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The  three-dimensional classical XY model is studied for strong coupling Jl l  within planes 
and weak coupling J L  between planes. It is found that the interplay between spin waves 
and vortex loops plays an important role, in particular for J L  < J l l  The  critica1 tem- 
perature is calculated both for a finite number of planes and for the infinite system using 
various methods, including scaling arguments, mean-field theory, the renormalized harmonic 
approximation and Monte Carlo simulations. While for a finite number of planes there is no 
spontaneous magnetization, the infinite system becomes ferromagnetic a t  low temperatures, 
as soon as J I  is finite. As to the two-dimensional XY model, a simple renormalization of the 
logarithrnic interaction between vortices due to  the temperature dependence of the spin wave 
spectrum yields a critica1 temperature ~ B T ~  = 0.96J, in excellent agreement with Monte 
Carlo calculations and high-temperature expansions. At the same time the renormalized 
liarmonic approximation for the spin wave excitations provides critica1 exponents v(T)6(T), 
which agree very well with values deduced from a finite size scaling analysis. 

I. Introduction 

A great variety of critica1 phenomena, from certain 
magnetic phase transitions over superfluidity and su- 
perconductivity up to  ordering in liquid crystals or the 
roughening transition has been associated with the uni- 
versality class of the XY model. This model, a col- 
lection of interacting tws-component spins, is known 
for its peculiar properties in two spatial dimensions. 
There is no spontaneous magnetization for a11 finite 
temperatures112, but nevertheless there exists a phase 
transition of a special kind. Below a critical tempera- 
ture and for zero magnetic field the spin-spin correlation 
function decays algebraically and the magnetic suscep- 
tibility is infinite. Thus there exists a critical line with 
temperature dependent exponents. The transition from 
tliis low-temperature phase with algebraic correlations 
to a high-temperature phase with exponential decay 
of tlie correlatbn functions has been associated with 
the unbinding of vortex-antivortex pairs (Berezinskii- 
Kosterlitz-Thouless t r a n ~ i t i o n ) ~ ~ ~ .  

The  discovery of high-temperature superconductiv- 
ity in layered materials lias stimulated a renewed in- 
terest in tlie two-diinensional XY model. Despite their 
layered structure these superconductors are not strictly 
t,wo-dimensional, as there is always some coupling be- 
tween adjacent planes, e.g. a Josephson coupling due 
to t,iiiineling of Cooper pairs. This raises the question 
to wliat. extent such a coupling, as small as it may be, 
rt,iiioves t,he peculiarities of the Berezinskii-Kosterlitz- 

Thouless transition. The aim of this paper is to study 
this question for an XY model on a simple cubic lat- 
tice with strong couplings between nearest neighbor 
spins for bonds in x- and y-directions and weak cou- 
plings in z-direction. I t  will be shown that the critical 
temperature T, for a small but finite coupling in z- 
direction is slightly larger than the critica1 temperature 
TKT of the Berezinskii-Kosterlitz-Thouless transition 
for uncoupled planes. There is a large region below 
Tc where the system behaves like the three-dimensional 
XY model, but a t  still lower temperatures there is a 
crossover to  a new behavior dominated by vortex loops 
between the weakly coupled planes. 

The paper is organized as follows. Section I1 
presents tlie two types of excitations, spin waves on the 
one hand, point vortices (for 2d) and vortex loops (for 
3d) on the other hand. The two-dimensional XY model 
is studied in Section 111, with main emphasis on the ef- 
fects of the renormalization of the spin wave spectrum, 
both on the critica1 temperature and on the exponents 
q(T) and 6(T) along the critica1 line below TKT. A 
mean-field approach with respect t o  the weak coupling 
in z-direction is used both for the critica1 temperature 
(Section IV) and the spontaneous magnet,ization (Sec- 
tion V).  Estimates for Tc on the basis of scaling argu- 
ments in the continuum limit (Section IV) are shawn to 
break down for very small interplane couplings. This 
is attributed to the abundance of vortex loops hetween 
the planes (Section VI). A combined study for a finite 
number of planes, iising botli analytical approximations 



and Monte Jarlo simulations, is presented in Section 
VII. The pa;>er concludes with a brief summary of the 
results in Section VI11 and a few comments on their 
possible rele.rance for experiments on layered supercon- 
ductors. 

11. Spin  waves, vort ices  and vor tex  loops 

We consider a simple cubic lattice described by lat- 
tice vectors R. and with a lattice constant 1. Our model 
Hamiltonian is defined as 

where S (R)  : s  a unit vector (a "spin") attached to the 
site R and tlie exchange constants are 

J ( R ,  R') = { $1 for neighbors in the x-y planes, 
for neighbors in z-direction. 

(2.2) 

The summation in Eq. (2.1) runs over a11 nearest neigh- 
bor pairs. Dcpending on the context, the spins repre- 
sent magnetic moments or a phase variable of a complex 
order parameter. It is often convenient to use the rep- 
resentation ir, terrns of angles $(R), -7 < 9(R)  5 7, 

For very low temperatures the directions of neighboring 
spins deviate very little from each other and, neglecting 
vortex excitations, we approximate Eq. (2.3) by 

(2.4) 
where N is t'le number of sites. Assuming periodic 
boundary conditions we can diagonalize the Hamilto- 
nian by Fourier transformation 

where the wa~~evectors q, = 27n,/N,, a = I, y, z are 
restricted to tf e first Brillouin zone, -r < q, 5 r. This 
yields the Handtonian in the spin wave approximation 

where 

is the spin wave spectrum. It is straightforward to cal- 
culate correlation functions using this approximation. 
According to the "Gaussian averaging theorem" the fol- 
lowing relations hold for averages with the Hamiltonian 
(2.61, 

The exponents are easily calculated using Eq. (2.5) 
together with the relation 

The spin wave spectrum appears not only as a low tem- 
perature approximation for the Hamiltonian but also 
in the Mermin-Wagner theorem. We apply a magnetic 
field h parallel to  the x axis and try to eva!uate the 
magnetization 

M(h) = (Sx(R)), (2.11) 

where the average is taken with respect to  the Hamil- 
tonian (2.1) including the magnetic field term 

The original approach of Mermin and Wagnerl or its 
classical counterpart5, derived for an isotropic system, 
is easily generalized to the present case with two differ- 
ent coupling constants. We obtain the inequality 

In order to see whether there is a spontaneous magne- 
tization we have to take first the thermodynamic limit 
N -i oo and then the limit h -i 0, giving 

In two dimensions (or for J l  = 0 in Eq. (2.7)) the 
integral diverges because of the long wavelength spin 
excitations, and therefore there is no spontaneous mag- 
netization at finite temperatures. On the other hand, 
an arbitrarily small interplane coupling JL  is sufficient 
to render the integral finite and to allow for a finite 
magnetization. This will be discussed in more detail in 
Section V. 

We turn now to the topological excitations which 
are point vortices in two dimensions and vortex loops 
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in three dimensions. A systematic way for introduc- 
ing consistently variables that can be associated with 
vortices in two and vortex loops in three dimensions, 
respectively, has been devised by savit6 (see also Ref. 
7). In two dimensions the low temperature limit of the 
partition function is 

E exp {rBJE m(R) log IR - R1m(R') 

{m(R) )  R#& 

where Z, is the partition function in spin wave approx- 

imation and the constant c is given by 

y being the Euler constant. The summation in Eq. 
(2.15) is restricted to (finite energy) configurations sat- 
isfying the constraint 

where 

In analogy to the point vortices of the 2d model 
one can also introduce topological excitations for the 
3d model. These are associated with the integer valued 
variables t,(R) and are called vortex lines. An example 
of a vortex loop parallel to the x - y plane is illustrated 
in Figure 1. 

We nOtice Ihat the low teln~erature limit ( p J  'b Figure 1: Spin configuration for an elementary vortex 
the partition function is factorized into two independent loop between the XY planes: a) upper x-y plane, b) contributions, a spin wave part and a term correspond- lower x-y plane, c) cut along the >r-z plane. 
ing to an overall neutra1 2d Coulomb gas. The integer 
variables m(R) can be interpreted as point vortices. 
This correspondence between (topological) charges and 
spin vortices appears explicitly in the framework of the 
Villain modela~g. The generalization of SavitYs deriva- 111. T h e  Berezinskii - Kosterlitz - Thouless t ran-  
tion for the 3d Hamiltonian (2.3) is given in Appendix sition 
A. The partition function can be written as 

In this Section we summarize the critica1 behavior 
Z=Z,. of the two-dimensional XY model ( J l l  = J, JI = O 

in Eq. (2.2)), as some of its properties will be used 
exp - 2 r 2 ~  eP(R)V,(R - , later on. We consider first the 1ow temperature regime. { R , R t , ~  tb(RN In spin wave approximation the spin-spin correlation 

function is obtained using Eqs. (2.9) and (2.10). For 
(2'18) large distances /R - R'/ one finds (see (51 for a detailed 

derivation) 
where the vectors R denote the sites of the dual lat- 
tice, l,(R), and p = x,  y ,  z ,  are integers satisfying the 1 
constraint - ([29(R) - 2 9 ( ~ ' ] ~ )  - 

2 
kBT [log(lR - R']) + c], (3.1) 
2 n J  

CIW) - d ( R - e , ) l  = 01 (2.19) where c is given by Eq. (2.16). This yields a power law 

P decay 

e, being a unit vector in direction p. The interaction 
is given by (COS [8(R) - 8(R1)]) IR - R'/-' (3.2) 
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with an expcnent 

The  magnetixation M(h)  due t o  a magnetic field term 
(2.12) is calmlated in a similar way. In spin wave 
approximatian the Hamiltonian is again given by Eq. 
(2.6) with w ( q )  replaced by 

Replacing t h r  trigonometric functions by their long- 
wavelength limits and integrating over a circular do- 
main of radius qo = 2J;; (instead of the Brillouin zone) 
we find 

Together witli Eq. (2.8) this yields the magnetization 
for h -, O 

with a critica'l exponent 

The equations (3.2) and (3.6) are the same as those 
found a t  a cri1;ical point in ordinary second order phase 
transitions. However here the critica1 behavior extends 
over a whole line of critica1 points with temperature 
dependent exponents. We notice that the scaling law 

is fulfilled t o  leading order in T. 
How to  proceed to  take into account the nonlinear- 

ities of the interaction ? A simple method that has 
been used frequently in the theory of structural phase 
transitions1° is the renormalized harmonic approxima- 
tion where ont: introduces an effective harmonic Hamil- 
tonian H. of f he form (2.4) with J replaced w by a tem- 
perature dependent variational parameter J. The  Bo- 
goliubov ineqiiality for the free energy 

where both G,, and the average are evaluated with re- 
spect t o  Ho, yields a variational principle. Thus J I  is 
determined by minirnizing the r.h.s. of Eq. (3.9). In the 
present context this program can be explicitly carried 
out and one fi.ldsn 

? kB T - = exp (-=) 
J 

? is always smaller than J and allows for Iarger fluctua- 
tions than the simple spin wave approximation (2.6). A 
solution of (3.10) exists only for T < T, = ( 4 / e ) J / k ~ .  
In this approximation both the power law decay of the 
spin correlations (3.2) and the critica1 dependence of 
the magnetization on the magnetic field (3.6) are un- 
changed, except that in the expressions for the critica1 
exponents, Eqs. (3.3) and (3.6), J has to  be replaced 
by J .  

A radically different picture has been devised by 
Kosterlitz and Thouless 4 .  One can understand it start- 
ing from the factorized partition function (2 .15) ,  where 
a phase transition can only come from the vortex exci- 
tations coupled by a logarithmic interaction potential. 
At low temperatures the energy term dominates over 
the entropy term in the free energy and the vortex- 
antivortex pairs are confined. The power law decay of 
the spin correlations due to  the spin waves is practi- 
cally unaffected by the topological excitations. Thus 
the magnetic susceptibility is infinite, while, in view of 
the Mermin-Wagner theorem, the magnetization van- 
ishes. At high temperatures the entropy term domi- 
nates and the vortices become free; it follows that the 
spin correlations decay exponentially and the suscepti- 
bility is finite. 

A detailed analysis of the region close to  the critica1 
temperature has been carried out by K o ~ t e r l i t z ' ~  using 
a renormalization group technique. He obtained a fixed 
point solution, which he attributed to the critica1 point 
where the unbinding of vortex-antivortex pairs sets in. 
The critica1 temperature TKT is given by the solution 
of the equation 

with the numerical value kBTKT = 1.35 J .  In approach- 
ing TKT from above, the renormalization group analysis 
yields both a diverging correlation length 

and a diverging susceptibility 

where b 1.5,~ = i ,  and r = i. 
Recently this rather peculiar phase transition 

has been reanalyzed both using an elaborate high- 
temperature expansion13 and finite-size scaling com- 
bined with the theory of conforma1 invariance14. Both 
approaches are consistent with Eqs. (3.12) and (3.13) 
with constants k B T K ~  = 0.90J, b = 1 . 5 8 , ~  = 0.25, a = 
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i [13] and kBTKT x J , v  x 0 . 2 3 , ~  = 0.50 [14], re- 
spectively. We notice that these values agree very well 
with the results of the renormalization group analysis 
by Kosterlitz except for the value of the critica1 tem- 
perature, where there is a discrepancy of about 50%. 
The rather serious disagreement in the values of TKT is 
somewhat puzzling, since renormalization group meth- 
ods have been very successful in predicting Tc for the 
case of the two-dimensional Ising model15. We at- 
tribute it to  anliarmonicity effects on the spin wave 
excitations which have been neglected in Eq. (2.15). 
As pointed out above, these effects can approximately 
be taken into account by replacing the coupling con- 
stant J by a renormalized coupling j ( ~ ) .  This leads 
to  a reduction of both the chemical potential and the 
interaction energy for vortex excitations. The critica1 
temperature is then calculated by replacing J  by 3 ( ~ )  
in Eq. (3.11), where J(T)  is given by Eq. (3.10). Thus 
TKT is obtained as solution of the equation 

We find kBTKT = 0.96J ,  which is very close to  the vai- 
ues deduced from high-temperature series and finite size 
scaling. Further support for our analysis comes from a 
comparison between the critica1 exponents obtained 
on the basis of the renormalized harmonic approxima- 
tion and those extracted from the finite size scaling. 
This is illustrated in Figure 2. We conclude that the 
temperature dependence of the power law decay of spin 
correlations below TKT is doininated by the renormal- 
ization of the spin wave spectrum due to  anharmonicity. 

IV. Critical temperature 

We return now to  the 3d XY model with (strong) 
coupling Jll in x- and y- directions and (weak) cou- 
pling J I  along the z axis. For very small couplings J I ,  
we expect t o  be in some sense close to  the 2d limit, so 
that  a mean-field approxi~nation with respect to  J I  ap- 
pears to  be reasonable. In this Section we discuss the 
magnetic susceptibility for T > T,; the order parameter 
for T < Tc will be treated in Section V. 

A brief derivation for the 3d susceptibility in mean- 
field approxi~nation with respect to  Jl is given in Ap- 
pendix B. The  result is 

where X 2 d  is the susceptibility for J L  = O, i.e. for 
the 2d case. The  divergence of x 3 d  defines the critica1 
temperature T, tlirough the relation 

Figure 2: Critica1 exponent v(T) in the renormalized 
harmonic approximation (full line) and from finite size 
scaling (dotted line). 

For very small J I  X ~ D  has to  be very Iarge, so that we 
can use the asymptotic behavior (3.13), 

where xo is an unknown constant. Inserting this ex- 
pression into Eq. (4.2) we find 

in qualitative agreement with an earlier study using a 
different argument 16. Therefore Tc increases as a func- 
tion of J L ,  starting with an infinite slope a t  TKT for 
J I  = O. For general couplings J L  we use the high- 
temperature expansion for X ~ D  of Butera e t  a1.13. The 
result for Tc is shown in Figure 3 in comparison with a 
recent Monte Carlo ~ i rnu la t ion '~ .  T h e  rnean-field result 
agrees qualitatively with the simulation, although the 
mean-field temperatures are consistently higher than 
the Monte Carlo data. The  quantitative discrepancy is 
undoubtedly due t o  the neglect of interplane fluctua- 
tions. 

It is illuminating to  use scaling in order to  map 
the anisotropic case ( ~ 1 1  # J I )  onto an isotropic model. 
The only requirement is the validity of the continuum 
limit of Eq. (2.1), 

The transformation 
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Figure 3: Critica1 temperature as a function of the 
anisotropy in :nean-field approximation with respect to 
Ji (full line) l'rom Monte Carlo simulations (dots) and 
in mean-field approximation with respect to  a11 cou- 
plings (dotted line). 

(with Jacobia~i = I),  where 

yields indeed :.n isotropic 3d model 

Together with the known value of the critical tempera- 
ture of the isor;ropic 3d XY m~de l ' ~~~"wi th  exchange 
constant J ) ,  k.sT, a 2.25 we find (for fixed J I I )  

This behavior is compared to the Monte Carlo results in 
Figure 4. We lotice that there is excellent agreement 
between the two sets of data for JL/Jll 2 0.2. The 
deviations for Ji/Jll 5 0.2 can be attributed to the 
abundance of kortex loops ~ara l le l  to the x - y planes, 
invalidating tht: continuum limit. This will be discussed 
in Section VI. 

It is also worthwhile to  use scaling for the associated 
Ginzburg-Landau free-energy functional 

1 +- 4 (L PJO - 1) I W I ~  + IWVI~} ,  

Figure 4: Critica1 temperature as a function of 
anisotropy from scaling (full line) , Ginzburg-Landau 
theory (dotted line) and Monte Carlo (dots). 

where A,,p  = x ,  y, z are lattice derivatives and Jo = 
2Jll + JI. The partition function is given by 

Z = n [I" -1 exp (-,BF{$,(R)}), (4.11) 
-m 4.irPJo 

R,a 

where cw numbers the two components of the field 
$ = ($1, S2). Eq. (4.10) is derived in Appendix C. 
The free energy functional (4.10) represents an expan- 
sion in powers of both $ and A,$, which limits the 
applicability of the Ginzburg-Landau theory. In the 
continuum limit the transformation (4.6) together with 
the rescaled fields 

yields the free energy functional 

1 1 +- (L - 1) ldq2 + 6411/14) ,(4.13) 
4 PJo 

where p = Jo/ (J,~'~J:") . An additional scale trans- 
formation 

yields the isotropic Ginzburg-Landau theory with effec- 
tive exchange constant Jo, up to a multiplicative con- 
stant in front of the free energy. This constant cannot 
change the ratio between the exact critica1 temperature 
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T, and the mean-field value Jo/kB. Therefore for fixed 
JJI the critica1 temperature scales as 

Close to  the isotropic limit this result agrees with Eq. 
(4.9). The deviations between the two expressions for 
small JI (see Figure 4) are due to the additional ap- 
proximations of the Ginzburg-Landau theory, in partic- 
ular the expansion up to second order in the gradient 
term a,$. 

V. Order parameter 

In Section I11 we have presented severa1 arguments 
indicating that for the 2d XY model there exists a crit- 
icai l h e  defined by h = 0,o  < T 5 TKT,where there is 
no spontaneous magnetization and both the correlation 
length < and the magnetic susceptibility x are infinite. 
Therefore an arbitrarily small coupling JL will have a 
dramatic effect on the ordering in the 3d case. This is 
confirmed by a simple spin wave approximation". Eqs. 
(2.8) and (2.10) yield the following expression for the 
order parameter 

where 

and the spin wave spectrum is given by Eq. (2.7). The 
integration in Eq. (5.2) is performed over the Brillouin 
zone -ir < q, 5 n,  cr = x, y, z .  The integral is domi- 
nated by small q values and thus we replace the Bril- 
louin zone by a cylindrical domain of equal volume, i.e. 
of radius 2 f i  and height 2n. The error introduced by 
this approximation is of the order of a few percent. In 
the limit of large anisotropy, JI < J l l ,  we obtain 

For JL -+ O, a diverges and the order parameter (5.1) 
tends to  zero. But since this divergence is only loga- 
rithmic, an extremely small JL is sufficient to stabilize 
a magnetization per site of order 1. This same extreme 
sensitivity with respect to  interplane coupling appears 
in the Mermin-Wagner upper bound for the magnetiza- 
tion. The application of Eq. (2.14) to the present case 
yields the inequality 

5 (L) 
kB Ta 

For JL > O.OlJl1 the r.h.s. is already larger than 
the simple mean-field order parameter (with respect to 
both JII and JL), which renders the inequality useless. 

The spin wave approximation is valid only at very 
low temperatures. In order to describe the whole region 
below the critica1 temperature, we use the mean-field 
approach introduced in the previous section. For JL = 
O and T < TKT the magnetization in an externa1 field 
h behaves as 

The critica1 exponent 6(T) and the function ho(T) will 
be discussed later on. For Jl # O and h = 0, the 
spontaneous magnetization is obtained in mean-field 
approximation from Eq. (5.5) simply by replacing h 
by 2 J I  M ,  giving 

The region TKs < T < T, requires special considera- 
tions. Here the leading term to the magnetization is 
linear in h; therefore we replace Eq. (5.6) by 

(the second order term vanishes by symmetry). Pro- 
ceeding as above we obtain the spontaneous magneti- 
zation for JI # O,  h = O in the temperature domain 
TKT < T < Tc, 

The critica1 temperature is again given by Eq. (4.2). 
Unfortunately the expansion (5.7) is not applicable very 
close to TKT, as a11 the nonlinear susceptibilities ~ 2 ~ + 1  

are expected to diverge. For a quantitative determina- 
tion of the order parameter we therefore lirnit ourselves 
to the region below TKT. 

We have seen in Section I11 that the critica1 expo- 
nent 7 derived within the renormalized harmonic ap- 
proximation is in good agreement with the values fonnd 
on the basis of finite size scaling. Therefore we use the 
same approximation for the functions ho(T) and 6(T) 
in Eq. (5.6). It is not surprising that for JI = O,  h # O 
we obtain the spin wave result, Eqs. (3.6) and (3.7), 
with J replaced by jII. The function ho(T) in Eq. (5.6) 
is thus given by 

where the effective coupling jll is determined by 
Eq. (3.10). It is interesting to compare this mean- 
field result for low temperatures, 
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with the corr:sponding spin wave expression, deduced 
from Eqs. (5.1) and (5.3), 

JII) 
M, ( O ,  T )  = (-) (5.11) 

4?r JII 

The two exprt:ssions agree up to a factor of 2; this orig- 
inates from the interplane fluctuations taken into ac- 
count in the spin wave analysis but not in mean-field 
theory with respect to JL. The results are shown in 
Figure 5, whue the region above TKT has to be con- 
sidered as an educated guess. 

Figure 5: Order parameter in spin wave approxima- 
tion (dotted lines) and in renormalized harmonic ap- 
proximation (1.~11 lines) for three different anisotropies: 
JLIJ~~ = 10.-', 10-5, 10-'O (top to bottom). Tlie 
dashed lines represent our guess for the behavior close 
to T,. 

VI. The role of parallel vortex loops 

We have sern in Section IV that the continuum limit 
in z-direction breaks down for very small JL and tem- 
peratures of tl.e order of T K ~ .  In this Section we argue 
that this is due to  the appearance of parallel vortex 
loops. The particular role of these topological exci- 
tations has been emphasized by ~ r i e d e l ' ~ ~ ~ ~  and later 
studied more t horoughly by Korshunov21. 

We have slown in Section I1 (and in more detail in 
Appendix A) that the partition function for the 3d XY 
model with coiipling constants JII in x- and y-directions 
and JI in z-drection can be approximately factorized 
in the low temperature limit into two independent con- 
tributions, the first representing purely harmonic spin 
wave excitations, the second a gas of interacting vor- 
tex loops. Any phase transition has to come from the 
second factor defined in terms of energies 

where V(R - R') is given by Eq. (2.21) and the inte- 
gers ep(R) have to satisfy the constraint (2.19), i.e. the 
associated links form closed loops on the (dual) lattice. 
It is not difficult to calculate the energies (6.1) of ele- 
men ta r~  loops parallel and perpendicular to  the planes, 
illustrated in Figure 6. In the limit of very sma3 cou- 
plings JL(JL « J l l )  we find 

for parallel vortex loops and 

for perpendicular loops. The values of the lattice 
Green's functions V(R) are easily calculated by inte- 
grating over a cylindrical volume of radius 2&, giving 

where y x 0.5772 is Euler's constant. Eq (6.2) suggests 
that the energy Ell of an elementary loop parallel to 
the XY planes is arbitrarily small for JL + 0, whereas 
the energy El of a perpendicular loop is comparable 
to that of a vortex-antivortex pair in the 2d XY model, 
E = 27rJll ($  log 2 + y) . While this latter agreement is 
very satisfactory, the vanishing of EI1 for JL = O is quite 
puzzling. In fact, a quick look at tlie configuration of a 
parallel loop (Figure 1) shows that, besides an energy 
proportional to JI due to misaligned spins on different 
planes, there must be a term proportional to Jll due to 
misalignments within the planes adjacent to the vortex 
loop. A possible resolution of this paradox is to admit 
that a given configuration of spins like that of Figure 1 
contains both vortex and spin wave degrees of freedom. 
The contribution of the vortex variables yields a bare 
energy representing the local effect of the singularity, 
whereas the spin wave variables describe the relaxation 
of the lattice surrounding the singularity. In fact, ex- 
plicit calculations confirm that the elastic energy due to 
the lattice relaxation yields the dominant contribution 
to the energy of a parallel vortex ~ o o ~ ~ ~ .  If this inter- 
pretation is correct, the factorization of the partition 
function into a spin wave part and a vortex part ap- 
pears as a mere mathematical separation of variables; 
in a physical vortex excitation both types of variables 
are necessarily involved. 

Apart from these fundamental questions it appears 
to be rather clear that the excitation of parallel vortex 
loops requires less energy than that of perpendicular 
loops. This is visible in Monte Carlo s i r n ~ l a t i o n s ~ ~ ,  
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Figure 6: Elementary vortex loops both parallel and 
perpendicular to the x-y planes. 

which show that for J I  < JII  the majority of vortex 
loops is parallel to  the x - y planes (for T - T K ~ )  This 
has an immediate consequence for the scaling argu- 
ments presented in Section IV. A large number of par- 
allel vortex loops corresponds to a configuration where 
spins on neighboring planes deviate rather strongly 
from each other, thus invalidating the continuum limit. 
The discrepancy between the scaling prediction for T, 
and the Monte CarIo results for J I  5 O.lJll (Figure 
4) undoubtedly originates from this effect. We may 
then tentatively conclude that in this region of weak 
couplings J L  the parallel vortex loops play an essen- 
tia1 role. Nevertheless the universality principie implies 
that there is no change in the critica1 behavior as a 
function of J I / J I I l  as long as JL  is finite. 

VII. F in i te  n u m b e r  of planes 

In this Section we consider a finite number of planes 
stacked along the z axis with a coupling J I  between 
planes (and a coupling JII  within planes). This prob- 
lem is not of particular interest for its critica1 behavior, 
which is expected to  be identical to that of a single 
plane. In fact, as soon as the correlation length per- 
pendicular to the planes exceeds the thickness of the 
layer, the system becomes effectively two-dimensional. 
This is confirmed by the Mermin-Wagner theorem. The 
spin wave spectrum for M planes consists of M two- 
dimensional energy bands 

where w11(qI1) is the 2d spin wave spectrum and the low- 
est of the eigenvalues wl(X) vanishes due to the contin- 
u o u ~  symmetry of the Hamiltonian (2:4). For infinitely 
extended planes and h --+ O the inequality (2.13) is re- 
placed by 

Since one of the eigenvalues wL(X) vanishes, one of the 
integrals diverges and there is no spontaneous magne- 
tization whatever the number of planes. 

The interest of this system comes from experiments 
on superfluid filrns of variable t h i ~ k n e s s ~ ~  or on thin su- 
perconducting layers consisting of a well defined num- 
ber of planes24-28. The relevance of the XY model 
for these system will be briefly discussed in the final 
section. The number of planes M allows to provide 
additional insight, as various quantities are expected to 
depend sensitively on M. We limit ourselves to the crit- 
ical temperature of the phase transition, which should 
still be of the Kosterlitz-Thouless type. It is straight- 
forward to extend the mean-field analysis of Section 
4 to the present case, using open boundary conditions. 
Some details are given in Appendix B. The critica1 tem- 
perature is given by the solution of the equation 

where x ~ ~ ( T )  is the magnetic susceptibility for the 2d 
XY model with exchange constant Jll Eq. (7.3) co- 
incides with Eq. (4.2) in the lirnit M -+ co. Figure 
7 shows the critica1 temperature (7.3) as a function of 
M for different ratios JL/Jll. We have again used the 
high temperature series of Butera et al.13 for the 2d 
susceptibility. 

In addition to these analytical calculations, where 
the coupling J I  is treated in mean-field approximation, 
we have performed Monte Carlo simulations. The tech- 
nical details that allowed us to obtain the critical tem- 
perature to a high degree of accuracy are explained in 
Appendix D. The results shown also in Figure 7 confirm 
the earlier conclusion that the mean-field treatment of 
the interplane coupling neglects part of the fluctuations 
and thus yields appreciably higher critica1 temperatures 
as compared to Monte Carlo data, except for very small 
couplings J L .  Our results, partly published earlier2', 
are in good agreement with similar computations by 
Schmidt and Schneider30. 

VIII. Discussion 

In this paper we have studied the role of dimen- 
sionality on ordering and fluctuations for the classical 
XY model. We have seen that a good understanding 
of the interplay between small amplitude fluctuations 
(spin waves) and large amplitude excitations (point vor- 
tices and vortex loops) is necessary for describing the 
phase transition from a paramagnetic high temperature 
regime to a phase with long-range order in 3d or alge- 
braic order in 2d at low temperatures. For the two- 
dimensional XY model with its unusual (Kosterlitz- 
Thouless) transition we have found a very simple way 
to take into account this interplay. A simple renormal- 
ization of the logarithmic interaction between (topologi- 
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Figure 7: Cr..tical temperature as a function of the number of planes for various anisotropies Jl/Jll = 1, lO-l ,  10-2 
(top to  bottcm). The bars indicate the estimated error of the simulations. F'ull lines represent the mean-field results 
(with respeci, to  JI .) 

cal) charges according to the renormalized harmonic ap- 
proximation for spin waves yields a value of the critica1 
temperature in excellent agreement with Monte Carlo 
calculations or high temperature expansions. Using the 
same approximation we obtained very satisfactory val- 
ues for the e irponents v(T),  S(T) along the critica1 line 
O < T < 'IKT of the 2d XY model. One can con- 
clude that,  while the origin of the phase transition is 
presumably the unbinding of vortex-antivortex pairs, 
the critica1 behavior below this transition is essentially 
described by (anharmonic) spin waves. 

Most part of this study was concerned with the 3d 
XY model iii the limit of weak couplings in one and 
strong coupkngs in the other two directions. We have 
used various methods for determining the critica1 tem- 
perature both for the infinite system and for a finite 
number of wt:akly coupled planes, in particular a mean- 
field approach with respect to the weak coupling, scal- 
ing argumenís and Monte Carlo simulations. The com- 
parison between the different methods has shown that 
for very wealc coupling in z-direction vortex loops par- 
allel to  the a - y planes play a dominant role. At the 
same time tEe energetics of these excitations and their 
coupling to t he elastic degrees of freedom remains to be 
clarified. 

The extreme sensitivity of a system of uncoupled 
planes with respect t o  any interplane coupling, as small 
as it may be, has been demonstrated by means of the 

spontaneous magnetization, which is rigorously zero at 
finite temperatures in the 2d case, but of order one 
below the critica1 temperature for interplane couplings 
that are many orders of magnitude smaller than the 
intraplane coupling. 

We finally discuss the connection to real materials. 
The most obvious examples are quasi-two-dimensional 
Heisenberg ferromagnets with a large anisotropy term 
forcing the spins to remain essentially planar. Severa1 
examples have been studied experimentally; an exten- 
sive review has been given by de Jongh and Miedema3'. 
An interesting connection between the 2d magnetiza- 
tion in a magnetic field, Eq. (5.5),  and experiments 
on a layered magnet with weak antiferromagnetic cou- 
plings between planes has been made by Patashinskii 
and Pokrovskii". At a certain critica1 magnetic field 
applied to this system the antiferromagnetic ordering 
between planes is destroyed and the system may be con- 
sidered as a collection of independent planes in a field. 
The agreement between the renormalized harmonic ap- 
proximation and the experimentally determined expo- 
nent is encouraging. 

The connection with superfluid films or layered su- 
perconductors is more ~ u b t l e ~ ~ .  In both cases a two- 
component field represents the complex order param- 
eter of the superfluid phase. The mapping onto the 
XY model is achieved by freezing the amplitude of the 
field and allowing only phase fluctuations. With this 
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assumption one neglects large amplitude fluctuations 
associated with points (or lines) where the field van- 
ishes 33. In a superconductor, which corresponds to a 
charged Bose fluid, one has also to  take into account 
fluctuations of the electromagnetic field. These may 
change the nature of the phase t r a n s i t i ~ n ~ ~ ~ ~ ~ .  An in- 
teresting problem arises in this context for a system 
of planes coupled exclusively by the electromagnetic 
field. Neglecting both amplitude fluctuations and vor- 
tex loops perpendicular t o  the planes, one obtains a 
transition of the Kosterlitz-Thouless type, at least us- 
ing the Coulomb gas analogy in its low temperature 
limit21. 

We finally discuss the recent experiments on super- 
lattices consisting of superconducting sheets separated 
by non-superconducting l a y e r ~ ~ ~ - ~ ?  For large separa- 
tion of the superconducting layers, these can be con- 
sidered as independent systems of finite thickness. The 
observed dependence of the critical temperature on this 
thickness is in qualitative agreement with Figure 7, al- 
though much more pronounced. In fact, it is not clear 
to  what extent two-dimensional fluctuations are respon- 
sible for the strong decrease in T, with decreasing thick- 

first use the character expansion 

~ X P  {PJ, cos [29(R + e,)  - 29(R)]} = 

where I , ( x )  is the modified Bessel function of order 
n .  We naturally associate the integer n,(R) with the 
(directed) link from R to R + e,. Inserting Eq. (A2) 
into Eq. ( A l )  and regrouping terms (using periodic 
boundary conditions) we obtain 

ness, as other mechanisms can lead to qualitatively sim- 
ilar r e ~ u l t s ~ ~ - ~ l .  

where 
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A p p e n d i x  A: D u a l i t y  t r ans for ina t ion  

We generalize liere the analysis devised by Savit6 

for the isotropic 3d XY model to  the anisotropic case. 
The  partition function for the Hamiltonian (2.3) is 

where e, is a unit vector in direction p ,  p = 2, y,  z ,  and 
the exchange constants are J, = J ,  = J l l ,  J, = J L .  We 

A,n,(R) = n,(R) - n,(R - e p )  (A.4) 

is the (non-symmetrized) lattice derivative. The an- 
gular integration is now easily performed; i t  yields the 
constraint 

C A , ~ , ( R ) = O ,  VR. (-4.5) 
Ii 

The condition (A.5) allows us to  use the parametriza- 
tion 

where the variables Ax(R) are integers naturally asso- 
ciated with the links of the dual lattice (with vectors 
R at  the midpoints of the unit cells of the original lat- 
tice). The relation (A.6) is illustrated in Figure 8. The 
partition function can now be written as 

where the Dp(,BJp) are cumulants of the functions 



Figure 8: Original lattice link variable n, and associ- 
ated plaquette of the dual lattice. 

i.e. Dl = T1,.!I2 = Tz - T12,D3 = T3 - 2T1T2 - 2T;, 
etc.. In Eq. (A.7) we have dropped a constant 

n, r ~ ~ ( a ~ , ) i ~  
We consider now the low temperature limit PJ, » 

1,  p = x,  y ,  z .  h this limit the leading contribution to  
LIp is proportimal to  (pJ,)1-2p [6] and therefore we 
retain only the term Dl given by 

The partition function (A.7) now reads 

where we have inserted Eq. (A.6). The prime indi- 
cates that,  in order to avoid overcounting configurations 
{n,(R)), a particular gauge has to  be chosen for the 
variables A, (R:, . We choose the gauge 

A, (R) = O VR. (A.11) 

Using the Poisson summation formula42 we can replace 
the discrete var.ables A,,(R) by new discrete variables 
[,(R) and continuum variables @,,(R), giving 

z = zf JJ [J" d w v ]  . 
itp(R)} R,, - 00 

~ X P  {= [2r%(R)@.(R)1 
R,, 

where the sum is over configurations given in terrns 
of C,(R),I,(R) only. Thus there are two independent 
variables [,(R) at each site R of the dual lattice. As 
shown by Savit this gauge-dependent ensemble of con- 
figurations can be replaced by a gauge-independent en- 
semble {!,(R)},p = a:, y ,  z together with the constraint 

xA,! , (R) = O , VR. (A.13) 
/' 

The variables [,(R) are interpreted as integer-valued 
"currents" flowing from R to R+e,. Eq. (A.13) implies 
that these currents form closed loops in the dual lattice. 
Performing the Gaussian integrations in Eq. (A.12) we 
obtain the final form of the partition function 

where 2, is the partition function in the spin wave 
approximation (i.e. with respect to H, defined in Eq. 
(2.6)) and V, (R - R') is given by Eq. (2.20). 

Appendix B: Mean-field approximation for the 
interplane coupling 

We want to  replace the coupling between planes by 
an effective field ho. Thus we introduce the mean-field 
Harniltonian 

(B.1) 
where the first surn runs over nearest neighbor pairs 
within the planes. We use the Bogoliubov inequality 
for the Gibbs potential and determine h. by minimizing 
the r.h.s. of Eq. (3.9). A straightforward calculation 
then yields 

ho = 2JlM(h + ho) (B.2) 
where 

A4 = (S,(R))o (B.3) 
is the magnetization with respect t o  the Hamiltonian 
Ho. The susceptibility above the critica1 temperature 
is found to be 
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The Hamiltonian (B.l) corresponds to uncoupled 
planes in an effective magnetic field h+ho. Furthermore 
h. = O for T > T,, so that in the limit h -, O 

is the susceptibility of the two-dimensional XY model. 
Combining Eqs. (B.2), (B.4), (B.5) we obtain 

This procedure is readily generalized for the case of a 
finite number M of planes with open boundary condi- 
tions. We introduce inhomogeneous mean fields hOL, !? = 
1, ..., M, and corresponding susceptibilities 

where Mt is the magnetization of the 1-th plane. This 
yields a system of linear equations 

Xe = (1 i- JLX~-i  + J ~ x e + i )  x2d, !? = 1, ..., M 
(B.8) 

( x M + ~  = xo = O). These are easily diagonalized. The 
critica1 temperature for the case of M planes is deter- 
mined by the vanishing of the lowest eigenvalue of the 
associated homogeneous system, giving 

Appendix C: Ginzburg-Landau theory 

An equivalent field formulation of the XY model, 
which leads to the Ginzburg-Landau theory in the vicin- 
ity of the mean-field transition temperature, has been 
derived by Kleinert43. The partition function (Eq. 
(A.l) of Appendix A) can be rewritten as 

(C.1) 
where Jo = 2511 + JL,Sa(R),cu = 1,2,  are the x- and 
y-components of the unit vector 

S(R) = (cos d(R),  sin $(R)) . ( c 4  

The operator D reads 

D = 1 +  

where A, and A, are lattice derivatives 

The spin variables in Eq. (C.l) can be formally de- 
coupled by introducing the two-component field $ = 
($i,&). Indeed, one verifies that Eq. ((3.1) is equiva- 
lent to the expression 

The angular integration is easily carried out and we find 

where the free energy functional is given by 

Expanding log I. up to fourth order in $ and up to 
second order in A,$ we finally obtain 

PF = E{& E [J,, ( A x $ a ( W 2  
R 

Appendix D: Monte Carlo procedure 

Until rather recently, the study of the critica1 re- 
gion using Monte Carlo techniques seemed impossible 
because of two reasons. First, in a simulation one is 
restricted to models with a finite number of sites, while 
being interested in the thermodynamic limit. This 
finiteness introduces among other effects shifts in the 
critica1 temperatures and a smoothing of the transition 
peaks. To minimize these finite-size effects, the size of 
the simulated model should be much larger than the 
correlation length of the system, which is going to di- 
verge near a critica1 point. So one has to simulate very 
large systems, and this is difficult, because the com- 
putational effort necessary to achieve a given accuracy 
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scales like Ld,  where L is the number of sites along one 
direction anc d is the dimension of space. Second, in 
a Monte Car o simulation, physical quantities are esti- 
mated by sarnpling over a set of configurations gener- 
ated by a type of random walk, each new configuration 
being obtained from the preceding one through sim- 
ple rules. Successive configurations are then correlated, 
and the amount of correlation depends on the probabil- 
ities of transition between configurations, which them- 
selves depend on the temperature at which the simula- 
tion is performed. Accordingly, the size of the sample 
needed to acliieve a given accuracy, and therefore the 
number of ccnfigurations t o  generate, is going to de- 
pend on temperature. 

It occurs that for a large class of Monte Carlo al- 
gorithms (likc spin-flip Metropolis algorithm or heat- 
bath algorithn), this number of configurations scales 
like (min(L, o)", where ( is the correlation length of 
the (infinite) model and z is called dynamzcal cntzcal 
ezponent, with typical value m 2. If the correlation 
length is small this factor will be negligible, but near a 
critical transiiion it will be very important. This phe- 
nomenon is called "critica1 slowing down". Therefore, 
in the critica1 :egion, one is faced with two simultaneous 
problems witE thesr algorithm : 

1. Very large sys tem must be studied to avoid 
finite-size effects. 

2. The nuniber of configurations one has to  generate 
increases,. 

In practice, this prevents precise studies of the crit- 
ical region: la-ge systems require a great deal of com- 
puter effort tc, generate new configurations, and even 
more configurations are needed as one approaches the 
critical point. The solution to this problem has come 
from the introduction of new types of algorithms, called 
chster u p d a t i ~ g  algorithms 44145, which are character- 
ized by smaller values of z (z 5 0.2), and hence reduced 
critical slowing; down. This has allowed studies of the 
critica1 region. 

Here, we have studied models of size L x L x M, 
with L betwee i 16 and 64, and M ,  the number of lay- 
ers, between 2 and 15. We want to calculate the crit- 
ical temperature T, in the L - oo limit as a func- 
tion of M ,  thc number of layers and the anisotropy 
JI/JII. Periodic boundary conditions are assumed in 
the x and y directions, while free boundary conditions 
are taken in tht: z direction. We have used Wolff's clus- 
ter a l g ~ r i t h m ~ ~  to generate the configurations. For a11 
system sizes u~ to M=10, each spin has been updated 
(on the averagc:) a t  least 5000 times for the sampling, 
and 500 times for relaxation. Runs with larger values 
of L and largei number of sweeps have also been per- 
formed to checlc the stability of the results. The local- 
ization of the critica1 point has been achieved by using 
Binder's fourth order cumulant for the magnetization46 

which should take a unique value at T,, independent of 
L up to finitesize effects of order O( l /L) .  Finite-size 
scaling to the L - oo limit has been used. 
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