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Tlie numerical renormalization group approach to  the computation of physical properties of 
itr purities in metals is reviewed. The physical basis supporting the mathematical procediire 
is discussed and illustrated with a simple example: the numerical diagonalization of the 
analytically soluble U = O Anderson impurity Hamiltonian. Applications of the method 
aiined a t  determining (i) the fixed-point structure, (ii) the thermodynamical properties 
and (iii) the excitation properties of impurity Hamiltonians are surveyed. The method is 
compared with alternative approaches in the theory of localized excitations in metals. 

I. Introduction 

The intera:tion of a localized orbital with the con- 
duction states in a metal raises intriguing questions. 
Studies of dilute magnetic alloysl first called attention 
to such intera'ztions, but more recently it has become 
clear that the j  dominate the physics of chemisorption2 

and of a list of materials including valence-fluctuation3 
and heavy-ferniion4 compounds, and the superconduct- 
ing oxides. I t  was early understood that ,  due to  the in- 
terplay between correlation in the localized orbitals and 
their coupling to  the conduction bands, measurements 
a t  different enc,rgy - or time - scales may yield qualita- 
tively different physical interpretations. For example, 
a t  room tempc:rature, the impurity contribution ximp 

to tlie magnetii: susceptibility of a dilute CuFe alloy fol- 
lows tlie Curie law characteristic of free-Fe d orbitals. 
In the Kelvin i.ange, however, as the temperature T is 
lowered, the product Tximp approaches zero, which in- 
dicates that  th r  magnetic moment has been quenched. 
Given the dilution of the impurities, the conflict be- 
tween the two physical pictures cannot be attributed 
to phase transitions. When such discrepancies were 
first found, they seemed puzzling, and single-particle 
concepts appeared inadequate. 

To the theorist, the coupling of the localized or- 
bitals to  the extended states posed yet another chal- 
lenge. Traditicnal perturbation techniques proved in- 
applicable and .jpecial methods - in most cases adapted 
from part,icle physics - had to  be developed to  handle 
the strongly correlated electrons. That  they were nec- 
essary, it was iealized in the early seventies5, but the 
first quan t i t a t i~e  acliievements were reported only in 
1975. 

Iii tliat year, severa1 autliors used the numeri- 
cal renorinaliz~.tion group approacli t o  calculate the 

temperature-dependent magnetic susceptibility for the 
Kondo6 and ~ n d e r s o n ~  models for dilute magnetic al- 
loys, as well as the low-temperature impurity contri- 
bution to  the specific heat. The  method identifieJ 
the different high-temperature and low-temperature be- 
haviours of the impurity magnetic moment with dif- 
ferent fixed points of a renormalization-group transfor- 
mation, thus solving the puzzle formed by the experi- 
mental data. Uniformly accurate over the parametrical 
spaces of the models, the procedure moreover provided 
a unifying view that gave proper perspective to  previous 
theoretical results, such as the Schrieffer-Wolff canon- 
ical transformation of the Anderson Hamiltonian into 
the Kondo Hamiltonian '. 

In the last decade other approaches, analyticalg-l1 
or n ~ m e r i c a l ' ~  ones, have fully born out those results 
and extended them t o  more complex impurity Hamilto- 
nians. Unfortunately, each of these latter methods has 
proved fruitful only in certain applications. The Bethe 
ansatz, for instance, has thoroughly surveyed the ther- 
modynamical properties of a number of single-impurity 
~ a m i l t o n i a n s ~ ~ ' ~ ,  but it has been much less succesful 
in dealing with dynamical properties and with impu- 
rity clusters. In view of such shortcomings, interest in 
the numerical renormalization group method has been 
continued, and the procedure has been extended to di- 
agonalize two-impurity H a m i l t ~ n i a n s ' ~ - ' ~  and to  cal- 
d a t e  excitation properties17p18. 

This review is dedicated to  the numerical renormal- 
ization group. The  problerns it has solved are exam- 
ined, its limitations are indicated, and the perspectives 
for applications to  more complex problerns discussed. 
Emphasis is placed on a particular aspect of the proce- 
dure: its ability to  associate fixed points with a given 
Hamiltonian and thus to  relate the physical properties 
of the model to special limits transparent to  physical 
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interpretatiori. 
Nine sections constit.ut,e t,his paper. Sect,ions I1 and 

I11 discuss the physical foundation of the mathematical 
procedure. The  general concept of scale invariance and 
its application to  the metallic environment enclosing 
the impurities is examined. In Sect.ion IV, the proce- 
dure is outlined. The approximations - a11 of which are 
fully controllable - needed t o  make a model Hamilto- 
nian numerically tractable are discussed. As an illus- 
tration, Section V diagonalizes the U = O Anderson 
Hamiltonian. 

The  next three sections review the three classes 
of results the numerical renormalization group method 
has produced. Section VI surveys computations of ther- 
modynamical properties, Section VI1 discusses diago- 
nalizations of model Hamiltonians, and Section VI11 de- 
scribes calculations of excitation properties. The final 
Section IX contains a brief evaluation of the approach 
and compares i t  with other methods. 

11. Experimental Motivation 

The first signals that  the competition among energy 
(or time) scales can dominate the physics of impurities 
in metals came from the lab~rat~ory.  In retrospect i t  
is easy today to  identify elements of scale-invariance 
breaking in a variety of experimental data,  an example 
being the different magnetic moments of Fe in Cu at  
high and a t  low temperatures. In certain cases, how- 
ever, the signals were so clear that the classification of 
the data  into energy (or time) regimes was suggested a t  
once. The  most striking example is that of the valence- 
fluctuation compounds. 

In the seventies, valence fluctuations were observed 
in a series of compounds of the lanthanides Ce, Sm, 
Eu, T m ,  Yb, and of the actinide U .  An often-quoted 
example is SmS, a semiconductor a t  amospheric pres- 
sure that  turns metallic a t  hydrostatic pressures above 
6 kbar 19. In solids, the samarium ion is generally found 
in one of two valence states: Smt2 (4 f 6  configuration) 
or Smf (4 f configuration). Hund's rules associate 
no magnetic moment with the forrner f-leve1 configu- 
ration and approximately one Bohr magneton with the 
latterZ2. The ionic radius of Sm+2 is 1.14A, signifi- 
cantly larger than the 0.96 A of Smt3. At atmospheric 
pressure, the valence of the samarium ion in SmS is +2. 
The traiisition to  the metallic phase is accompanied 
by a reduction to  an ionic radius intermediate between 
those of Sm+2 and Smt3. This reduction might be at- 
tributed t o  a valence change, the pressure having forced 
part of the ions into the higher-valence, smaller-volume 
state. This seems indeed confirmed by x-ray photoemis- 
sion spectra20, which can be divided into two spectra 
separated by several eV: one characteristic of the 4f6 

configuration, the other characteristic of the 4f5 con- 
figuration. 

Nonetheless, the isomer shift measured with 
Mossbauer spectroscopy shows that the ionic valence, 

uniform throughout the sample, lies between $2 and 
$3: instead of the two shifts characteristic of the 4f6 

and of the 4 f configurations, the Mossbauer spectrum 
for SmS shows a single shift between themZ1. Together, 
the two sets of data-photoemission and isomer shift- 
suggest that the valence of each Sm ion fluctuate be- 
tween $2 and $3 a t  rste rf of, say, 1012s-1. The 
characteristic rate rerp of the experimental technique 
(in spectroscopy, the characteristic rate is simply the 
typical width of a resonance divided by Planck's con- 
stant) must then be compared with rf. If it is much 
larger than r f ,  then each ion will be photographed in 
one of the two integer-valence states, part of them being 
pictured as Smt2 and the rest as Smt3. This explains 
t,he photoemission spectra, for their characteristic rate 
is of the order of 1015 S- l ,  much larger than rf. On the 
time scale of the fluctuations, photoemission is fast. 

By contrast, Mossbauer spectroscopy involves slow 
meaçurements, with a characteristic rate of the order 
of 10's-', significantly smaller than rf. During the 
emission of the gamma-ray, the ion fluctuates several 
times between the two configurations, the result being 
an intermediate isomeric shift. One sees, therefore, that 
rf divides the rate, or energy axis into two regimes: the 
fast and the slow domains. 

Tha t  the same division characterizes the energetical 
dependence of other properties, i t  is shown by the sus- 
ceptibility plots23 for three Sm compounds in Figure 1. 
In SmTe and in SmS a t  P = 0, the samarium ion is 
divalent; in SmPd3, it is trivalent. The  susceptibility 
plot for the latter shows a Curie behavior, a tempera- 
ture dependence that  is expected, given the magnetic 
moment of the 4 f configuration. For the former two, 
the weakly temperature-dependent susceptibility is due 
to  low-lying excited statesZ2. 

Compare those three curves with the plot for SmS 
under pressure. At each temperature T, the exchaiige 
of temperature with the thermal reservoir occurs at the 
rate r* = k B T / h ,  which is then the characteristic fre- 
quency of a thermodynamical measurement. At high 
temperatures (T > 50 I(), tlie thermal rate r s  is much 
larger than r f ;  like the photoemission spectrum, the 
susceptibility is a statistical average between x for the 
4f6 and the 4f5 configurations and hence must lie be- 
tween the two. The SmS (P > 7.5 kbar) plot in Figure 
1 confirrns this reasoning. 

At low temperatures (T « 50 K) ,  on the other hand, 
r~ is smaller than rf. Now, as in the Mossbauer mea- 
surement, the Sm ion has time to fluctuate between 
the two valences during a measurement; i t  is therefore 
found in a quantum state that  is a linear combination of 
the 4 f and 4 f configurations. The  measured suscepti- 
bility is a quantum average - i. e., an average including 
interference - between the two valences and needs not 
be intermediate between the Sm+' and Sm+3 suscepti- 
bilities. Figure 1 bears this out,  too. 

As this example shows, the concept of competi- 
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efficienk y a t  moderately low temperatures (typically, 
T > 1 K ) ~ "  the highly-massive low-energy quasiparti- 
cles in such systems liave been named heavy fermions. 
In disparity with normal metals, for which y is of the 
order of lmJ/molK2 2 2 ,  the coefficient for a heavy- 
fermion compound is larger than 100 mJ/mol K2: for 
CeCu2Si2, the first-discovered heavy-fermion system, 
y = 1 000 mJ/mol K2. Such enormous y's, as shown 

srns (~>7.5  k bar)  
in Section VI, are expected of strongly correlated im- 
purities in metals, and indeed the physical properties 
of heavy fermions measured at moderately low ener- 
gies are well described by the Anderson single-impurity 

O 100 200 300 Hamiltonian, the 4 f orbitals of the lanthanide or the 5 f 

T (K) 
orbitals of the actinide represented by impurity levels. 

Nonetheless. the rare-earth ions are not im- 

Figure 1.: Susceptibility (in esu/mole) as a function 
of temperature for three Sm compounds, adapted from 
Ref. 23. In SniTe and SmS at zero pressure, the Sm ion 
is divalent (41 '~ configuration). In SmPd3, it is triva- 
lent (4f5) ancl its magnetic moment accounts for the 
Curie behavio-. At pressures above 6 kbar, the Sm ion 
in SmS is in a 1  fluctuating-valence state. As discussed 
in the text, at  high temperatures ( T  > 100 K), the sus- 
ceptibility is a statistical average between those for the 
4f6 and the 4 f 5  configurations and must lie between 
them. At low temperatures ( T  < 20 K) ,  however, the 
susceptibility rneasurement probes a linear combination 
between the 4.F6 and 4 f configurations. 

tion between cnergy scales is germane to the valence- 
fluctuation prcblem and more extensively to  the prob- 
lem of strongly correlated electrons in metals. It should 
not come as a surprise, therefore, that a numerical 
method exploring scale invariance sliould be accurate or 
that it should provide physical insight even into models 
whose physical properties technical difficulties prevent 
it from compul ing. 

Valence fluctuations, for example, are described by 
the Anderson impurity m ~ d e l ~ ~ ,  whose Hamiltonian 
was diagonalizcd and whose thermodynamical proper- 
ties were calculated by the numerical renormalization 
group method sver a decade ago7925. At the time, the 
numerical protedure that computes excitation prop- 
erties still undrveloped, and the photoemission spec- 
trum could not be calculated. Nevertheless, on the 
basis of the insight provided by the numerical diag- 
onalization of i,he model Hamiltonian combined with 
a few exact results and sum rules, ~ i l k i n s ~ ~  provided 
a semi-quantitziive description of the spectrum, later 
perfected by I / ~ - e x ~ a n s i o n ~ ~  and renormalization- 
groupld compu ;ations. 

Another example is the heavy-fermion problem. 
Certain compounds of lanthanides (e. g., CeCu2Si2, 
CeAl3, YbCuAl) or actinides (e. g., UBe13, UPt3, 
NpBei3) show anomalously high linear specific-lieat cc- 

purities2g. They are part of the lattice, and this has 
clear experimental consequences: at sufficiently low 
temperatures (typically, T < 1 K) the heavy-fermion 
systerns deviate from the impurity behavior, becoming 
superconductive or antiferromagnetic. The different be- 
haviors at moderately low and at very low temperatures 
define two temperature regimes and point to  a charac- 
teristic energy separating them, of the order of kgT*, 
wliere T*, the coherence temperature, is of the order 
of 1 I<. Clearly, kBT* defines an effective coupling be- 
tween f levels on neighboring sites. For T » T*, that 
coupling is negligible, and the f orbitals behave as in- 
dependent impurities. For T < T', on the other hand, 
the intersite coupling dominates the physics. In Section 
VIII, a simple model will provide a concrete illustra- 
tion of these concepts. Although too crude to describe 
even qualitatively the physical properties of the heavy 
fermions, that model helps one to  understand the suc- 
cess of the impurity H a r n i l t ~ n i a n s ~ ~ .  

These exarnples serve as motivation for a scaling 
analysis, but fail to  identify the characteristics of a 
metal that make one such approach productive. The 
following section searches for those characteristics and 
show that tlie energy scale invariance of the conduction 
band accounts for the achievements of the numerical 
renormalization group method. 

111. Theoretical Motivation 

A. Scale Invariance 

The theory of the renormalization group explores 
the scaling properties of physical systems. Many sys- 
tems are invariant under scale transformations. In con- 
densed matter physics, the most widely known example 
is the ferromagnet at criticality. At any ternperature T ,  
distances in a ferromagnet can be compared with two 
characteristic lengths: the lattice parameter a and the 
correlation length c .  An experimental technique prob- 
ing a sample at the length scale L will in general yield 
results dependent upon the ratios L / a  and L/<. At 
the critica1 temperature T,, the correlation length di- 
verges, and the latter ratio vanishes. If in addition L is 
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large on the atomic scale, then Lla  is essentially infi- 
nite, and two measurements taken a t  the length scales 
L  and L' = AL (wliere A is any number larger than 
unity) should yield qualitatively the same results. By 
contrast, a t  temperatures different from T, the correla- 
tion length is finite, so that the outcomes of two mea- 
surements a t  the scales L < E and L' > E will in general 
show qualitative differences. 

In renormalization-group analyses of a model for the 
ferromagnet, the scaling L  --+ AL is constructed mathe- 
matically, which defines a renormalization-group trans- 
forrnaiion. A temperature T is then considered, and 
the transformation is applied repeatedly to  the model 
~ a m i l t o i i a n  H. If one starts out with L  = L. = a ,  then 
after n transformations the system is being probed a t  
the scale L, = (A)na. 

As n increases, the Boltzmann weight of any given 
eigenvalue of the Hamiltonian will in general change. 
A schematical plot of the n dependence of one such 
weight for a temperature somewhat below the criticai 
temperature appears ir1 Figure 2. The plot divides the 
horizontal axis into four domains with boundaries a t  
n = N1, N2, and N3. For small n tlie weight shows a 
weak n dependence, which dies out as the index grows. 
As n becomes larger than N1, the Boltzmann weight re- 
mains nearly invariant for severa1 transformations. As 
it a.pproaches N2,  however, it begins to grow out of that 
plateau; between n = N2 and n = N3,  it rises rapidly, 
to  saturate at a higher level. 

Figure 2 . :  Dependence of Boltzmann weight W = 
exp - E / k B T  on the renormalization-group transforma- 
tion index n (schematical). E is an eigenvalue of t,he 
model Hamiltonian, and n is the number of times the 
model has been subject to the scaling transformation 
L  - AL. As discussed i11 the text, the two plateaus, 
between n = Nl and n = Nz,  and for n > N3, re- 
spectively, are associated with fixed points. The rapid 
change between N2 and N3 is a crossover. 

Scaling concepts explain this evolution. In the first 
transformations, the length scaIe L, is comparable to  
the lattice parameter a. The Boltzmann factor, as well 
as the physical properties of tlie model, are therefore 

expected to  depend on the ratio L,/a. which explains 
the initial n dependence in Figure 2. With growing L,, 
that  ratio becomes larger and larger; as it  approaches 
infinity, it influences less and less the Boltzmann weight. 
The lattice parameter is an irrelevant length, a feature 
of the model that becomes immaterial for sufficiently 
large n.  

For n = Ni ,  the lattice parameter negligible in com- 
parison with L,, the plot in Figure 2 reaches the first 
plateau. Here, albeit much larger than a ,  the length 
x a l e  L, is much smaller than the correlation length [. 
If were infinite, there would be no length scale, and 
the Boltzmann weight, invariant under scaling, would 
be a jixed point of the renormalization-group transfor- 
mation. For Ni < n < N2,  the weight is close to  that 
fixed point since L,/[ is very srnall. 

As n increases, however, L,/< grows. Eventually, 
for n x N2, the ratio becomes significant and affects 
the Boltzmann weight. In the first plateau (close to 
the fixed point) the coherence length is relevant: its 
importance grows exponentially with n ,  and it drives 
the model away from the fixed point. 

In the crossover region (Na < n < N3), the Boltz- 
mann weight changes rapidly as the ratio L,/[ grows 
from much smaller than unity t o  much larger tlian 
unity. After that ,  less and less significant in compar- 
ison with L,, the correlation length is irrelevant, and 
the weight approaches a second fixed point. 

B. Conduction States 

The physical properties of a metal contaning im- 
purities are markedly different from those of a ferro- 
magnet. In special, the impurities can cause no phase 
transitions. Nonetheless, the two systems have similar 
scaling properties. Figure 2 describes metallic impuri- 
ties as well as it describes the ferromagnet. 

For the metal, the scaling involves energies, in- 
stead of lengths. The  only characteristic energy in a 
metallic conduction band is t,he Fermi energy E F .  The 
pure metal is therefore akin t o  the ferromagnet a t  the 
critica1 temperature, which has a single characteristic 
length scale-the lattice parameter. If the pure metal 
is probed at the energy 6 < E F ,  then its properties are 
qualitatively independent of 6 .  

Impurities, which generally have characteristic en- 
ergies, break this scale invariance. A metal with im- 
purities is analogous to  a ferromagnet somewhat be- 
low (or above) the critica1 temperature. In Section IV, 
a renormalization-group transformation will be intro- 
duced that amount,s t,o the scaling 6 -+ EA, where again 
A is any number larger than unity. Given a model for 
a metal with impurities, one starts out a t  the energy 
60 = E F  and scales down to  the energy E,  = c F / A n .  
At a given temperature T, the Boltzmann weight as- 
sociated with any eigenvalue of the model Hamiltonian 
changes witrh n according t,o the pattern in Figure 2. 
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former must be larger than unity, but is otherwise arbi- 
trary. The latter can be any number between O and 
1. The original definition6j7 of t,he renormalization- 
group procedure makes no reference to z (to recover 
that definition, one must set z = 1 in Figure 3). As it 
will be shown below, however, in calculations of excita- 
tion properties the recently introduced parameter1s~31 
is indispensable. A discussion of the generalized ( z -  
dependent) procedure seerns therefore appropriate. 

The definition of the discretized basis follows the 
prescription spelled out in Ref.6. For each of the 
conduction-energy intervals 2 f € k / D  > 
~ - m - l - z  (m = 0 , .  . . ,a) in Figure 3, a single nor- 

malized Fermi operator a,* is defined, equal to the 
most localized state around the impurity site that can 
be constructed out of the ck's: 

f DA-"- '  
1 -112 a,* = f (1 - A- ) ck dk. (7) 

f D A - m - 1 - z  J 
For the two intervals closest to  the band edges, one 
defines 

The basis of the a* is evidently incomplete with 
respect to the ck. In the following section, the model 
Hamiltonian will be projected on this incomplete ba- 
sis. Justification for this approximation is provided 
by a twestep argument due to Wilson6 and Krishna- 
murthy et These authors first observed that, for 
A -+ 1, the conduction-bmd Hamiltonian projected on 
the basis of the a& is equivalent to the Hamiltonian 
(5). Next, they presented three evidences that ther- 
modynamical properties calculated with A > 1 con- 
verge very rapidly to  the continuum limit: (i) near fixed 
points, where physical properties of model Hamiltoni- 
ans can be computed analytically, the deviation of a 
thermodynamical averags computed at given tempera- 
ture with given A from its continuum-lirnit valiie is pr+ 
portional to  exp(-n2/ ln A); (ii) for special parametric 
choices (see Section V), the Anderson Hamiltonian can 
be diagonalized analytically; when its thermodynamical 
properties are calculated for given A, they again deviate 
from the continuum limit by amounts proportional to 
exp(-n2/ In A); (iii) for parametrical choices impeding 
analytical diagonalization, any thermodynamical aver- 
age (A) calculated numerically at a given temperature 
is found to ha.ve the following A dependence: 

where Ao is independent of A, and c depends only 
weakly on the discretization parameter. Since the pub- 
lication of Ref. 6, a substantial mass of numerical and 
analytical results has accrued on these findings, and in 
Ref. 31 it was found indications that the convergence 

of excitation properties to the continuum limit is even 
faster. Such findings show that calculations carried out 
with, e. g., A = 3 are representative of the continuum 
limit. To check this conclusion by studying the A de- 
pendente of computed physical properties is a routine 
procedure in renormalization-group calculations. With 
this indispensable precaution, the discretization is jus- 
tified. 

B. B asis Tkansformation 

The operators a* and a,* (m  = 0 , .  . . ,oo) form a 
basis onto which the conduction-band Hamiltonian can 
be projected. The projected Hamiltonian is an infinite 
series, more convenient than the continuum in Eq. (5), 
but still unfit for numerical processing. The series has 
to be truncated. 

Before that,  however, attention must given to the 
coupling t o  the impurity. As (3) indicates, Himp-c 
involves the Wannier state f o f i .  In order t o  preserve 
the integrity of the coupling Hamiltonian, the trunca- 
tion must not affect that ferrnionic operator. Accord- 
ingly, prior to being truncated, the discretized Hamil- 
tonian is subjected to a Lanczos t r an~fo rma t ion~~ :  a 
second orthonormal basis of fermionic operators fn,  
(n = 0 ,1 , .  . .) is defined, each a linear combination of 
the a* and a,* (m=0,1,. . . ). Here, f o ,  is the operator 
in Eq. (4)) and the remaining f,, are defined32 to make 
the conduction-band Hamiltonian H, tridiagonal: 

The coefficients E: are det,ermined by solving recur- 
sively the following equation3' : 

where the term within the square brackets on the right- 
hand side is the 2N + 2th power of the tridiagonal ma- 
trix 

. . 
The first term on the right-hand-side of Eq. (11) is the 
function 

Foi N = 0, the matrix 'Hi contains a single element, 
[311]ii = O ,  so that the last term on the right-hand 
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Figure 3.: Logarithmic discretization of tlie conduction band. A must be larger than unity and r must lie between 
O and 1; otlierwise, the two parameters are arbitrary. 

side of Eq. (11) vanishes. That  equation can therefore 
be solved fbr € 6 .  For N > 0, once the €6,. . . , E Z N : ~  
have been calculated, Eq. (12) determines the matrix 
'HN+l, and the right-hand side of Eq. (5) can again be 
computed. On the left-hand side, t,he only unknown is 
E & ,  which can therefore be computed. For large N, it 
can be shovrn31 that  E& decreases exponentially with 
N: 

This conipletes the basis transformation. Eq. (4) is 
substituted for H, in Eq. (1). The result is the model 
Hamiltonian projected on the basis of the operators f n P  

(n = 0 , 1 , .  . .) and cf,: 

C. Truncaticn and Diagonalization 

Equation (15) is in appropriate form for truncation. 
According tc Eq. (14), E Í ,  decays exponentially with n. 
If one is intcrested, for instance, in a thermodynami- 
cal property at  the temperature T, then energies much 
smaller than k B T  are unimportant. I t  follows that the 
infinite series on the right-hand side of Eq. (15) can be 
truncated a t  n = N - 1, where N is an integer such 
that €5 < k13T. 

To be more specific, one reverses the relation be- 
tween N and T .  For given N ,  one defines the energy 

which is appiosimately equal to (t.he symbol DN 
is a reminder that ,  for N = 1, this energy is comparable 
to the half baridwidth D), and chooses the temperature 
T so that  

kBT = D N / o ,  (I7) 

where o is a :<mal1 constant, o = 0.1 for iiistance. This 
guarantees E ; ,  t,o be rnuch sinaller than ~ B T .  

To a good approximation, then, the Hamiltonian in 
Eq. (15) can be written 

n = O  

+ h ~ ( f O , c ~ ~  + H. c.) 

One is now in position to define a renormalization- 
group transformation. To this end, the truncated 
Harniltonian is divided by the factor D N ,  which defines 
the scaled, dimensionless Hamiltonian 

in which the smallest Lanczos coefficient, E & - ~ / D ~ ,  is 
approximately equal to 1. As N grows, new conduction 
terms are added to the truncated Hamiltonian, but the 
scaling ensures that each new term is of the order of 
unity. Thus, if there were no impurity, the smallest 
energies in the scaled Hamiltonian would be indepen- 
dent of N ,  i. e., scale invariant. Since the coupling to 
the impiirity [the second term on the right-hand side of 
Eq. (19)] and the irnpurity terrns (the third and fourth 
terms) grow with N ,  the irnpurity can break that in- 
variance, as anticipated in Section 111. 

Notice that,  in view of Eq. (17), the scaled Hamil- 
tonian is proportional to the exponent H/kgT of the 
Boltzmann factor: 

a feature that simplifies the computation of thermody- 
namical properties. 

Mathematically, the renormalization-group trans- 
formation 7 is defined by the changes H N  undergoes 
as N increases: 
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The form (19) is also appropriate for numerical di- 
agonalization. This iterative procedure starts out with 
N = O,  so that the conduction-band Hamiltonian [the 
first term on the right-hand side of Eq. (18)] vanishes. 
The remaining terrns can be diagonalized analyt,ically 
(Hamiltonians more complex than that of the Anderson 
model may cal1 for numerical computation even at this 
early stage; nonetheless, since the impurity Hamilto- 
nian comprises only a few terms, its diagonalization is 
always a simple numerical exercise). From each eigen- 
value, the smallest one is subtracted, so that a11 energies 
are measured with respect to the ground state. 

The HN=O Hamiltonian is a 16 x 16 matrix, since 
sixteen many-body basis states can be constructed out 
of the operators fo, and cj,. To proceed to N = 1, 
one has to add fl, to  that list. In other words, out 
of each eigenvector 14) of Ho,  four basis states have to 

be constructed: 14, f:t14), fii14), and f!tf~L14) In 
the basis of these states, the truncated Hamiltonian is 
a 64 x 64 matrix that can be diagonalized numerically. 
Again, from each resulting eigenvalue the smallest one 
is subtracted. Out of each eigenvector Iq), four new 

basis states ( b ) ,  f & 1 ~ ) 1  ~ L I P ) ,  and f & f i l k ) )  are con- 
structed. The entire cycle is repeated for N = 2, and 
then for N = 3,  and so forth. 

Clearly, the number of basis states increases in pro- 
portion to 4N. If unchecked, such a growth would 
rapidly exhaust even the richest computational re- 
sources. Practical considerations are therefore neces- 
sary, to restrict the number of states taken into account 
in each iteration. 

As an illustration, consider the computation of a 
thermodynamical property, at  the temperature T .  Ac- 
cording to Eq. (17)) the smallest energy resulting from 
the diagonalization of the model Hamiltonian will be 
of the order of c,;, = akBT,  to which corresponds 
a Boltzmann weight exp(-~, i , /k~T) = exp(-a), ap- 
proximately equal to unity (since a is small). Larger 
energies will be associated with smaller Boltzmann fac- - 
tors. If one chooses to neglect weights below a minimum 
wmin, then energies above a maximum c,,, such that 
~xP(-E,,,/~BT) = wmin can be disregarded. 

The numerical diagonalization determines the eigen- 
values of the scaled Hamiltonian HN. Each of these is 
equal to an energy scaled by A ~ ~ ( ~ - ~ ) / ~ .  In particular, 
the smaI1est scaled eigenvalue, proportional to €,i,, is 
of the order of unity, while the largest eigenvalue that 
must be taken into account is 

In practice, therefore, a band of eigenvalues, 
bounded below by unity and above by E,,,, is consid- 
ered after each numerical diagonalization. If HN were 
a fixed point of the renormalization-group transforma- 
tion, the number of eigenstates between 1 and E,,, 
would be rigorously independent of N. Since H,v is 
generally not a fixed point,, that number may vary with 

N; the variations are nevertheless small, so that ma- 
trices of essentially the same dimensions have to  be di- 
agonalized in each iterations. The computational cost 
grows linearly-not exponentially-with N.  

To further reduce the computational effort, prior to 
each diagonalization the basis states are combined into 
eigenstates of the electronic charge, and spin (and axial 
chargel5)l6, if the model is particle-hole symmetric)- 
which are conserved; this reduces substantially the di- 
mensions of the matrices to  be diagonalized. For the 
spin-degenerate Anderson model, these rneasures re- 
duce the CPU time required for a full diagonalization 
of the model Hamiltonian on a VAX-6400 to a few 
minutes. Models with larger numbers of degrees of 
freedom can be considerably-and often prohibitively- 
more demanding. 

This concludes our discussion of the general aspects 
of the mathematical procedure. As an illustration, Sec- 
tion V discusses the diagonalization of the Anderson 
Harniltonian for €1 = U = O. More interesting results 
are discussed in Sections VI-VIII. 

V. The cj  = U = O Anderson Hamiltonian 

The only quartic term in the Anderson Hamilto- 
nian is proportional to the Coulomb repulsion U .  For 
U = 0, the quadratic Hamiltonian can be diagonalized 
anaIyticallyl. One then finds that the coupling V to 
the conduction band broadens the impurity leve1 to a 
width 

r = T V ~ / D .  (23) 

With c j  = 0, this width is the only characteristic energy 
associated with the impurity. 

The coupling to  the impurity phase shifts the con- 
duction levels. Those removed in energy from €1 are 
not affected, but those in the region Ic - cj  I < I' are 
strongly shifted. In particular, for Ic - cjl < I', the 
phase shift is a/2. 

Consider now the renormalization-group treatment 
of the model Hamiltonian. For vanishing orbital energy 
and Coulomb repulsion, the scaled Anderson Hamilto- 
nian in Eq. (19) becomes 

H~ = I í:(fJfn+l + H c.) 

The i and J. spin indices, labeling states that are de- 
coupled from each other and degenerate, can be disre- 
garded. 

The quadratic form (24) can be diagonalized by a 
straightforward procedure, one that is simpler than the 
iterative method in Section IV C. We rewrite its right- 
hand side as a matrix: 
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where the ve8:tor v is defined by the equality 

and 'H is a (IJ + 2) x (N  + 2) codiagonal matrix whose 
elements are 

and 

X n + i , n + 2  = N n + s , n + i  = f n - I / D N  (n = 1,2 , .  .. , N). 

(28) 
Wh& 'Hn is diagonalized numerically, N + 2 eigen- 

values are foiind. Since HN in Eq. (24) is particle-hole 
symmetric, i. e., it remains invariant under the transfor- 
mation f n  -+ (- f: (n = O,  1, . . .), for each eigen- 
value q there must be a symmetric eigenvalue -v. For 
even N ,  then, the N + 2 eigenvalues form two symmet- 
rica1 groups, half of them being positive and half nega- 
tive. For odd N ,  one must be zero, and the remaining 
ones again form two symmetrical sets. 

Figure 4 shows an example. For clarity, only the 
odd-N patte-n is shown. The pattern for even N is 
analogous (although different). The eigenvalues in the 
figure were calculated for I' = ~ o - ~ D .  The non-zero 
eigenvalues are denoted f f, with j = 1, 2,. . . , (N + 
1)/2, in ordei of increasing absolute value. 

As N groivs, new eigenvalues appear, but the ones 
closest to zero show a clear pattern. After the first few 
N ,  those eig2nvalues stabilize and remain essentially 
fixed until N = 20. Rapid changes follow, but for N > 
25, the eigenvalues again become independent of N.  

This behaviour reproduces the main features of Fig- 
ure 2. In the first plateau ( N  < 20), the scaled Harnil- 
tonian is close to a fixed point, but a relevant energy 
drives it away from it, towards a second fixed point, to 
wliich HN comes close in the second plateau. 

Physicallq, the two fixed points reflect the energy 
scaling invari znce of the conduction band, broken only 
by the broadening r, of the impurity energy by the con- 
duction state:;. For large energies c (i. e., for small N), 
that width is negligible, so that the coupling to the im- 
purity can be disregarded. This approximation reduces 
the model Hamiltonian to  the conduction Hamiltonian, 
which is a fix3d point. 

Tliis interpretation is confirmed by the inset. Here, 
the energies t j ,  associated with the eigenvalues r f  by 
the scaling 

N 
€1 = DN r l ~  , (29) 

are plotted as functions of N .  While the main plot 
shows the $' closest to zero, the inset shows a11 en- 
ergies, only tile ones that are largest in absolute value 
being well resolved. Inspection of the plot shows that 
it reproduces quantitatively the logarithmic discretiza- 
tion of the ccinduction band in Figure 3. C1--arly, the 
energies farthest away from zero are the energy levels 

r = I O - ~ D  
~ 9 3 1  Z - I  

Figure 4.: Eigenvalues of the matrix 'HN, defined by 
Eqs. (27) and (28), for V = 0.01 and A = 3. The eigen- 
values are plotted as functions of (odd) N .  For N = 1 
and 3, a11 eigenvalues appear. For N >_ 5, only the 5 
ones closest to the Fermi level are shown. The dashed 
lines indicate the (odd N) eigenvalues for V = 0, and 
the dotted lines the eigenvalues for V -i m. The in- 
set shows the energy levels-equal to the eigenvalues of 
HN multiplied by the scaling factor DN-W functions 
of N. As N -+ N + 2, two additional eigenvalues c j  

appear close to the Fermi level (for N 2 7, these new 
eigenvalues are so dose to zero that they cannot be 
distinguished from the eigenvalue c, = O on the scale 
of the plot). For increasing N the discrete eigenval- 
ues thus probe of the vicinity of the Fermi energy with 
progressively finer resolution . 

in the conduction band. On the main plot, the dashed 
lines are those levels, scaled according to Eq. (29). 

As N grows, the diagonalization probes progres- 
sively smaller energies c.  Eventually, 6  becomes small 
in comparison with the width I'. At this point, letting 
V -i m in Eq. (24) should be a good approximation. 
The characteristic energy r then diverges, making the 
Hamiltonian HN again invariant under scaling, i. e., a 
fixed point. The dotted lines coming to the right-hand 
vertical axis on Figure 4 coincide with the eigenvalues 
lij of the Hamiltonian in Eq. (24) diagonalized for very 
large V.  Notice that the $ are shifted with respect 
to the eigenvalues for V = O. This is expected: for 
r -t m, a11 conduction levels should be strongly cou- 
pled to the impurity, hence phase shifted by ~ / 2 ;  the 
displacements of the i j j  relative to the eigenvalues for 
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N < 10 reflect this phase shift. 
The numerical diagonalization thus identifies two 

fixed point Hamiltonians, obtained from Eq.(24) by set- 
ting V = O and V = co. First found in Ref. 7, these 
fixed points have been named the free-orbital and the 
f rozen- impur i t y  fixed points, respectively. Due to  the 
differences between the even-N and odd-N patterns, 
the eigenvalue structure of either fixed point is repeated 
under the double transformation I 2 [ H N ]  = not 
under the transformation 7. This evidence that the 
fixed-point Hamiltonians are double-cycled has no prac- 
tical consequences. 

As this discussion of Figure 4 indicates, the 
diagonalization of a model Hamiltonian by the 
renormalization-group approach locates fixed points of 
the renormalization-group transformation. The fixed 
points are usually simple Hamiltonians constituted of 
non-interacting quasi-particles decoupled from impu- 
rity levels. Quite independently from its ability to  
determine thermodynamical or excitation properties, 
therefore, the renormalization-group approach gives in- 
sight into the physical properties of impurity models. 

VI. T h e r m o d y n a i n i c a l  P r o p e r t i e s  

A. Computational Procedure 

The iterative diagonalization of a model Hamilto- 
nian was described in Section . Given a small constant 
a ,  each iteration N corresponds to  a thermal energy 
~ B T  = D N / a  [see Eq. (17)], and the truncated Hamil- 
tonian was divided by D N  to make its smallest eigen- 
values of the order of unity. 

The net result of iteration N is a band of eigenvalues 
ranging from unity to  E,,,-corresponding to energies 
ranging from D N  to  E,,, D N .  The Boltzmann weights 
of the largest energies in this band are of the order of 
~ x ~ ( - - E , , , D ~ / ~ ~ T )  = exp(-E,,,/@), hence negli- 
gible, so that the eigenvalues above E,,, (which are 
not calculated) would contribute insignificar?t,ly to the 
thermodynamical averages. 

The  weights of the smallest energies, on the other 
hand, are of the order of exp(-DN/kBT) = exp(-a). 
Since CY is small, the weights of the (scaled) eigenvalues 
smaller than unity (which are not calculated in iter- 
ation N) are approximately equal to 1, so that those 
eigenvalues can be equated to  zero. For a proof of this 
statement, based on a perturbative treatment of the 
first Lanczos coefficient neglected in Eq. (18) (i. e., of 
the coefficient E ; ) ,  see Refs. 6, 7. 

The iterative diagonalization classifies the eigen- 
states by spin (and by charge). It is then a simple 
matter to  compute the impurity contribution to  the 
magnetic susceptibility, given by 

where the brackets () indicate thermal averaging, S, de- 
notes the z component of the total (impurity plus con- 

duction electrons) spin and S,o that  of a free electron 
gas (i. e., of a pure conduction band), g is the electronic 
gyromagnetic ratio, and p~ is the Bohr magneton. 

Likewise, the impurity contribution to  the specific 
heat is 

where HoN is the scaled Hamiltonian for the free con- 
duction band. 

B. Flow Diagram for the Symmetric Anderson model 

The temperature-dependent impurity susceptibility 
for the spin-degenerate Anderson Hamiltonian (1-3) 
was computed by Krishna-murthy e t  al.7f25. Ref. 7 
considered the symmetric model, defined by the condi- 
tion c f  = -U/2, which makes the impurity-and hence 
the Hamiltonian-particle-hole symmetric, i. e., invari- 
ant under the transformation c t  - c: .  The  asyrnmetric 
model was studied in Ref. 25. 

The flow diagram for the symmetric model is shown 
ia Figure 5 .  Of special interest are the three fixed 
points, indicated by filled squares. Two of them, the 
free-orbital (r = U = c j  = 0) and the frozen-impurity 
(U = c! = 0, and r = co) Hamiltonians, have been 
discussed in Section V. For U = ~j = 0, the flow in 
Figure 5 is restricted t o  the vertical axis. The free- 
orbital fixed point is unstable, so that  even a very small 
width I" will drive the scaled Hamiltonian to  the frozen- 
impurity fixed point, as illustrated by Figure 4. 

I 

FREE-ORBITAL 

Figure 5.: Flow diagram for the symmetric Ander- 
son model. The free-orbital fixed point is the model 
Hamiltonian for vanishing impurity-orbital width r and 
Coulomb repulsion U;  this fixed point is unstable with 
respect t o  r and U perturbations. For r = O with 
U -+ co, the Hamiltonian turns into the local-moment 
fixed point, unstable with respect t o  r perturbations. 
For r + co with U = 0, the Hamiltonian is the (stable) 
frozen-impurity fixed point. 

The third fixed point in Figure 5 corresponds to 
U = -2ej --+ co, while I' = O. Since V = 0, the impu- 
rity is decoupled from the conduction band. Moreover, 
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D. Numerical Results 

Figure 6 shows two illustrative susceptibility curves 
for the symmetric model. In both cases, U = I O - ~ D  = 
- 2 ~ ~ .  For curve I the conduction-band-to-impurity 
coupling is V = lOV3D, giving an impurity-leve1 width 
I' = 3.1 x 10-4D, comparable to U. For curve II, 
in contrast, V = 2.8 x 10-3D corresponds to  r = 
2 . 5 ~  10-5D, much smaller than U. Each plot shows the 
product Tximp as a function of temperature. This pre- 
sentation of the numerical data is convenient, because 
fixed points are identified by plateaus [this follows from 
Eq. (20), which shows that the Boltzmann weights de- 
pend only on the eigenvalues of the scaled Hamiltonian 
H N l  which are independent of N at fixed points]. 

The two plateaus in curve I, the ordinate approxi- 
mately equal to 0.125 for kBT > 10F3D and approxi- 
mately equal to  zero for ~ B T  < ~ o - ~ D ,  correespond to 
the free-orbital and t o  the frozen-impurity fixed points, 
respectively. In this case, r comparable to  U, the scaled 
Hamiltonian never comes close to  the local-moment 
fixed point. For thermal energies large compared to 

or U, the impurity energies are unimportant, a11 four 
impurity configurations are thermally accessible, and 
the average ((S:mp)2) equals 1/8. For thermal energies 
small compared to r, in contrast, only the bonding com- 
bination of the impurity orbital with the Wannier state 
centered a t  the impurity site becomes thermally accessi- 
ble. This being non-magnetic, the product Tximp van- 
ishes. 

In addition to these two plateaus, curve I1 displays 
a third one: for 1 0 - ' ~  < kBT < 10-4D the ordinate 
lies between 0.20 and 0.25. In this range, the scaled 
Hamiltonian is near the local-moment fixed point. At 
that fixed point, only the magnetic impurity configura- 
tions would be thermally accessible, so that ((Simp)2) 
would equal 114. The marginal coupling between the 
impurity and the conduction band pushes the ordinate 
somewhat below 114. As the temperature is lowered, 
the marginal energy slowly builds up-as if the cou- 
pling J were increasing-and the ordinate drops fur- 
ther below 0.25. At sufficiently low temperatures the 
impurity-spin-flip rate rK becomes comparable to the 
thermal energy kBT. Further lowering of the temper- 
ature makes the the impurity spin so strongly coupled 
to the conduction electrons that its contribution to the 
product Txim, drops to  zero. 

It was observed above that the crossover from the 
local-moment to  the frozen-impurity fixed point is con- 
trolled by the characteristic energy rK, with the result 
that a11 thermodynamical properties áre functions of 
the temperature scaled by rK. They are analogous to 
the thermodynamical properties of the U = cf = O An- 
derson model, which are functions of the ratio kBT/r .  
In fact, well before the diagonalization of the Kondo 
Hamiltonian, a scaling analysis by Toulouse had es- 
tablished an equivalence between the two models at 
low e n e r g i e ~ ~ ~ .  For thermal energies comparable to or 

smaller than rK, the thermodynamical properties of 
the Hamiltonian (35) are remarkably similar to  those 
of the U = cf = O Anderson Hamiltonian with cou- 
pling V chosen to make I' = r K .  As an illustration, 
the dashed line in Figure 6 shows the crossover to the 
frozen-impurity fixed point in curve I as a function of 
(kBT/D) x ( r / r K ) .  The agreement with curve II is so 
close that, on the scale of the plot, for kBT < 10-llD 
the two curves cannot be distinguished. A numerical- 
renormalization-group calculation of the specific heat 
for the Kondo model found equally good agreement, 
provided only that the specific heat for HK be com- 
pared with the specific heat per spin for the uncorre- 
lated Anderson ~ a m i l t o n i a n ~ ~ .  

At thermal energies much lower than the rKl  the 
scaled Hamiltonian is near the frozen impurity fixed 
point. Here the antiferromagnetic coupling between 
impurity and conduction electrons around it forrns a 
singlet effectively decoupled from the remaining con- 
duction states. As required by the Friedel sum rule, 
at the Fermi level the latter are then phase shifted by 
cí = w/2. Since a particle-hole transformation takes 
the phase shift at  the Fermi level from 6 to  -6, and 
since the symmetric Hamiltonian remains invariant un- 
der the particle-hole transformation, the only possible 
phase shifts are 6 = O and 5 = 7r/2 (which is identi- 
cal to  5 = -812, since the phase shift is only defined 
m o d ~ ) .  From this, it is concluded that the Fermi-leve1 
phase shift-and hence the low-temperature fixed point 
that the scaled Hamiltonian approaches-is always the 
same, independently of the flow of HN.  

The scaled Hamiltonian approaches the frozen- 
impurity fixed point asymptotically. For large IV, the 
difference between HN and the fixed-point Hamiltonian 
can be treated perturbatively, and the impurity contri- 
bution to  the thermodynamical properties can be cal- 
culated analytically6>7. For kBT < rK, the Kondo- 
resonance width is an irrelevant energy; in the absence 
of characteristic energies, one expects the thermody- 
namical properties to be powers of the ratio kBT/rK.  
The perturbatively derived expressions for the impurity 
contributions to the low-temperature magnetic suscep- 
tibility and the specific heat are 

and 
Cimp = ( ? ? / 3 ) k i ~ / r ~ .  (38) 

When the latter expression is compared with the 
specific heat of a simple metal, C, = r2k;Tpp/3 221 

where pp is the density of states at the Fermi level, the 
result is an effective Kondo-resonance density of states 

This confirms that the coupling to  the magnetic impu- 
rity in the Kondo Hamiltonian introduces a resonance 
of width r K ,  just as the coupling to  the impurity level 



Brazilian Joui~nd of Physics, vol. 22, no. 3, September, 1992 

Figure 6.: Magnetic susceptibility for the spin-degenerate syrnrnetric Anderson model, from Ref. 7. The impurity 
contribution .;o the susceptibility is multiplied by the temperarture, so that fixed points of the renormalization- 
group transformation appear as plateaus. At the free-orbital fixed point, the ordinate would equal 118; at the 
local-moment fixed point, 114; at the frozen-impurity fixed point, it would vanish. Two plots are shown, both for 
U = -2cf = :.0-3D, the impurity-leve1 width being rI = 3.1 x 10-4D for curve I and rII = 2.5 x 10-5D for curve 
I I .  Since rI is comparable to U ,  in case I the scaled Hamiltonian flows directly from the local-moment fixed point 
to the frozen-impurity fixed point. In case 11, it flows first to the vicinity of the local-moment fixed point and then 
to the frozen-impurity fixed point. The dashed line shows the crossover in curve I displaced horizontally by the 
factor rK / r l ,  to show that rK defines an effective resonance width. 

in the U = c j  = O Hamiltonian introduces a resonance 
of width r. Nonetheless, if from Eq. (39) and from 
the expressio~ for the Pauli susceptibility of a simple 
metal, x = (gps)2pF/4 22, one tries to obtain the low- 
temperature riusceptibility for the Kondo Hamiltonian, 
the result [X  = (gC1B)2/(4ãrK)] is only one half the 
right-hand side of Eq. (37). To emphasize this point, 
which indicates that the Kondo resonance enhances the 
magnetic configurations of the conduction states rela- 
tive to the non-magnetic configurations, Wilson6 de- 
fined the rati3 

in contrast with simple metals, or with the uncorre- 
lated Andersm model, for which Rw = 1. Yamada 
and Yosida later showed that this equality follows from 
Ward identities in a diagrammatic expansion in the 
U -+ co limit3" while Nozières, on the basis of Fermi- 
liquid theory, proved that Rw = 2 follows from the 
requirement that the thermodynamical properties of 
the model remain invariant under infinitesimal shifts 
of the Fermi leve13'. The Bethe ansatz and the 1/N- 
expansion solutions of the Kondo problem have gen- 
eralized Eq. (40) to  larger orbital degeneracies. For 
impurity degrneracy 2s + 1, the Wilson ratio, defined 

is given by9 

Rw = ( 2 s  + I)/%; (42) 

only for small degeneracies is it significantly different 
from unity. 

E. Asymmetric Anderson Model 

In the symmetric spin-degenerate model, the f O and 
f 2  impurity configurations are degenerate. The asym- 
metric Hamiltonian breaks this degeneracy, the split- 
ting A = cf + U between the f 2  and the f1 configu- 
rations being different from - c f .  Thus, while in the 
syrnrnetric model U ,  c f ,  or A set the same scale, in 
the asymmetric case cf and A are two characteristic 
energies. The parametrical choice I' = A = O with 
cf = -co-a combination not allowed by the symmet- 
ric model-makes the Hamiltonian invariant under scal- 
ing, since the impurity is decoupled from the conduction 
band and devoid of characteristic energies. The result- 
ing scaled Hamiltonian is called the valence-fluctuation 
fixed point, a nomenclature attentive to the unequal va- 
lentes of the degenerate f and f l configurations. Of 
course, the opposite extreme, r = c j  = O with A = co, 
is equally important; as it has been shownZ5, however, a 
particle-hole transformation interchanges the f O and f 
configurations, so that a complete study of the asym- 
metric model requires only analysis of the parametrical 
half-space A > -6f .  

The valence-fluctuation fixed point is unstable. It 
is easy to recognize that any positive A will grow un- 
der scaling and drive the scaled Hamiltonian towards 
the local-moment fixed point. Nevertheless, in anal- 
ogy with the formation of the characteristic energy 
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(TI() in the symmetric Hamiltonian, a characteristic en- 
ergy is generated in the crossover between the valence- 6 I 

fluctuation and the frozen-impurity fixed points. Under A * / T  -.-.-.-. ( C )  

the assumption U + 2cj > r ,  a perturbative treatment 4 - 

identifies the energy A* determined by the transceden- 
tal e q u a t i o t ~ ~ ~ ~ ~ ~  2 

- 
( b l  O L""'"" 

(43) A* = A - r/.rr ln lcj/A* I .  

A * ,  the effective splitting between the f and the 
two f 1  configurations, can be significantly different - 4  - 
from A .  To show this, Figure 7 plots both sides of _-_--- 

- 6 Eq. (43), divided by r ,  as functions of A * / r  for 
cf = -O l D ,  r = O 0 1 0  and three A ' s  (a) -O 05D, A a / r  A*/ r 
(b) O 0050 ,  and (c) O 0 5 0 .  For A = c f ,  i e., U = O . . 
(not shown), Eq. (43) would admit a single solution, 
A* = A. Fcx fixed cf and r ,  however, as A (i. e., 
U )  grows, A* becomes progressively smaller than A .  
For.case (a), the difference be'tween the renormalized 
splitting and the bare one is insignificant. In case (b), 
however, while A is positive, A*  is negat,ive. In fact, as 
the figure indicates, Eq. (43) always admits a negative 
solution, which approaches zero as A becomes much 
larger than r. Under these circumstances, A* can be 
neglected on the left-hand side of Eq. (43), which shows 
that  

A* = c, exp(-aA/r) .  (44) 

This is precisely what the exponential on the right- 
hand side of Eq. (36) -which defines the width 
of the Kondo resonance-yields when the Schrieffer- 
Wolff transformation is carried out on the asymmetric 
H a m i l t ~ n i a n ' , ~ ~ .  For A > r ,  therefore, the character- 
istic energy A* defines a Kondo resonance, just as in 
the symmetric model. 

Figure 7 sliows that  for A > r Eq. (43) has two 
additional, positive roots. One of them-the one closest 
to zero-is approximately the symmetric of the solution 
in Eq. (44); this is again the Kondo resonance, which 
is centered a t  the Fermi leve1 and therefore spreads to 
both positive and negative eriergies. The other root is 
A* 25 A .  

In summary, as long as IA1 > r ,  there is always 
a cliaracteristic energy A* approximãtely equal to  the 
bare splitting A;  for A < 0, the nonmagnetic configura- 
tion f predominating in the ground state, that  energy 
controls the crossover from the valence-fluctuat,ion to 
the frozen impurity fixed point. For A > O, in contrast, 
the magnetic f configurations are predominant, and 
the crossover occurs in two stages: as kBT approaches 
A ,  the scaled Hamiltonian is driven from the valence- 
fluctuation t o  the local-moment fixed point; further 
reduction of the temperature makes keT compara- 
ble to,  and then smaller than A* = (c f (exp( -aA/ r )  
and drives H N  from the local-moment to the frozen- 
impurity fixed point. For IA1 < r ,  on the other hand, 
the crossover is controlled by the energy scale in Eq. 
(43). These features, first identified in the impurity 

Figure 7.: Graphical solution of Eq. (43). Both sides 
of that relation, divided by r, are plotted as functions 
of A * / r  for = 0.010,  ~f = -O.lD, and three f1 - f 2  

splittings: (a) A = - 0.050, (b) A = 0.0050, and (c) 
A = 0.050,  which correspond to  the three parametri- 
cal choices in Figure 8. The solutions of Eq. (43) are 
identified by circles. Cases (a) and (b) have one solu- 
tion each, with A* < O .  Case (c), A = 5r, has three 
solutions. As discussed in the text,  the two roots clos- 
est to zero reflect the Kondo resonance; the third one 
shows tha,t, as in case (a),  for IA1 » r there is always 
a solution with A* N A .  

magnetic-susceptibility curves in Ref. 25, appear more 
clearly on the spectral-density plots discussed in Sec- 
tion VIII. 

F. Extensions of the Anderson Hamiltonian 

Renormalization-group calculations of thermody- 
namical properties for extensions of the Anderson 
model have been carried out by various authors. Al- 
lub et ai.41 pioneered a study of a r n 0 d e 1 ~ ~  with two 
magnetic configurations: conduction-band-to-impurity 
charge transfer augments the impur i t .~  spin from S = 
112 to  S = 1. The Hamiltonian is rotationally invari- 
ant. The impurity takes different energies, Eilz or E l ,  
depending on its spin. This model describes crudely 
compounds of such rare-earth ions as T m ,  whose two 
lowest configurations (4 f l2 and 4 f 13)  are magnetic 
and some of whose compounds seem to  have a mag- 
netic ground The fixed-point structure of the 
model Hamiltonian is similar to  that of the Ander- 
son Hamiltonian. A valence-fluctuation fixed point, 
two local-moment (with S = 1/2 and S = 1 ,  respec- 
tively) fixed points, and a frozen-impurity fixed point 
are found. Near the valence-fluctuation fixed point the 
energy splitting A = El - El12 is renormalized as in Eq. 
(43). Unlike the ground state of the Anderson Hamil- 
tonian, however, the ground state of the  Hamiltonian 
studied in Ref.41 is doubly degenerate: tlie conduction 
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electrons arc'und the impurity couple antiferromagneti- 
cally to  i t  ar'd reduce its maximum spin from S = 1 to 
S = 1/2. At low temperatures ( ~ B T  smaller than any 
energy scale I,  then, the magnetic susceptibility follows 
the Curie l av .  

This conclusion seems inevitable for a model in 
which the orbital degeneracy of the conduction elec- 
trons is smdler than that  of the impurity. A more 
realistic model, with orbitally degenerate conduction 
electrons, h;is been f ~ r m u l a t e d ~ ~ .  Tha t  model can- 
not be diagmalized by the Bethe ansatz. 1/N ex- 
pansions h a ~ e  been carried, indicating that the ground 
state is n ~ n d e g e n e r a t e ~ ~ ~ ~ ~ ,  a result supported by the 
renormalization-group calculation of the magnetic sus- 
ceptibility by Shimizu e t  More recently, however, 
on the basis of a narrow-band (or strong-coupling) ap- 
proximation. Baliiía and Aligia have concluded that the 
ground state is nonmagnetic only for j - j coupling, a 
magnetic ground state resulting from Russel-Saunders 
c ~ u ~ l i n ~ ~ ~ .  

Another extension of the Anderson Hamiltonian 
considered a localized (i. e., momentum-independent) 
electrostatic interaction G between the impurity-orbital 
charge and the conduction e l e c t r ~ n s ~ " ~ ~ .  This po- 
tential phast: shifts the conduction states and there- 
fore modifies: the conduction-band energy. Since the 
strength of the potential depends on the impurity oc- 
cupation, G iffects the thetmodynamical properties by 
modifying tlie splittings cf and A between the 4f0 
and 4 f 1  and between the 4f1 and the 4f2 configura- 
tions, respectively. The  differences between the cal- 
culated susccptibility curves for G # O and those for 
G = O are rlinor4? Frota and Mahan4' (who calcu- 
lated the grcund-state impurity occupation) neverthe- 
less find that ,  for G w U, the Coulomb repulsion U > O 
can become sffectively negative, U -+ Ueff < O. The 
consequerices of this pairing interaction remain to be 
explored. 

VII. Diagor .a l izat ions  o f  Model Hami l ton ians  

A. General Aspects 

Section I\' presented the iterative procedure that di- 
agonalizes the spin-degenerate Anderson Hamiltonian. 
Only minor modifications are required to  adapt the 
technique to  more complex impurity Hamiltonians, but 
the computational cost increases so steeply with the 
degeneracy o[ the orbitals and with the number of im- 
purities that only a few more general models have been 
investigated. 

As pointed out in Section IV C,  in the diagonaliza- 
tion of the sgin-degenerate Anderson Hamiltonian, the 
number of bwis states nb required in iterakion N to  
compute ther modynamical properties is approximately 
independent 3f N .  T h a t  number turns out to be a few 

hundred, so that when the basis is divided into inde- 
pendent subspaces classified by charge and spin, the 
largest matrices that must be diagonalized are of di- 
mension 100. 

Unfortunately, orbital degeneracy augments those 
numbers enormously. I t  was shown in Section IV C that 
each Lanczos operator f,, multiplied the number of ba- 
sis states by a factor of 2. For spin degeneracy and fixed 
n ,  the operators are two ( fnT and fnl), so that  each fn 
introduces a factor of 4. For NJ-degenerate electrons, 
each operator introduces a factor 2 N ~  instead of 4. Sim- 
ilarly, the number of basis states in each iteration in- 
cremes from nb 300 t o  nf~'*'. Even for NJ = 6, cor- 
responding t o  orbital degeneracy NL = 3,  the number 
of states will be enormous-tens of millions. Exactly 
the same problem appears in many-impurity compu- 
tations: for spin-degeneracy, for instance, the number 
of basis states grows from nb to  n?, where Ni is the 
number of impurities. For two impurities, the number 
of basis states would be close to  100,000. 

Such calculations are obviously impossible, and the 
renormalization-group approach would seem applica- 
ble only to  one impurity and spin-degenerate electrons. 
However, if instead of computing tlhermodynamical (or 
excitation) properties one is content with diagonaliz- 
ing a model Hamiltonian, the procedure has a broader 
scope. Since the Boltzmann factor is then immaterial, 
the upper bound E,,, of the band of energies kept in 
each iteration can be substantially reduced. The  num- 
ber of basis states is likewise reduced, ten-fold for the 
single-impurity spin-degenerate problem, a hundred- 
folâ for the two-impurity model. If the calculation of 
excitation properties for a given model will not fit in 
one's computational budget, diagonalizing the model 
Hamiltonian is an attractive alternative. 

To this expedient first resorted Cragg and Lloyd50. 
They stiidied two generalizations of the Kondo Hamil- 
tonian diagonalized in Ref. 6, introducing (i) a poten- 
tia1 scattering term G C, 10, fo,, (ii) a spin-S impu- 
rity ( S  2 112) coupled tÓ one or two channels of spin- 
112 electrons. The former modification turns out to  be 
unimportant, for the potential scattering merely phase 
shifts the conduction electrons. The latter, however, 
showed that a single channel of spin-112 electrons are 
unable to  compensate the larger impurity spin, so that 
the ground state has spin S - 112. When two channels 
are considered, for S > 112 the ground state has spin 
S - 1, which indicates that each channel subtracts 112 
from tlie impurity spin. For S = 112, with two chan- 
nels there is overscreening: the degenerate channels 
combine to form two sets of free electrons: one phase- 
shifted by 7r/2 (an electron from this set having formed 
a singlet with the impurity) and the other not phase- 
shifted. Ref. 50 provided testgrounds for Nozières's 
and Blandin's general discussion of orbitally degen- 
erate magnetic impurities in metals51, whose findings 
were a few years later confirmed and complemented by 
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Bethe ansatz computations of thermodynamical prop- 
erties for the generalized Kondo Hamiltonian

g
. Inter- 

est in the case S = 112 with two electron channels 
was revived by the recent ~ u ~ ~ e s t i o n ~ ~  that crystal-field 
effects might give rise to a quadrupolar Kondo effect 
in uranium heavy-fermion compounds (such as UPt3), 
which is equivalent to that overscreened model. Con- 
sequently, a renormalization-group calculation oriented 
towards high accuracy was combined with a conforma1 
field-theoretical analysis of that problem to bear out 
and to extend (e. g., by including a magnetic field) the 
earlier c o n ~ l u s i o n s ~ ~ .  

Another, rather original application of the numer- 
ical renormalization group procedure is reported in 
Ref. 54, which takes advantage of the (approximate) 
equivalence55 between the single-impurity Anderson 
Hamiltonian and a model Hamiltonian describing the 
Coulomb blockade in mesoscopic tunnel junctions to 
calculate the ground-state energy for the latter. That 
work is mentioned only in passing, as it lies off the 
mainstream of this review. 

B. Two-Impurity Kondo Problem 

The clearest demonstration that the renormaliza- 
tion group diagonalization of a model Hamiltonian is 
sufficient to  give quantitative insight into its basic prop- 
erties was provided by Jones et a1.14-16, who have stud- 
ied the two-impurity Kondo model. That problem has 
a long history, dating back to the work of Alexander 
and A n d e r ~ o n ~ ~  on interacting localized states in met- 
a l ~ .  Instead of one, the model considers two impurities 
in a metallic environment, separated by a distance R. 
Each of them is coupled antiferromagnetically to s-wave 
conduction states centered at the impurity site. The full 
Hamiltonian is 

where and 2 2  are the impurity spins at sites E/2 and 
-R/2, respectively, and the fermionic operator $J(F') an- 
nihilates an electron in the Wannier state centered at 
position F. 

If the two impurities were infinitely apart, the 
Harniltonian (45) could be separated into two single- 
impurity problems, each impurity interacting with its 
surrounding electrons. Because R is finite, this sep- 
aration is impossible, because the Wannier operators 
+(R/2) and +(-R/2) are non-orthogonal. To en- 
sure orthogonality, one works with odd and even lin- 
ear combinations of the s-wave conduction states cen- 
tered around each impurity site. The result is that the 
discretized conduction-band Hamiltonian [analogous to 

Eq.(lO)] has the form 

03 

t HC = 1 '~(fn,p,ofn+i,po + fA,p,efn+l,p,e + H C. ) ,  
p,n=O 

(46) 
where the subscripts o and e indicate odd and even 
operators, respectively. 

The coupling to the impurity is 

-($ - $2) . (rnfOep ~p'Jfo0 . .  + H c.) 9 

where 
Je = [(I + S)/2]J, 

with 
S = s in (kFR) /k~R.  (50) 

To obtain Eq. (47), it is necessary to substitute the 
Fermi momentum kF for the absolute value of the elec- 
tronic mornentum k in the exponentials exp(f ik . R) 
that appear when the field operators +(fR/2)  on the 
right-hand side of Eq.(45) are expressed as  linear com- 
binations of the conduction states ck. As a consequence 
of this substitution, the Hamiltonian (47) depends on 
R only through S, so that infinitely separated impu- 
rities become identical to impurities separated by the 
distance R = r /kF The approximation k -i kF is nev- 
ertheless justified, for it neglects only irrelevant terrns 
of the model Hamiltonian. 

Equation (46) associates with each Lanczos coeffi- 
cient four kinds of fermionic operators: frito, fn lo ,  
frite, and fn i e ,  in contrast with the two kinds (fnt and 
fnl) in the single-impurity problem. For this reason, 
as pointed out in Section VI1 A, if nb is the number 
of states that have to be kept in an iterative diagonal- 
ization of the single-impurity Hamiltonian, (nb)2 will 
be the number needed to diagonalize the two-impurity 
Hamiltonian. To reduce the dimensions of the matrices 
that have to be diagonalized, in addition to the conser- 
vation laws of the single-impurity problem, one takes 
advantage of parity conservation. 

It has long been realized that the two-impurity 
problem is richer than the single-impurity ~ n e ~ ~ .  While 
the latter has a single characteristic energy scale (the 
Kondo energy), the former has two: the Kondo width 
r K  and the RKKY dipolar coupling between the impu- 
rity spins. This coupling, an interaction mediated by 
the conduction electrons, has the form 
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where16 
2 I. = 21n2p(Je  - J,) . (52) 

The  cornpetition between I. and kBTK governs 
the physics of the model. Two stable fixed points 
have been identified. For I. - -m, the (antifer- 
romagnetic) RKKY interaction in Eq. (51) couples 
the two impurity spins so strongly that they form 
a singlet e:Tectively decoupled from the conduction 
band. The scaled Hamiltonian therefore reduces to 
the conduction-band Hamiltonian, a fixed point of 
the renormalization-group transformation called the 
coupled-impurities fixed point. If, on the other hand, 
I. = O and ,T -+ -w, each impurity couples strongly to  
the conduct,ion electrons around it; as in the single- 
impurity pi.oblem, each conduction-band channel is 
phase shifted by ~ / 2 .  The  scaled Hamiltonian is again 
a fixed point of the renormalization-group transforma- 
tion, the fmzen-irnpurities fixed point. The different 
conduction-:+tate phase shifts distinguish the coupled- 
impurities Exed point from the frozen-impurities fixed 
point. 

The  numerical results show that,  for I. > 
-2.2kBTK, the ground state is the frozen-impurities 
fixed point, i. e., the Kondo effect wins over the RKKY 
interaction. For I. < -2.2kBTK, the ground state is 
the coupled-impurities fixed point, indicating that the 
antiferromapetic coupling between the impurity spins 
locks them into a singlet before they can couple to the 
conduction dectrons. 

At the boundary between the two domains (i. e., 
for I. = -2.2kBTK) lies an unstable fixed point with 
the charact~:ristics of a second-order phase transition: 
the linear coefficient of the specific heat and the stag- 
gered magnetic susceptibility diverge15. As in the the- 
ory of critical phenomena, this fixed point results from 
the balancetl competition between the two stable fixed 
points. The  discovery of this fixed point raised a tempo- 
rary controkersy, for Monte Carlo computations found 
the staggered susceptibility t o  be finite5% A very 
recent confc'rmal-mapping analysis59 has nevertheless 
confirmed tlie numerical renormalization group result. 

At any rate, the unstable fixed point seems 
of limited physical interest, since a more general 
renormalizaiion-group study including potential scat- 
tering has sliown that  the breaking of the particle-hole 
symmetry o-' the Kondo Hamiltonian washes it out16. 

VIII. Excii;ation Properties 

A. Computational Procedure 

To  calciilate ground-state and thermodynamical 
properties, t he z = 1 discretization of the conduction 
band-introduced in Ref. 6-is sufficient. To compute 
excitation properties, however, the second discretiza- 
tion parame,;er is indispensable. As an illustration, con- 

sider the impurity spectral density pf (c) for the Ander- 
son model. For given r ,  the golden rule gives: 

i CF,p l(FlcfplQJ126(EF - EA - 6) ( c  > 0) 
pf(c) '=  ~ F , p l ( ~ ~ ~ ~ p ~ ~ ) i 2 6 ( ~ $ - E ~ + c )  (1<0) 

(53) 
where c is the binding energy, Ia) the ground state (en- 
ergy En) ,  and ( F )  is any eigenstate of the Hamiltonian 
(1) (energy EF). Interest in this function arises be- 
cause laboratories have direct access t o  it: for positive 
6, the spectral density is measured by X-ray Photoemis- 
sion Spectroscopy (XPS); for negative c,  by inverse pho- 
toemission, or Bremstrahlung Isochromat Spectroscopy 
(BIS). 

Once the eigenvalues and eigenstates of the Ander- 
son Hamiltonian have been computed by the iterative 
procedure in Section IV, it is a simple matter to  com- 
pute the sums on the right-hand side of Eq. (53). 
Nonetheless, given the discretization of the conduction 
band, only discrete energy differences E$ - EA sat- 
isfy the energy-conservation condition imposed by the 
delta function. The  golden rule, which describes tran- 
sitions to  a continuum, is inapplicable. Should one in- 
sist on calculating the spectral density from Eq. (53), 
spiked spectra strongly dependent on the discretization 
parameter A and bearing no resemblance to  experimen- 
tal data would result. 

Early attempts to  improve such computations em- 
ployed convolutions on the logarithmic energy scale. 
Two convolution functions have been proposed, both 
of width ln A ,  equal to  the separation between suc- 
cessive energies in Figure 3: (i) a boxÇ0, and (ii) a 
~ a u s s i a n ~ ~ > " .  In most cases, these procedures were 
employed to  calculate excitation properties near fixed 
points, where they can be justified (see below). Away 
from fixed points, however, not only are they unjus- 
tified, but they have been shown3' to  severely un- 
derestimate the spectral density. In particular, since 
the impurity spectral densities for the Anderson and 
for more complex Hamiltonians exhibit salient features 
a t  crossovers, numerical renormalization group calcula- 
tions involving convolutions of their excitation proper- 
ties are unreliable, even semi-quantitatively. 

The difficulty with crossovers is easily understood. 
The discretization in Figure 3 affects only the conduc- 
tion band, not the impurity states. The  model Hamilto- 
nian is subsequently diagonalized. T h e  resulting eigen- 
values and eigenstates are in general combinations of 
impurity and conduction states, so that  impurity and 
conduction states contribute to  the discrete spectral 
density in Eq. (53). Since the convolution can make 
no distinction between impurity and conduction states 
and since it is based on the discretization of the con- 
duction band, it ends up broadening unduly the impu- 
rity levels-broadening them as if they were discrete 
conduction states. Near fixed points, where the scaled 
Hamiltonian contains no characteristic energies, this 



L. N .  Oliveira 

problem is immaterial; at  crossovers, however, where 
the impurity levels constitute the characteristic ener- 
gies, resonances are Invariably widened. Their peak 
intensities are proportionally reduced, since the convo- 
lution preserves the spectral weight of a resonance. A 
study of the analytically soluble U = O Anderson model 
has shown that with standard choices of the parameters 

and E!, and either the box or the Gaussian functions, 
the convoluted spectral densities at the resonance max- 
imum (E = -ff) can be less than one-half of the exact 
result31. 

To avoid such alarming deviations, one takes ad- 
vantage of the second discretization parameter. As t 
varies from O to  1, the discrete energies in Figure 3 
run through every conduction energy. With t. a vari- 
able in that range, the conduction-band continuum is 
recovered. Accordingly, the impurity spectral density 
is obtained by integrating Eq. (53) over 2: 

which yields 

where & = &(r)  = E$-- E&. A similar expression results 
for E < O. In numerical computations, the integration 
on the right-hand side of Eq.(54) is carried out on a 
mesh of ten equally spaced z's, and the derivative in 
the denominator on the right-hand side of Eq. (55) is 
evaluated numerically. 

At a fixed point, that derivative turns out to equal 
-&inA "'. With this result substituted in Eq. (55), 
the box c o n v ~ l u t i o n ~ ~  is recovered, thus providing jus- 
tification for that procedure. At crossovers, however, 
impurity levels contribute to &; since the impurity en- 
ergies are independent of A, the denominator on the 
right-hand side of Eq. (55) in general is significantly 
smaller than & ln A. Spectral densities calculated from 
Eq. (55) can therefore be substantially larger than the 
convoluted densities. For U = O (and both Ic  1 ,  and r 
much smaller than the bandwidth), a straiglitforward 
analysis31 shows that 

where i? = r /AA converges rapidly to r as A -, 1. 
Apart from this multiplicative renormalization of r 63, 

Eq. (56) agrees with the exact result: the spectral den- 
sity is a Lorentzian of half width at half maximuin r, 
centered a t  the impurity energy cf. 

B. Anderson Model 

Figure 8 shows three spectra for the spin-degenerate 
Anderson m ~ d e l l " ~ ~ .  The ordinate is normalized by 

Figure 8.: Spectral density for the spin-degenerate An- 
derson model, from Ref. 64. The dots are calculated 
densities; the solid lines in (a) and (b) attempt to fit 
them with Lorentzians of the indicated half widths at 
half maximum. In (c), the central peak is fitted with 
Eq. (58), and the satellites with Lorentzians. The 
crosses at E = O indicate the exact spectral density 
at the Fermi level, calculated from Eq. (57). For 
the three c.ases, ~f = -0.1D and r = 0.01D. The 
f1 - f splitting A increases progressively from (a) to 
(c): A, = -0.050, Ab = 0.0050, and A, = 0.050. 
The f 2  

-r f 1  resonance in spectrum (a) is pinned at 
the Fermi level and narrows into the Kondo resonance 
as A grows and the impurity occupation approaches 
unity (Kondo limit). The f1  -+ f 0  resonance, peaked 
at 6 x [cf 1 ,  grows with A ,  as does the f 1  + f 2  reso- 
nance, peaked at E = - A. 

the maximum density for the U = O model, pfmax = 
2/(7rr) [see Eq. (56)l. The spectra have been com- 
puted for E/ = -0.1D and F = 0.01D, and for three 
splittings between the f 2  and f 1  impurity configura- 
tions: (a) A = -0.050 (corresponding to Coulomb re- 
pulsion U = 0.050), (b) A = 0.0050 (U = 0.105D), 
and (c) A = 0.050 (U = 0.150). The parametrical 
choice 1 » I' excludes the f 0  configuration from 
the ground (initial) state. In (a), modest Coulomb 
repulsion, the ground state occupation nf  is approxi- 
mately 2. An energy E = -A is necessary to remove an 
electron from the impurity. Phenomenologically, this 
Hamiltonian is equivalent to an uncorrelated Hamilto- 
nian with impurity energy ~j = -0.05D. According to 
Eq. (56), then the spectrum should comprise a reso- 
nance with half width at half maximum I?, centered at 
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E = - A = c .05D, in agreement with Figure $(a). A recent quantum-Monte-Caro calculation has been - 
As U increases, however, this single-particle descrip- 

tion fails. For A x O,  so that ( A (  < r ,  the f 1  and 
f 2  configurations are essentially degenerate, and for 
Icf 1 > 6  » r the model is in the valence-fluctuation 
regime, near the valence-fluctuation fixed point. Here, 
the ground state combines the f 1  and f impurity con- 
figurations, with two consequences: first the photoemis- 
sion f 1  -+ f O gives rise to  the broad resonance centered 
approximat(:ly a t  the binding energy 6  = 0.1 D = - 6 f .  

Since the final state in this transition has two decay 
channels ( f 3  - ft and f0 - fl), this peak is twice 
as broad as the one in Figure 8(a) (which has a single 
decay chanriel, f1 -+ f 2 ) .  Compared to  the maximum 
in the first plot, the peak density is significantly smaller 
both because the resonance is broader and because the 
final impurity state ( f2)  is nondegenerate; while the 
f 2  + f1  d e ~ s i t y  can reach u'nity on the vertical scale, 
the spectral density for an f 1  - f0 transition can never 
exceed 0.25. 

The secc)nd significant difference hetween plots (a) 
and (11) is the position of the f 2  - f 1  maximum. In 
the valence- luctuation regime, as Section VI E pointed 
out,  the splitting A between the f1 and f 2  configura- 
tions is renormalized to  A* [Eq. (43)]. In particular 
(see Figure 7) the parametrical choices in Figure 8(b) 
make A* a -5 x 10-3D. The positive binding energy 
c = -A*-not the negative energy E = -A-is in- 
deed where i.he sharper resonance in Figure 8(b) peaks. 
Careful insp'xtion of the plot reveals yet another many- 
body effect: the fitting of the calculated densities (filled 
circles) with a Lorentzian of half width a t  half maxi- 
mum r (solii line) is inferior t o  the one in Figure 8(a); 
the resonance has narrowed. As U and A grow further, 
the f -+ f1 resonance narrows further to  a width A*, 
its peak piniied to  the Fermi level. Alternatively said, 
the model eriters the Kondo regime. 

The  signitture of the Kondo limit is the sharp reso- 
nance a t  the Fermi level. Tha t  its peak intensity should 
be pj(0) = 2/7rr is the consequence of a rigorous result 
by Langreth'j5, which shows that  

where SF is i,he phase shift a t  the Fermi level, equal to 

~ / 2  in the Kondo limit. 
The widt h of the Kondo resonance is r~ [Eq. (36)], 

approximately equal to  A*. A decade ago, when in- 
sight gained from thermodynamical calculations and 
various special results were combined into the first 
description of the impurity spectrum for the spin- 
degenerate A nderson H a m i l t ~ n i a n ~ ~ ,  a Lorentzian res- 
onance was i nagined. The renormalization-group com- 
putation in Ref.18 nonetheless found the broadened- 
~ o n i a c h - ~ u n ~ i i é ~ ~  lineshape 

able to  reproduce this result6'. 
The square root on the right-hand side is due t o  

the response of the conduction electrons to  the sudden 
change of the phase-shift that  accompanies the photoe- 
mission. At the ground state,  the impurity forms a sin- 
glet with the conduction electrons around it, and the 
phase shift 6 is 7r/2; this is the frozen-impurity fixed 
point. For energies much larger than r K ,  however, 
the scaled Hamiltonian is close to  the local-moment 
fixed point, where the two degenerate f1 configura- 
tions coexist with a free conduction band, phase shift 
5 = O. For 6 » r K ,  then, the f 2  - f1 transition sub- 
jects the conduction-electron phase shift t o  a variation 
A6 = -n/2. As established by Doniach and ~ u n j i ~ ~ ~ ,  
the electronic response in a normal metal to  a sudden 
change of phase shift (caused by the photoemission of 
a core electron) makes the core-state spectral density 
divergent : 

where g is the degeneracy of the conduction states. For 

spin degeneracy and A6 = x/2,  Eq. (59) gives 

Equation (58) shows that r~ dampens this singularity, 

making the spectral density finite a t  the Fermi level, as 
required by Eq. (57). For a more extensive discussion 
of the shape of the Kondo resonance, see Ref. 68. 

The satellite peaks in Figure 8(c) are simpler. The 
hump centered a t  the binding energy E N 1 = O.lD, 
is the already discussed f1 -. f0 resonance. The fea- 
ture centered a t  E = -0.050 = -A;,, (where A;,, 
is the largest root of the transcedental Eq. (43), vis- 
ible on curve (c) in Figure 7) is the f 1  -+ f 2  reso- 
nance, an inverse photoemission. Since the particle- 

t hole transformation [cf -+ c j  and ck  + cL] turns the 
latter transition into the former, the two satellites have 
the same qualitative characteristics. In special, both 
are Lorentzians with half width a t  half maximum 2 r .  

The crosses a t  E = O in Figure 8 check the accuracy 
of the calculation. The Friedel sum rule relates the 
ground-state impurity occupation nj t o  the Fermi-leve1 
phase shift SF. Given that  the Bethe ansatz determines 
n j  13, the zero-energy spectral density can be computed 
from Eq. (57). The results, indicated by the crosses, 
are in exceilent agreement with the calculated densities. 

Brito and  rota^' have calculated the core-leve1 
spectral density for the Anderson model. Following 
Gunnarsson and S ~ h o n h a m m e r ~ ~ ,  they have added to  
the Anderson Hamiltonian a core level from which an 
electron is photoejected. The resulting core-hole drags 
the 4 f levels below the Fermi level. In addition, they 
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jected on which the spinless model Hamiltonian is 

\- 
HT = l ~ E i ( f r ! , o f n + l , o  i- f:,efn+i,e + H. C.) 

n 

-(1/2)i (dede - dzd,) 

+G[(1 -t s)fJefoe + (1 - S )  fJ, foo](ded! + dod!) 

-G(1 -. s2)(f!,fo0 + H. c.)(d;d, + H. c.), (62) 

where S = sin(kFR)/kFR ( R  is the distance between 
tlie two sites), and de (do) annihilates an electron at  the 
even (odd) linear combination of the two core states: 
de (do) is the Fermi operator for the bonding (anti- 
bonding) stat e constructed out of the core states. 

This Hamiltonian has two fixed points17: for t = 0, 
the occupaticns of the site operators dl = (de +do)/& 
and d2 = (de - do)/& are conserved. For a single core 
hole, either d f d l  = O and dld2 = 1 (core hole at  site 1) 
or dfdl = 1 and did2 = O (core hole a t  site 2). Pro- 
jected on eacli of these two subspaces, the model Hamil- 
tonian is equivalent to that of the single-site model- 
a single-particle Hamiltonian in which the conduction 
states are phase shifted by 6 = tan-'(-npG). This 
fixed point (more precisely a line of fixed points, since 
each potential G defines a fixed point) is called the 
atomic-orbital fixed point. 

For t -, 03, on the other hand, the second term on 
t,he right-hand side of Eq. (62) forces the anti-bonding 
core orbital t~ be vacant, so that d'd, = O and dede = 
1. With this, the last term on the right-hand side of 
Eq. (62) vani.,hes, which decouples the even conduction 
band channel from the odd one. Two separate sets of 
conduction states result: an even one with phase shift 
6, and an odd one with phase shift 6,. This is referred 
to as the molecular-orbital fixed point. 

Ref.17 has computed the even and the odd spectral 
densities for lhe  Harniltonian Eq. (62), defined as 

with p = e (even) and p = o (odd), respectively. 
The resulls show that ,  for large E ,  the two spectral 

densities coirxide, indicating that the scaled Hamil- 
tonian is nea.r the atomic-orbital fixed point-where 
states of opposite parities are degenerate. At small en- 
ergies, however, the even and the odd spectral densities 
are markedly different. Both follow power laws, 

but while the exponent for the odd density is the 
~oniach-SunjiC expression 

the exponent for the even density has a inodified form 

To interpret this result, the authors observe that,  ac- 
cording to the Friedel sum rule, each term on the right- 
hand side of the ~oniach-sun j i t  expression (65) is the 
square of the cliarge piled up around the impurity in 
each conduction-band channe17? Equation (66) then 
indicates that one electron has been transferred from 
the even to the odd channel. 

Such a transfer is indeed required by symmetry. In 
the initial state, both impurity orbitals are occupied. 
In the final state, a t  low energies, the hole must be 
at  the anti-bonding (odd) orbital. The initial and final 
impurity states have therefore opposite parities, and the 
matrix element (Fld+ IR) will therefore vanish unless a 
cross-channel electron transfer in the conduction band 
reverses the parity of the final state. 

The net result of a11 this is a divergent odd spectral 
density [the exponent a, - 1 on the right-hand side 
of Eq. (64) is always negative] and a vanishing even 
spectral density (the exponent a, - 1 is positive) a t  the 
Fermi level. The Ni = 2 spectral density, in contrast 
with the conclusions of Ref. 73, is singular a t  the Fermi 
level; moreover, there is no spectral weight a t  E = 0. 

In the crossover region, the odd density shows no 
structure, but the even density is strongly peaked a t  an 
energy t * ,  which defines the effective tunneling ampli- 
tude. The numerical values obtained for this quantity 
for a variety of parametrical choices7' are in excellerit 
agreement with the exact expression of Yamada et al.76. 

Figure 9.: Tunneling rate for core hole in two-site 
model. The rate A is given by Eq. (67). The bare tun- 
neling matrix element t and the effective matrix element 
t* are indicated along the energy axis. The latter is cal- 
culated from the analytical expression in Ref. 76. For 
E » t*,  the scaled Hamiltonian is close to the atomic- 
orbital fixed point, whose properties mimic those of the 
single-site Hamiltonian. For c < t * ,  it is close to the 
molecular-orbital fixed point, in which the impurity an- 
tibonding orbital is energetically inaccessible. 
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merical procedure are fully controllable, the discretiza- 
tion of the cmduction band controlled by the parameter 
A and the infrared and ultraviolet truncations needed in 
the numerical diagonalization controlled by the number 
of states kept; (iii) the procedure is uniformly accurate 
over the pa-ametrical space of the model, so that the 
deviations in the calculation of a given property at a 
given energy or temperature can be estimated from an- 
alytical corriputations for trivial choices of the model 
parameters. 

Given tkese assets, one can imagine that the tech- 
nique here surveyed will continue to do groundwork for 
other methods. The central obstacle facing applications 
has been the exponential growth of the computational 
cost with the number of electronic degrees of freedom. 
This difficu1;y is less severe than it used to be, since Ref. 
86 has shown that the generalized procedure in Section 
IV allows avcurate calculations with A as large as 10; 
with existing computer resources reliable computations 
of thermodynamical as well as dynamical properties for 
tweimpurity models are now feasible. Broader gener- 
alizations are nonetheless needed to extend the method 
to larger cliisters and, most importantly, to periodic 
systems. GE neralizations with these purposes are cur- 
rently under study. 
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