Hu = ) eci,enn = I D bLR/26(R/2Fu -,
k,u u,v
~ I3 (=R (R - 52y (45)
By

where S, and 3, arethe impurity spins at sites ff/? and
—-fi/?, respectively, and thefermionic operator () an-
nihilates an electron in the Wannier state centered at
position .

If the two impurities were infinitely apart, the
Harniltonian (45) could be separated into two single-
impurity problems, each impurity interacting with its
surrounding electrons. Because R is finite, this sep-
aration is impossible, because the Wannier operators
$(R/2) and ¥(-R/2) are non-orthogonal. To en-
sure orthogonality, one works with odd and even lin-
ear combinations of the s-wave conduction states cen-
tered around each impurity site. The result isthat the
discretized conduction-band Hamiltonian [analogous to
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Eq.(10)] has the form

[ee)

H.= Z efz(frt,u,of"'\‘-l,/‘yo + f:;,u,efn-i-l,u,e + H. C~))

pn=0
(46)
where the subscripts o and e indicate odd and even
operators, respectively.
The coupling to the impurity is
Himp—c =

=51+ 8) 3 (oS oo + JofloFu f(,o,,)
Iy

“(§1 = §2) . Z (\/ JoJefge“&‘quOOU + H. C.) )
u,v

(47
where
Je = [(1F5)/2)7, (48)
and
. Jo: [(1—5)/2]], (49)
with
S =sin(kpR)/krR. (50)

To obtain Eq. (47), it is necessary to substitute the
Fermi momentum kg for the absolute value of the elec-
tronic mornentum k in the exponentials exp(+ik . R)
that appear when the field operators #(+R/2) on the
right-hand side of Eq.(45) are expressed as linear com-
binations of the conduction statesc;. Asa consequence
of this substitution, the Hamiltonian (47) depends on
R only through S, so that infinitely separated impu-
rities become identical to impurities separated by the
distance R = #n/kr. The approximation K — kr isnev-
ertheless justified, for it neglects only irrelevant terrns
o the model Hamiltonian.

Equation (46) associates with each Lanczos coefhi-
cient €, four kinds of fermionic operators. fato, fnjo,
fate, and frye, in contrast with the two kinds ( f,; and
fay) in the single-impurity problem. For this reason,
as pointed out in Section VII A, if n, is the number
of states that have to be kept in an iterative diagonal-
ization of the single-impurity Hamiltonian, (n;)? will
be the number needed to diagonalize the two-impurity
Hamiltonian. To reduce the dimensions of the matrices
that have to be diagonalized, in addition to the conser-
vation laws of the single-impurity problem, one takes
advantage of parity conservation.

It has long been redlized that the two-impurity
problemisricher than the single-impurity one3”. While
the latter has a single characteristic energy scale (the
Kondo energy), the former has two: the Kondo width
I'k and the RKKY dipolar coupling between the impu-
rity spins. This coupling, an interaction mediated by
the conduction electrons, has the form

Hrxxy = 1,51 - Sy, (51)
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wherel®
Io=2In2p(J. = J) 2. (52)

The cornpetition between I, and kgTx governs
the physics of the model. Two stable fixed points
have been identified. For [ — —oo, the (antifer-
romagnetic) RKKY interaction in Eq. (51) couples
the two impurity spins so strongly that they form
a singlet efectively decoupled from the conduction
band. The scaled Hamiltonian therefore reduces to
the conduction-band Hamiltonian, a fixed point of
the renormalization-group transformation caled the
coupl ed-inpurities fixed point. If, on the other hand,
Iy = 0and J — —o0, each impurity couplesstrongly to
the conduction electrons around it; as in the single-
impurity problem, each conduction-band channel is
phase shifted by 7/2. The scaled Hamiltonian is again
a fixed point of the renormalization-group transforma-
tion, the frozen-impurities fixed point. The different
conduction-state phase shifts distinguish the coupled-
impurities fixed point from the frozen-impurities fixed
point.

The numerical results show that, for I >
—2.2kpTk, the ground state is the frozen-impurities
fixed point, i. e., the Kondo effect wins over the RKKY
interaction. For Iy < -2.2kpTg, the ground state is
the coupled-impurities fixed point, indicating that the
antiferromagnetic coupling between the impurity spins
locks them into a singlet before they can couple to the
conduction electrons.

At the boundary between the two domains (i. e.,
for In = —2.2kpTk) lies an unstable fixed point with
the characteristics of a second-order phase transition:
the linear coefficient of the specific heat and the stag-
gered magnetic susceptibility diverge!®. Asin the the-
ory of critical phenomena, this fixed point results from
the balanced competition between the two stabl e fixed
points. Thediscovery of thisfixed point raised atempo-
rary controversy, for Monte Carlo computations found
the staggered susceptibility to be finite®®. A very
recent confcrmal-mapping analysis®® has nevertheless
confirmed tlie numerical renormalization group result.

At any rate, the unstable fixed point seems
of limited physical interest, since a more general
renormalization-group study including potential scat-
tering has sliown that the breaking of the particle-hole
symmetry o the Kondo Hamiltonian washes it out!®.

VI1Il. Excisation Properties
A. Computational Procedure

To calciilate ground-state and thermodynamical
properties, the z = 1 discretization of the conduction
band — introduced in Ref. 6—is sufficient. To compute
excitation properties, however, the second discretiza-
tion parameser isindispensable. Asan illustration, con-

sider the impurity spectral density py(c) for the Ander-
son model. For given r, the golden rule gives:

() = { T l(Flesul)28(Ef — B — ) (¢ >0)
PR Z ) Sp (FIEL I P8BS — B +€) (e <0)
(53)
where ¢ is the binding energy, |Q?) the ground state (en-
ergy Eg), and |F) is any eigenstate of the Hamiltonian
(1) (energy EF). Interest in this function arises be-
cause laboratories have direct access to it: for positive
¢, the spectral density is measured by X-ray Photoemis-
sion Spectroscopy (X PS); for negative ¢, by inverse pho-
toemission, or Bremstrahlung | sochromat Spectroscopy
(BIS).

Once the eigenvalues and eigenstates of the Ander-
son Hamiltonian have been computed by the iterative
procedure in Section |V, it is a simple matter to com-
pute the sums on the right-hand side of Eq. (53).
Nonetheless, given the discretization of the conduction
band, only discrete energy differences E% — E§ sat-
isfy the energy-conservation condition imposed by the
delta function. The golden rule, which describes tran-
sitions to a continuum, is inapplicable. Should one in-
sist on calculating the spectral density from Eq. (53),
spiked spectrastrongly dependent on the discretization
parameter A and bearing no resemblance to experimen-
tal data would result.

Early attempts to improve such computations em-
ployed convolutions on the logarithmic energy scale.
Two convolution functions have been proposed, both
of width InA, equal to the separation between suc-
cessive energies in Figure 3: (i) a box%%, and (ii) a
Gaussian®h%2. |n most cases, these procedures were
employed to calculate excitation properties near fixed
points, where they can be justified (see below). Away
from fixed points, however, not only are they unjus-
tified, but they have been shown®' to severely un-
derestimate the spectral density. In particular, since
the impurity spectral densities for the Anderson and
for more complex Hamiltonians exhibit salient features
at crossovers, numerical renormalization group calcula-
tions involving convolutions of their excitation proper-
ties are unreliable, even semi-quantitatively.

The difficulty with crossovers is easily understood.
The discretization in Figure 3 affects only the conduc-
tion band, not theimpurity states. The model Hamilto-
nian issubsequently diagonalized. The resulting eigen-
values and eigenstates are in general combinations of
impurity and conduction states, so that impurity and
conduction states contribute to the discrete spectral
density in Eq. (53). Since the convolution can make
no distinction between impurity and conduction states
and since it is based on the discretization of the con-
duction band, it ends up broadening unduly the impu-
rity levels— broadening them as if they were discrete
conduction states. Near fixed points, where the scaled
Hamiltonian contains no characteristic energies, this
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problem is immaterial; at crossovers, however, where
the impurity levels constitute the characteristic ener-
gies, resonances are invariably widened. Their peak
intensities are proportionally reduced, since the convo-
lution preserves the spectral weight of a resonance. A
study of the analytically soluble U = 0 Anderson model
has shown that with standard choices of the parameters
I’ and ¢;, and either the box or the Gaussian functions,
the convoluted spectral densities at the resonance max-
imum (e = —¢;) can be less than one-half of the exact
result®!.

To avoid such alarming deviations, one takes ad-
vantage of the second discretization parameter. As z
varies from 0 to 1, the discrete energies in Figure 3
run through every conduction energy. With z a vari-
able in that range, the conduction-band continuum is
recovered. Accordingly, the impurity spectral density
is obtained by integrating Eq. (53) over z:

1
p(©= [ eedz, (54)
which yields

prle>0)= Z [(Flesul 2/ |dE/d2l|,_,,  (55)

where& = £(z) = E4—~E§. A similar expression results
for e < Q In numerical computations, the integration
on the right-hand side of Eq.(54) is carried out on a
mesh of ten equally spaced z’s, and the derivative in
the denominator on the right-hand side of Eqg. (55) is
evaluated numerically.

At afixed point, that derivative turns out to equal
-£InA 3. With this result substituted in Eq. (55),
the box convolution®® is recovered, thus providing jus-
tification for that procedure. At crossovers, however,
impurity levels contribute to £; since the impurity en-
ergies are independent of A, the denominator on the
right-hand side of Eq. (55) in general is significantly
smaller than £1In A. Spectral densities calculated from
Eq. (55) can therefore be substantially larger than the
convoluted densities. For U = 0 (and both |¢;|, and T
much smaller than the bandwidth), a straiglitforward
analysis3! shows that

pr(€) = 2/nD)/T + (e +¢5)7), (56)

where T = I'/A, converges rapidly toT as A — 1.
Apart from this multiplicative renormalization of T' 63,
Eq. (56) agrees with the exact result: the spectral den-
sity is a Lorentzian of haf width at half maximum T,
centered at the impurity energy ¢;.

B. Anderson Model

Figure 8 shows three spectrafor the spin-degenerate
Anderson model*®%4. The ordinate is normalized by
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Figure 8.: Spectral density for the spin-degenerate An-
derson model, from Ref. 64. The dots are calculated
densities; the solid lines in(a) and (b) attempt to fit
them with Lorentzians of the indicated half widths at
half maximum. In (c), the central peak is fitted with
Eq. (58), and the satellites with Lorentzians. The
crosses at £ = 0O indicate the exact spectral density
at the Fermi level, calculated from Eq. (57). For
the three cases, ¢; = —0.1D and I' = 0.01D. The
f! -2 splitting A increases progressively from (a) to
(c): A, = —0.050, Ay = 0.005D, and A, = 0.05D.
Thet? — f! resonance in spectrum (a) is pinned at
the Fermi level and narrows into the Kondo resonance
as A grows and the impurity occupation approaches
unity (Kondo limit). The f! — f° resonance, peaked
at € & |es|, grows with A, as does the f! — 12 reso-
nance, peaked at e= - A.

the maximum density for the U = 0 model, p*** =
2/(xT) [see Eq (56)]. The spectra have been com-
puted for ¢, = —0.1D and T' = 0.01D, and for three
splittings between the 12 and f! impurity configura-
tions: (a) A = —0.050 (corresponding to Coulomb re-
pulson U = 0.05D), (b) A = 0.005D (U = 0.105D),
and (c) A = 0.05D (U = 0.150). The parametrical
choice |e;| > T excludes the f° configuration from
the ground (initial) state. In (a), modest Coulomb
repulsion, the ground state occupation ny is approxi-
mately 2. Anenergy £ = — A is necessary to remove an
electron from the impurity. Phenomenoclogically, this
Hamiltonian is equivalent to an uncorrelated Hamilto-
nian with impurity energy e; = —0.05D. According to
Eq. (56), then the spectrum should comprise a reso-
nance with half width at half maximum T, centered at
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E=—A=(.05D, in agreement with Figure 8(a).

As U increases, however, thissingle-particle descrip-
tion fails. For A ~ 0, so that |A] < T, the f! and
i2 configurations are essentially degenerate, and for
les] > € > T the model is in the valence-fluctuation
regime, near the valence-fluctuation fixed point. Here,
the ground state combines the f* and f 2 impurity con-
figurations, with two consequences: first the photoemis-
sion f! — f° givesrise to the broad resonance centered
approximately at the binding energy € = 0.1D = —¢;.
Since the final state in this transition has fwe decay
channels (f° — f1 and f° — f1), this peak is twice
as broad as the onein Figure 8(a) (which has asingle
decay chanriel, f! . 2). Compared to the maximum
in thefirst plot, the peak density issignificantly smaller
both because the resonance is broader and because the
final impurity state (f?) is nondegenerate; while the
f2 — f! deasity can reach unity on the vertical scale,
thespectral density for an f1 — f° transition can never
exceed 0.25.

The secend significant difference hetween plots (a)
and (b) is the position of thef2 — f! maximum. In
the valence- luctuation regime, as Section VI E pointed
out, the splitting A between the f! and t? configura-
tions is renormalized to A* [Eq. (43)]. In particular
(see Figure 7) the parametrical choices in Figure 8(b)
make A* &~ —5 x 1073 D. The positive binding energy
¢ = —A* —not the negative energy ¢ = —A—is in-
deed where 1he sharper resonancein Figure 8(b) peaks.
Careful insp:=ction of the plot reveals yet another many-
body effect: thefitting of the calculated densities (filled
circles) with a Lorentzian of half width at half maxi-
mum T' (solil line) isinferior to the onein Figure 8(a);
the resonance has narrowed. AsU and A grow further,
the f? — f! resonance narrows further to a width A*,
its peak pinned to the Fermi level. Alternatively said,
the model eriters the Kondo regime.

The signature of the Kondo limit is the sharp reso-
nance at the Fermi level. That its peak intensity should
be p;(0) = 2/#T isthe consequence of arigorous result
by Langreth®®, which shows that

pse = 0) = (2/nT)sin’ 6F, (57)
where ér is the phase shift at the Fermi level, equal to

7/2 in the Kondo limit.

The width of the Kondo resonance is 'k [Eq. (36)],
approximately equal to A*. A decade ago, when in-
sight gained from thermodynamical calculations and
various special results were combined into the first
description of the impurity spectrum for the spin-
degenerate A nderson Hamiltonian?®, a Lorentzian res-
onance was i nagined. The renormalization-group com-
putation in Ref.18 nonetheless found the broadened-
Doniach-Sunji¢®® lineshape

Tk

(58)

A recent quantum-Monte-Caro calculation has been

able to reproduce this result®”.

The square root on the right-hand side is due to
the response of the conduction electrons to the sudden
change of the phase-shift that accompanies the photoe-
mission. At the ground state, the impurity forms a sin-
glet with the conduction electrons around it, and the
phase shift 6 is #/2; this is the frozen-impurity fixed
point. For energies much larger than T'x, however,
the scaled Hamiltonian is close to the local-moment
fixed point, where the two degenerate f! configura-
tions coexist with a free conduction band, phase shift
5=0. For e > I'k, then, thet? — f! transition sub-
jects the conduction-electron phase shift to a variation
A6 = —7/2. As established by Doniach and Sunji¢®®,
the electronic response in a normal metal to a sudden
change of phase shift (caused by the photoemission of
a core electron) makes the core-state spectral density
divergent:

peorel€) ~ (¢/DYAY =1 (e D), (59)

where g is the degeneracy of the conduction states. For

spin degeneracy and A6 = x/2, Eq. (59) gives

peore(€) = (¢/ D). (60)
Equation (58) shows that I'x dampens this singularity,

making the spectral density finite at the Fermi level, as
required by Eq. (57). For a more extensive discussion
of the shape of the Kondo resonance, see Ref. 68.

The satellite peaks in Figure 8(c) are simpler. The
hump centered at the binding energy e = |e;j = 0.1D,
is the already discussed f! — f° resonance. The fea-
ture centered at e = —0.050 = —-Ay . (where A7,
is the largest root of the transcedental Eq. (43), vis-
ible on curve (c) in Figure 7) is the f! . t? reso-
nance, an inverse photoemission. Since the particle-
hole transformation [c; — c} and ¢ — c,t] turns the
latter transition into the former, the two satellites have
the same qualitative characteristics. In special, both
are Lorentzians with half width at half maximum 2T.

The crosses at ¢ = 0 in Figure 8 check the accuracy
of the calculation. The Friedel sum rule relates the
ground-state impurity occupation ny to the Fermi-level
phaseshift 8. Given that the Bethe ansatz determines
ny 13, the zero-energy spectral density can be computed
from Eq. (57). The results, indicated by the crosses,
arein exceilent agreement with the calculated densities.

Brito and Frota’® have calculated the core-level
spectral density for the Anderson model. Following
Gunnarsson and Schonhammer??, they have added to
the Anderson Hamiltonian a core level from which an
electron is photoejected. The resulting core-hole drags
the 4f levels below the Fermi level. In addition, they
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considered a localized potential G representing the elec-
trostatic interaction between the core hole and the con-
duction electrons. Once below the Fermi level, the
initially empty impurity levels tend to absorb charge
from the conduction band; this lowers the conduction-
band energy, the balance being transferred to the out-
going core electron. Thus, if the final-state impurity
energy is ¢; < 0, a resonance centered at ¢; should be
found in the core-hole spectrum, its width proportional
to I'. In addition, the spectral density should diverge
at the Fermi energy according to the Doniach-Sunjié
rule, Eq. (59). The spectra calculated in Ref. 69 for
G = 0 display these expected features. For G # 0,
the low-energy core-hole spectral density still obeys a
power law, but the exponent deviates from the Doniach-
Sunjié expression. It grows linearly with G and becomes
positive—the spectral density vanishing at the Fermi
level—for sufficiently large core-hole—conduction-band
interaction. At the same time, the width and maximum
density of each resonance is significantly dependent on
G. The authors conclude that hybridization parameters
(T') extracted from core-hole photoemission experiment
may conflict with the same parameters extracted from
other physical properties, a conclusion at variance with
the findings of Ref. 27.

Frota™ has computed the dynamical charge sus-
ceptibility for the Anderson model, the Fourier trans-
form of the impurity density-density correlation func-
tion, given by

xe(€) = Y WFIY " chuesulP6(Ep — Ba —<). (61)
F "

His results are restricted to the vicinity of the Kondo
limit, the ground-state impurity occupation approxi-
mately equal to 1. Three calculations are reported, all
for impurity-orbital energy ¢; = —0.1D, and impurity-
level width T' = 0.01D. The f! — f? splitting A
in the three computations are 0.2D, 0.3D, and 04D,
respectively. If T were zero, the two-fold degenerate
ground state would contain only the f! impurity con-
figurations. The spectrum of yx. would then consist of
a single line at the Fermi level, corresponding to the
final-state impurity configuration f!. For non-zero T,
the degeneracy of the f! configurations is broken at an
energy € & ['x. The Kondo resonance thus formed car-
ries spectral weight from the f° and f2? configurations;
in the Kondo limit the weight of each configuration is
approximately ' /D. Since the matrix element on the
right-hand side of Eq. (61) projects the fO configura-
tion out of the ground state, one would then expect the
spectrum of x, to comprise a resonance of width pro-
portional to I'k at the Fermi level, corresponding to the
final-state impurity configuration f!, and a second res-
onance, with much smaller spectral weight, at ¢ = A,
corresponding to the final-state configuration f2.
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The results in Ref. 70 disagree with these qualita-
tive considerations. A resonance near € = A (final-state
configuration f2) is found, but its spectral weight, pro-
portional to 1/A, is much larger than T'x. Moreover,
there is no Fermi-level resonance, a second peak being
instead found near € = |¢;| (corresponding to final-state
configuration f°), with weight comparable to that of
the fZ maximum. In contrast with the rounded max-
ima in Figure 8, the resonances peak at cusps. These
are intriguing results, which seem to call for further

study of Eq. (61).

C. Tunneling Problem

An outline of the problem of computing the core-
hole spectral density for a normal metal has been pre-
sented in Section VIII B. In 1970, following the solu-
tion of the x-ray absorption problem by Mahan’! and
by Nozieres and De Dominicis’?, Ref. 66 obtained the
asymptotic expression (59). One year later, Miiller-
Hartmann et al.”® calculated the spectral density for
an array of N, core levels. In the single site problem,
the final-state core-hole interacts with the conduction
electrons. In the N.-site problem, the core-hole inter-
acts with the conduction states around it and can hop
to a neighboring site. The calculation in Ref. 73, on the
basis of a bosonization of the model Hamiltonian, con-
cluded that the recoil of the core-hole washes out the
infrared divergence of the spectral density and leaves
spectral weight at the Fermi level.

Beyond the interest raised by this approximate re-
sult, the tunneling of a hole in a metallic environment,
pertinent to a variety of physical systems, has received
a great deal of attention”™~7®. It has long been rec-
ognized that the problem encompasses a competition
between energy scales, the characteristic energy being
set by the effective tunneling matrix element (or ampli-
tude) t*77. For energies much larger than ¢*, the tun-
neling amplitude can be neglected, and the single-site
approximation is adequate. This regime has been ex-
tensively studied. For energies comparable to, or much
smaller than ¢*, by contrast, the problem has been the
object of very few studies?61,

Recent numerical renormalization-group calcula-
tions have shed light on the N, = 2 problem. Ap-
parently distant from the N, — oo limit, the two-core-
levels Hamiltonian nevertheless exhibits the qualitative
features separating the multiple-site model from the
Doniach-Sunji¢ model. In special the core-hole poten-
tial renormalizes the tunneling matrix element and two
fixed points are found: one for energies ¢ > t*, the
other for € < t*.

With N; = 2 and the coordinates origin positioned
halfway between the sites, the model Hamiltonian con-
serves parity with respect to exchange of the impurity
positions. As in the two-impurity Kondo problem, even
(fne) and odd (fno) Lanczos operators are defined, pro-
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jected on which the spinless model Hamiltonian is

Hy = :: 61Z'A(fth,ofn+1,o - fg,efn+1,e + H.c)
—(1/2)i(dlde - did,)
+GI(1+ S) L, foe + (1 = S)fL. fool(ded! + d,dl)

—G(1 - 8 (fl.foo T H. c)(dld, T H.c), (62)

where S = sin(kr R)/krR (R is the distance between
the twosites), and d. {d,) annihilates an electron at the
even (odd) linear combination of the two core states:
d, (d,) is the Fermi operator for the bonding (anti-
bonding) state constructed out of the core states.

This Hamiltonian has two fixed points!”: for t = 0,
the occupaticns of the site operators dy = (d, +d,)/v2
and dy = (d. - d,)/V/2 are conserved. For a single core
hole, either d{d1 =0and dﬁdz =1 (core hole at site 1)
or d{dl =1and dgdz = 0 (core hole at site 2). Pro-
jected on eacli of these two subspaces, the model Hamil-
tonian is equivalent to that of the single-site model —
a single-particle Hamiltonian in which the conduction
states are phase shifted by 6 = tan~!(-7pG). This
fixed point (rore precisely a line of fixed points, since
each potential G defines a fixed point) is caled the
atomic-orbital fixed point.

For t — o3, on the other hand, the second term on
the right-hand side of Eq. (62) forces the anti-bonding
core orbital t> be vacant, so that dtd, = 0 and did, =
1. With this, the last term on the right-hand side of
Eq. (62) vanishes, which decouples the even conduction
band channel from the odd one. Two separate sets of
conduction states result: an even one with phase shift
6, and an odd one with phase shift é,. Thisis referred
to as the molecular-orbital fixed point.

Ref.17 has computed the even and the odd spectral
densities for the Harniltonian Eq. (62), defined as

pp(€) = O [(Fldp|Q)*6(Er — Ea ~¢),  (63)
F

with p = e (even) and p= o (odd), respectively.

The resulis show that, for large ¢, the two spectral
densities coircide, indicating that the scaled Hamil-
tonian is near the atomic-orbital fixed point—where
states of opposite parities are degenerate. At small en-
ergies, however, the even and the odd spectral densities
are markedly different. Both follow power laws,

pp(€) ~ (¢/ D)1, (64)

but while the exponent for the odd density is the
Doniach-Sunji¢ expression

Qo = (‘56/”)2 + (60/7.")2 ) (65)
the exponent for the even density has a inodified form

ae = (8e/m = 1)2 4 (6,7 + 1)%. (66)

To interpret this result, the authors observe that, ac-
cording to the Friedel sum rule, each term on the right-
hand side of the Doniach-Sunjié¢ expression (65) is the
square of the cliarge piled up around the impurity in
each conduction-band channel”™. Equation (66) then
indicates that one electron has been transferred from
the even to the odd channel.

Such a transfer is indeed required by symmetry. In
the initial state, both impurity orbitals are occupied.
In the final state, at low energies, the hole must be
at the anti-bonding (odd) orbital. The initial and final
impurity states have therefore opposite parities, and the
matrix element (F'|d, |Q?) will therefore vanish unless a
cross-channel electron transfer in the conduction band
reverses the parity of thefinal state.

The net result of all thisis a divergent odd spectral
density [the exponent @, — 1 on the right-hand side
of Eq. (64) is always negative] and a vanishing even
spectral density (theexponent «, — 1is positive) at the
Fermi level. The N; = 2 spectral density, in contrast
with the conclusions of Ref. 73, is singular at the Fermi
level; moreover, there is no spectral weight at € = 0.

In the crossover region, the odd density shows no
structure, but the even density 1s strongly peaked at an
energy t*, which defines the effective tunneling ampli-
tude. The numerical values obtained for this quantity
for a variety of parametrical choices™ are in excellerit
agreement with the exact expression of Y amadaet al.”®.

0.5

o.l i~

0.0 1 I H s 1 1 |
0.00 0.0t 0.02 0.03 0.04 0.05
/D

Figure 9.: Tunneling rate for core hole in two-site
model. The rate A isgiven by Eq. (67). The bare tun-
neling matrix element t and the effective matrix element
t* areindicated along the energy axis. The latter iscal-
culated from the analytical expression in Ref. 76. For
€ > t*, the scaled Hamiltonian is close to the atomic-
orbital fixed point, whose properties mimic those of the
single-site Hamiltonian. For ¢ < t*,it is close to the
molecular-orbital fixed point, in which the impurity an-
tibonding orbital is energetically inaccessible.
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A study more faithful to the tunneling problem pro-
pounded by Kondo™ has been carried out by Frota and
Mahan®C. Instead of the spectral density, they have cal-
culated the frequency dependent tunneling rate

A() =Y (Fldlds|Q)P6(Ep — Er —¢),  (67)
F

where |Q) is the ground state of the one—core-hole sub-
space. If G were zero, for positive ¢ the matrix element
on the right-hand side would be non-zero only with

|F) = dfjQ), (68)

where |€2.) is the conduction-band ground state. In this
case, the right-hand side of Eq.(67) would consist of a
delta function at € = ¢.

For non-zero core-hole potential, Figure 9 shows
that the spike shifts to ¢ = t*, the effective splitting
between the bonding and the anti-bonding levels, and
broadens asymmmetrically. On the high-energy side,
€ > t*, near the atomic-orbital fixed point, the tunnel-
ing rate reflects the reaccommodation of the conduc-
tion electrons to the sudden change of potential that
accompanies the transition of the core hole from one
site 1 to site 2, an effect analogous to the infrared di-
vergence of the spectral density in the single-site prob-
lem. Since this is the regime accessible to perturbation
theory, from various analyses™"® A(¢) is expected to
grow as a power of (D/¢). Figure 9 agrees with such
predictions.

For ¢ & t*, close to the molecular-orbital fixed
point, the anti-bonding orbital is energetically inacces-
sible. During the crossover, therefore, the tunneling
rate is drastically reduced. The peak energy in Fig-
ure 9 coincides with the maximum of the even spectral
density calculated in Ref. 17.

IX. Conclusions

The previous sections have examined the physical
content of the renormalization-group solutions of vari-
ous problems, only casual attention being given to other
methods. It is now time for a more critical evaluation
of the numerical renormalization group procedure, time
to compare it with the other approaches, to expose its
limitations, and to appraise its potential for future de-
velopments.

The theory of localized excitations in metals in-
cludes now a number of reliable alternatives to the
renormalization-group approach, to which each of them
is superior for specific applications. In particular,
for the calculation of thermodynamical properties of
single-impurity models, the Bethe ansatz®!? is unri-
valed. The 1/N-expansion methods - the slave-boson
approach®!, the non-crossing approximation®?, and
the Gunnarsson-Schonhammer variational method?”,
among others!® ~ have a wider range: they cover ther-
modynamical and excitation properties. In exchange
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for the rigor of the Bethe ansatz, they offer mathe-
matical simplicity. These methods have demonstrated
the low-energy photoemission peaks observed in such
valence-fluctuation compounds as CeAls to be Kondo
resonances, which has explained a long-standing puz-
zle in the theory of the rare earths?”. They neverthe-
less have limitations: plain spin-degeneracy is outside
their reach, and in spite of earnest attempts to analyze
multiple-impurity or periodic systems, the results they
have yielded are far less satisfactory than the solutions
of the single-particle models®?.

The quantum Monte-Carlo method?:67:34 is able to
calculate thermodynamical and dynamical properties
and to deal with multiple impurities and lattice sys-
tems. Nonetheless, it is somewhat limited by the “sign
problem”’, which has only been satisfactorily circum-
vented for particle-hole symmetric problems. Also, al-
though it can reach relatively low temperatures (e. g.,
temperatures an order of magnitude smaller than the
Kondo temperature for typical choices of the Anderson-

" model parameters), its inability to probe the ground

state is in certain cases a serious shortcoming—one that
can perhaps explain the failure of the method to find
a divergent susceptibility at the unstable-fixed-point
two-impurity Kondo Hamiltonian®3.

Still unknown are the limitations of the most re-
cently developed method, that of conformal mapping!®.
Problems analysed so far have been restricted to the
vicinity of fixed points, but extensions are likely to
appear. Apart from being elegant and able to calcu-
late thermodynamical and dynamical properties, that
technique is attractive because it has fundamental
concepts and structures—e. g., fixed points, relevant,
operators—in common with renormalization-group the-
ory. As a consequence, tandem calculations, the nu-
merical procedure checking hypothesis of the analytical
one, the latter checking the accuracy of the former have
proved fruitfui®3.

This consorting of two procedures finds parallels
in the relationship between the renormalization group
and the other methods in the theory of strongly cor-
related systems. The numerical renormalization group
method has contributed decisively to the solution of a
list of problems headed by the calculation of the physi-
cal properties for the Anderson Hamiltonian®®. In each
case, the procedure described in Section IV has un-
raveled the physics of a model and established bench
marks—which later provided checks on the accuracy
of other numerical methods and served to support as-
sumptions in analytical methods. In this, three charac-
teristics of the renormalization-group calculations have
been essential: (1) the theory of the renormalization

_ group identifies fixed points and allows perturbative ex-

pansions in their vicinity; with them, large fractions of
the temperature or energy axes can be scanned analyti-
cally, although numerical analysis is needed to treat the
crossovers; (i1) the approximations involved in the nu-
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merical procedure are fully controllable, the discretiza-
tion of the conduction band controlled by the parameter
A and theinfrared and ultraviolet truncations needed in
the numerical diagonalization controlled by the number
of states kept; (iii) the procedure is uniformly accurate
over the parametrical space of the model, so that the
deviations in the calculation of a given property at a
given energy or temperature can be estimated from an-
alytical computations for trivial choices of the model
parameters.

Given ttese assets, one can imagine that the tech-
nique here surveyed will continue to do groundwork for
other methods. The central obstacle facing applications
has been th: exponential growth of the computational
cost with the number of electronic degrees of freedom.
Thisdifficulsy islesssevere than it used to be, since Ref.
86 has shown that the generalized procedure in Section
IV alows accurate calculations with A as large as 10;
with existin;; computer resources reliable computations
of thermodynamical as well as dynamical propertiesfor
two-impurity models are now feasible. Broader gener-
alizations are nonetheless needed to extend the method
to larger cliisters and, most importantly, to periodic
systems. Generalizations with these purposes are cur-
rently under study.
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