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Although there is widespread agreement that the fundamental explanation of the phe-
nomenon Of high-temperature superconductivity in many copper oxide compounds is to
be sought in the interactions of the electrons within an individual CuO; plane, many prop-
erties of these materials are affected by the coupling and contact BETWEEN neighboring
plenes. In the normal state, the "traditional" view as applied to these materials would be
that a three-dimensional Fermium surface exists but isstrongly cylindrical in shape, so that
ony avery small fraction of the electrons can contribute to the c-axis transport. | point out
that to date there is no experimental evidence for this hypothesis, and give an a priori argu-
ment against it; instead, | propose that the normal-state c-axis transport is by "dynamically
denoted hopping”. Asto the superconducting state, most of the evidence pointsto the idea
that the Cooper pairs essentially form within asingle CuO, plane, and that the main role
of ,heinter plane coupling is to stabilize the condensate against fluctuations which can lead
to a finite resistivity even in the condensed phase. | consider the possible mechanisms of
coiipling among vortex "pancakes" in neighboring planes, and point out that in addition
to the well-known Ampere and Josephson couplings mechanisms there exists another one,

namely the higher-order effects of the Coulomb interaction.

|. Introduction

As is well known, in the past six years a wide va-
riety of new miterials has been discovered which show
the phenomenon of superconductivity at temperatures
ranging from &0 to 125 K (for a review of these ma-
terial-and sonie of their properties, see ref. 1). One
striking charac:eristic which all these materials have in
common is that they contain well-separated planes of
Cu and O atoms with the arrangement shown in fig-
ure 1 (CuO, planes); the separation of these planes (or
groups of themr, see below), along the axis normal to
them, which we shall follow convention in calling the c-
axis, ranges from 12 A for YBa,CusOr_5 (YBCO) to
37 A for BiySryCayCusO;0 (BSCCO 2223), and may
in fact be arbitrarily large for the so-called “interca-
lated" material (see below). To be sure, not all ma-
terial possessirig such well-separated CuQs planes are
high-temperature superconductors, even when they are
metallic (and raany, of course, are not); for example,
the compound Bi2SraCu O¢, which has this property,
becomes superconducting only below 10 K. However, it
seems clear that it isnot an accident that every material
discovered to dite which has a transition temperature
appreciably above 30 K falls into this class.

The behavior of these new “copper oxide" su-
perconductors s highly anomalous in both the nor-

mal and the superconducting phase, and at present
there is no widely agreed theory which describes them.
One hypothesis, however, would probably receive fairly
widespread agreement, namely that the fundamental
mechanism of superconductivity is to be sought in the

interactions of theelectrons moving in the CuO; planes,
and the principal role of the atoms interposed between
these planes (e.g. Y and Ba atoms and the "chain"
Cu and O atomsin YBCO, the Bi and other atoms in
BSCCO, etc.) isto act as donors or acceptors and thus
control the number of electronsin the planes. As are-
sult, most of the theoretical work on the behavior of the
high-temperature superconductors has tended to focus
on the properties of a single CuO, plane, and to treat
the effects of the interactions between these planes, if
at all, only as an afterthought.

Nevertheless, it is clear the that obtain a complete
theory of the properties of the high-temperature super-
conductors (hereafter HTS) it is essential to consider
the waysin which contact and transport between neigh-
boring planes affects them. This is obvious as regards
transport properties such as the c-axis electrical resis-
tivity; it is a priori less obvious as regards apparently
"nondirectional” properties such as the onset of super-
conductivity itself, but we shall see below (section V)
that inter-plane contact must in fact be an essential
ingredient in controlling these also. Therefore, in this



130

Figure 1.: The arrangement of Cu and O atorns in the
Cu0Q, plane of atypical high-temperature superconduc-
tor. Shaded circles represent Cu atoms, open circles O
atoms.

paper | will assesssome of the experimental information
currently available on the question of c-axis transport
and contact, and consider its theoretical implications.
This is certainly not intended as a complete review of
the subject; in particular, | shall not attempt to discuss
those theoretical papers (a minority, but still a con-
siderable number!) which have invoked "inter-plane"
processes as an ingredient in the microscopic theory of
in-plane superconductivity. The plan of the paper is as
follows: in section II review some of the experimental
information available on c-ai s transport and contact in
the normal phase, and in section I consider its impli-
cations for theoretical models of that phase. Similarly,
sections IV and V cover respectively the experimental
and theoretical aspects of the superconducting-state be-
havior. Section V1 is a brief conclusion.

A few general remarks before we start. First, it is
well known that in YBCO the unit cell contains not one
but two CuQ, planes, separated by a distance (~ 3A4)
which issmall compared to the c-ai slattice spacing (12
K). Similarly, the compounds BSCCO 2212 and 2223
contain respectively pairs and triples of such closely-
spaced planes, and similarly with the T1 compounds.
For the purpose of this paper | will always regard such
pairs or triples of CuO, planesas equivalent to a single
plane, and the c-axis "transport” and "contact™ will
refer to that between neighboring groups (i.e. neigh-
boring unit cells).

Secondly, while the really dramatic anisotropy o
properties of the HTS such as resistivity refers to
the difference between the c-axis and ab-plane (CuO,
plane) behavior, that fact that all currently known
HATS are of orthorhombic rather than tetragonal crys-
tal symmetry means that there rnay be an appreciable
anisotropy of the behavior even in the ab-plane; for
example, in untwinned YBCO single crystals the re-
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sistivity is found? to be anisotropic within this plane
by a factor of ~ 2. For the purposes of this paper |
shall aways neglect this phenomenon and speak sim-
ply of the "ab-plane” properties as contrasted with the
"c-axis' properties; if necessary, the former should be
interpreted as an angular average.

Thirdly, while it is clear that an obvious way to
examine the effects of c-axiscontact isto vary the CuO,
plane separation in asystematic way (cf. in particular
section 1V), it should be emphasized that such a process
has a number of different effects. The most obvious is
to vary the single-electron transition matrix element
from one plane to the next; however, in addition it rnay
vary the chemistry® and hence the number of in-plane
carriers, it will certainly change the effective screening
of the in-plane Coulomb interaction due to inter-plane
effects* and rnay do other things as well. Thus caution
is necessary in interpreting the effects of such variation.

Finally, it isa natural and obvious question to what
extent the anomalous propertiesof the HTS, or perhaps
asubset of themsuch as the c-axis transport properties,
area consequence only of the "two-dimensional™ nature
of these materials and are independent of the detailed
properties of the CuO, planes as such. In principle,
this question could be examined by seeking analogs for
the characteristic HTS behavior in other approximately
2D structures such asintercalate graphite or artificialy
engineered superlattices of Nb with an insulating ma-
terial. | shall not attempt to discuss this question here,
merely remarking that while limited similarities can be
found, they do not seem to me particularly helpful in
understanding the properties of the HTSsince their ex-
planation in the "analog" materials is itself controver-
sial.

II. Normal-state Properties: Experimental

In assessing the available experimental data on the
c-axis properties of the HTS it should be borne in mind
that the influence of impurities or disorder on these
properties is likely to be even more severe than on the
ab-plane ones. Crudely speaking, this is because on
any model of the c-axis transport, contact between the
planes is "difficult” compared to contact between dif-
ferent atomsin a single CuO, plane, and therefore any
kind of disorder or impurity which can make it any
easier is likely to have a disproportionate effect. 1t is
therefore essential that experiments be done with sin-
gle crystals, and moreover the most informative exper-
iments rnay be those done with stoichiometric materi-
al~e.g. YBa;Cu3Oz; in the nonstoichiometric com-
pounds YBa;CuzO7._5 with nonzero 6 the disorder of
the "chain” oxygens, which rnay act as a "bridge” be-
tween neighboring planes, rnay play an important role.

The most widely measured c-axis normal-state
transport property of the HTS is the resistivity, which
in accordance with convention we denote p,. Thesalient
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fact is that in all the HTS the room temperature value
of p. is very much greater them that of the ab-plane
resistivity pqs, the ratio pqp/p. ranging from ~ 0.03 for
LSCO to [103] for BSCCO (To the best of my knowl-
edge p. has not beem measured for YBCO-PrBCO in-
tercalates (se: e.g. ref. 5), for which one would ex-
pect the ratio might be even smaller.). This very severe
anisotropy of course means that any kind of crystalline
disorder may influence the observed p. substantially,
by providing mechanisms for the much lower ab-plane
resistivity to “short out” the true c-axis resistivity.

The temperature-dependence of the c-axis resistiv-
ity is controversial. Digressing for a moment, we recall
that in the best samples, with the possible exception
of these samples which are furthest from stoichiometry,
the ab-plane resistivity appears to be almost linear in T,
with zero offset®, over a range which typically extends
from a few hundred degrees all the way down to the
superconductiag transition temperature (which for Bi
2201 is below 10 K). The numerical value of pgp at room
temperature is ~ 150 — 300 uQ cm, and, remarkably,
varies by only a factor of 2-3 over a very wide range
of the HTS. It is amusing (and may or may not have
some fundameatal significance) that if we interpret this
in terms of the “sheet resistance” Rg of a single CuO3
plane (i.e. the resistance of a square piece of the plane,
assumed to be the only conducting region) then RE at
room temperature is of the order of a few k€2, i.e. of the
order of the “findamental quantum unit of resistance”
Rg = h/e* = 25kQ.

Returning -o the c-axis resistivity p., we find that
in most measurements to date p. has appeared to be
approximately linear in temperature at high tempera-
tures, with small or zero offset, but to rise substantially
above the linear graph at lower temperatures, with
dp./dT often becoming negative as T; is approached.
(In the literature such behavior (dp./dt < 0) is of-
ten characterized as “semiconducting”, while that with
pe < T is called “metallic”; however, I believe this ter-
minology is best avoided since it begs the question as
to the mechanism). However, this behavior appears
to be extremely sensitive to disorder”; generally speak-
ing, the greater the disorder the more substantial the
upturn as 7T, is approached. Although the situation
is perhaps not yet completely clear, it appears that
in the purest stoichiometric YBCO crystals, at least,
pe is linear in 7 with a small but nonzero offset’. In
the case of BSCCO, a very intriguing result has re-
cently been reported by Xiang et al®, who find that
while the origiral crystal shows a sharp upturn in p.
above T,, when it is intercalated with a single layer of
iodine the behavior becomes perfectly linear in 7. (It
is also remarkakle that in this experiment, while the in-
tercalation increases pgp, the increase can be explained
entirely in terms of the (measured) decrease of the den-
sity of CuO4 plenes, the sheet resistance RZ® of a single
plane remaining unaffected. This would seem to indi-

cate that the “chemistry” relevant to the CuQO; planes
is not affected by the intercalation.) Another relevant
observation is that as we vary the stoichiometry so as
to approach the insulating transition, both p. and pas
diverge, but the ratio p./p,s also diverges®, with the
c-axis upturn becoming more prominent. An obvious
question is whether e.g. the increasing departure of
pe from linearity with departure from stoichiometry in
YBCO is a consequence of the increasing disorder in
the arrangement of the chain oxygens (which may pro-
vide a bridging mechanism between the CuQO; planes)
or rather to the fact that the ab-plane behavior is itself
approaching an insulating transition. At present this
question seems moot; the only clear statement one can
make is that there do exist samples (pure untwinned
crystals at stoichiometry) where the behavior of p. is
purely linear. This observation alone would seem to
rule out theories such as that of Anderson and Zou!?
in which the “true” c-axis resistivity is proportional to
1/T and the linear term is a result of contamination by
the ab-plane resistivity.

Two other d.c. c-axis properties which have been
measured experimentally are the Hall effect and the
thermoelectric power. The interesting component of
the Hall coefficient in the present context is that for
which the magnetic field lies in the ab-plane, so that
for one of the (antisymmetric) coefficients the direc-
tions of current flow is along the c-axis. In contrast to
the “ab-plane” Hall coefficient (H | ¢), which is usu-
ally positive and shows an unusual temperature depen-
dence, the c-axis coefficient is negative and only weakly
temperature-dependent®, as in many simple metals. As
to the thermoelectric power, this appears to be positive,
at least in YBCO™.

Some measurements have been made of the ac con-
ductivity o(w) in the c-direction. At low frequencies (1
GHz) o(w) appears to be essentially identical to ¢(0) as
a function of temperature, while in the optical regime
the behavior of o.(w) is qualitatively similar to that of
oap(w).

Finally, I note that any experiment which claims
to measure the shape of the (three-dimensional) Fermi
surface is in principle relevant to the nature of the c-
axis transport. It seems more appropriate to discuss
such experiments in the context of the theoretical im-
plications of experiment in this area, and I therefore
postpone it to the next section.

III. Normal-state Properties: Implications

The simplest model of electrical conductivity, and
the one which describes the behavior of most simple
metals, is of course the well-known Bloch-Sommerfeld
model: the electrons are described in a basis of the
Bloch-wave states appropriate to the crystalline lattice
in question, and are conceived as moving freely under
the influence of the electric field in the intervals between
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collisions with static impurities, phonons or other un-
specified excitations. In thesimplest form of the model,
in which the Fermi surface is an €llipsoid, (figure 2),
the resulting formula for the electrical resistivity along
a principal axisi of the crystal isgiven by

—_— K]

p?(T) - nez (T) (31)
where m; and r; are respectively the effective mass and
phenomenological relaxation time (dueto collisions) ap-
propriate to the axis in question (actually these quanti-
tiesarein general averages over the Fermi surface of the
relevant quantities), and n is the number of electrons
per unit volume.
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Figure 2.: Simplest possible Fermi surfacein the Bloch-
Sommerfeld model.

It is very straightforward to see™ that this "sim-
plest" form of the Bloch-Sommerfeld model cannot re-
alistically describe the c-axis resistivity of the HTS, at
least in the case of the "most anisotropic" ones such as
BSCCO. Since we have T~ gi/UFi and m:‘ ~ ppi/’t)pi
where £;,pr; and vp; are suitably averaged values of
the relevant mean free path, Fermi rnomentum and
Fermi velocity appropriate to the relevant direction
(here the c-axis), we can rewrite formula (3.1) in the
form pi(T) ~ pri/ne?6i(T). Since pr; on this model
cannot exceed 2#/a where ais the relevant |attice spac-
ing (otherwise the Fermi surface intersects the edge of
the Brillouin zone, see below), we find

pilT) < 20/ (ne’a - £(T)) (3.2)

It is convenient to re-express this result by dividing by
pas and introducing the “quantum unit of resistance"
Rg = h/e? and ab-plane sheet resistance R discussed
above: thisgives

RQ a

Ral Z:(T—) (3.3)

pelpar S (m/nd®) -
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Now since for all except those materials closest to the
insulating transition the number of conduction eec-
trons per unit cell, which is of order na3 (or less) is
~ 1, while as we have seen Ro/RL, is aso of order
unity, the above formula, when applied e.g. to BSCCO
(pe/par ~ 10°) must imply that the c-axis free path
£.(T) is tiny compared to the c-axis lattice spacing a.
Under these conditions the concept of a "mean free
path" of Bloch waves propagating in the c-direction
clearly makes no sense.

However, the above argument starts from the
premise that the Fermi surface does not intersect the
face of the Brillouin zone, and this is anyway a priori
implausible. In fact, microscopic band-structure calcu-
lations based on the local density approximation (see
e.g. refs. (11, 12)) predict that the dispersion o the
bandsin the c-direction3 isso weak that, very schemat-
ically, the shape of the Ferrni surface is more similar to
figure 3, where k; denotes the c-axis component of the
wave vector. (In red life, of course, there may be sev-
eral different bands which intersect the Fermi surface,
so the picture is more complicated.!:12) In so far as
the results of the LDA calculations can be described
by a tight-binding model, the effective hopping matrix
element along the c-axis, t,, is a small fraction of that
in the ab-plane: typically, . /¢, varies from ~ 0.07 for
YBCO to ~ 0.015 for BSCCO.** It should be noted
for future reference that this fraction, though small, is
much larger then the ratio (~ 10=°) of the correspond-
ing conductivities. However, in the present context the
salient point is that such values of ¢./t,; aready give
rise to highly "cylindrical" Ferrni surfaces like that in
figure 3.

Figure 3. More plausible Fermi surface for the HTS
(schematic).

For ageneral Bloch-Sommerfeld model of this type,
the relevant expression for the diagonal component of
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the conductivi:y tensor a, = p;! is

FS
oi(T) = & / v

(B)r@)  (3.4)
UF()

where v (fi) is the magnitude of the Ferrni velocity
(= A~ Vie(k'|) at point i on the Fermi surface and
vpi(Q) its i-th component. The integral in eq.(3.4) is
to be taken only over the “open” parts of the Fermi
surface; thus, the states between the dashed lines in
figure 3 canno! contribute to the c-axis conductivity,
as is intuitively obvious since they effectively consti-
tute aset of one-dimensional filled bands. If one writes
vp;i()ry(R) = % () and uses the fact that for any but
pathological geometries the quantity [ dSsiné;(f) is a
measure of the fraction of the Fermi surface outside the
dashed lines (i.e. the shaded area in figure 3), it is
clear that the net result is to replace, in formula {3.2),
the total numb:r of conduction electrons by a quantity
nes; Which is of the order of the number in the shaded
region, i.e. in the "effective” part of the Fermi sea.
Thus it is clear that thre is no obvious inconsistency,
even for BSCCO, in describing the c-axis transport by
a Bloch-Sommerfeld model with ¢,(T) > a, provided
that the ratio n.ss/n is small enough (< 107%). How-
ever, since the quantity n.;;/n in atight-binding model
isevidently of order ¢, /t,,;,it isclear that existing band-
structure calculations would then have to overestimate
the latter by a arge factor.

We will nou give an a priori argument against the
validity of a 3D Bloch-Sommerfeld model as described
above, at least ‘or extreme cases such as BSCCO. The
definition of a '‘Bloch wave" with respect to the c-axis
requires that an electron be able to hop coherently from
one plane to the next, which in turn requires that to a
good approximation the energies (neglecting hopping)
of the two states in question are degenerate. If the en-
ergiesin question differ by an amount much larger than
the hopping matrix element ("detuning"), as happens
for example in an amorphous semiconductor due to the
differences in stitic potential energy, then no coherent
hopping is possible and the process of transport must
be described by acompletely different model, e.g. Mott
variable-range hopping. Now in a pure stoichiometric
HTS there is perfect translational symmetry between
one plane and the next, and therefore there should be
no question of statzc detuning. However, the crucial
point is that be:zause of very highly layered nature of
the material, there should be large and in many cases
more or less ind=pendent zn-plane fluctuations in each
of the planes, and hence there 1s a very substantial de-
gree & “dynamical” detunzng, which may lead to what
in adifferent cortext has been christened!® "dynamical
destruction of the band ” In such a situation one would
expect that while wzthzn a given a-b plane the transport
might still be of Bloch-wave type, the transport along
the c-axis would have to be described by a totally dif-
ferent picture. Such a situation has not to my knowl-

edge been previously studied in'any solid-state context,
and indeed the copper oxide superconductors may be
thefirst experimental realization of it. Note that such a
picture need not imply "localization" in the c-direction,
and hence the familiar objection that c-axislocalization
cannot coexist with ab-plane delocalization (because of
the theorem!® that all strictly 2D electron systems with
any finite impurity scattering will localize) does not ap-
ply toit, at least primafacie.

Let ustry to put in a few numbers to estimate the
plausibility of this scenario. First, a quite general con-
sideration: the fluctuation of the relative energy of two
corresponding points in neigkboring planes (figure 4)
can scarcely be lessthen the energy fluctuations within
asingle plane (unless the planes are much more tightly
correlated than we have any a priori reason to expect).
Now it is well known that if the Rloch-Sommerfeld
model is used to describe the in-plane electrical re-
sistivity, the relevant electron lifetime r,,(T) against
collisions (with entities which in any given model may
be identified, e.g. as spin fluctuations) is exactly of
order h/kT. It is plausible in the present context to
take the "in-plane energy fluctuation" to be of order
R/ 1 (T); if anything this is liable to understimate it,
since the 74,(7T") which appears in the resistivity may
be lengthened due to e.g. partial conservation laws.
Thus, we may estimate the "detuning" energy Ae (fig-
ure 4) to be 2 kT This then should be compared with
the c-axis tunneling matrix element ¢.. If we use for
the latter the theoretically estimated (by band struc-
ture calculations) value, then we find that for BSCCO
t. is comparable with kT at room temperature, and
is somewhat larger for most of the other HTS; thus,
on the argument we should not expect substantial de-
tuning. However, 'this conclusion is misleading: as we
have seen, the "experimental” value of ¢. necessary to
Jjustify a Bloch-Sommerfeld picture of the c-axis trans-
port is three orders of magnitude smaller, so taht we
have kT >> ¢, for all temperatures of interest. Thus,
at least in the case of BSCCO, the Bloch-Sommerfeld
rnodd s internally inconsistent even in its more general
form.

1 —————

Figure 4.: An electron hopping hetween planes 1 and 2
in the presence of a "detuning” Ac.

The reader may object that it is not clear that #/7
is in fact a reasonable estimate of Ac, in particular
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since thefrequency distribution of the fluctuations may
be crucial. Let me therefore briefly sketch a second
phenomenological argument which leads to the same
qualitative conclusion. Let is consider a small square
piece of a single CuQO, plane and focus on the fluctu-
ations of the electrostatic potential across it. By the
usual fluctuation-dissipation theorem, the mean-square
voltage fluctuation within a frequency range from 0 to
Aw(<< kT/h) is4kT - RE -Aw. This, then, is a reason-
able estimate of the voltage between two such squareson
neighboring planes, and the corresponding mean-square
fluctuation of the electron energy is 4e2kT - R% . Aw.
Suppose now that we think of the motion of the elec-
tron between these two regions as a "spin-boson" prob-
lem (seee.g. ref. (17)): then, since the spectrum of the
fluctuationsis "ohmic" in the classification of ref. (17),
we can identify the dimensionless dissipative parameter
adf that reference as4 R (T)/Rg, which is > 1 at |east
for temperatures of the order of or above room tempera-
ture. Now the dynamics of thespin-boson problem with
ohmic dissipation has been intensively studied, and it is
known that coherent ("underdamped™) motion is pre-
dicted to be observed (for k7' >> A) only in the regime
of parameters defined by ak7/A < 1, where A isthe
renormalized hopping matrix element, here to be iden-
tified with t,. Thus, this argument also leads to the
conclusion that no coherent hopping is possible if ¢. is
fitted to a Bloch-Sommerfeld model, i.e. that the latter
model is internally inconsistent as applied to the c-axis
transport. Althoiigh the argument as it stands needs
to be taken with a pinch of salt (in particular because
it assumes zero correlation between planes in the elec-
trostatic fluctuations, which is probably unrealistic), it
should be possible to sharpen it up, and it is highly
suggestive that we must look for a completely different
model of the c-axis resistivity, which takes into account
the "detuning” from the start. Such a model is being
currently developed by L.-Y. Shieh and the author!®.

Of course, quite independently of these theoretical
considerations, the question of whether th« c-axis trans-
port is of coherent (Bloch-Sommerfeld) type or not can
in principle be settled definitely by experiment; in par-
ticular, reliable observation of a truly 3D Fermi sur-
face would be conclusive evidence in favor of coherent
transport. Probes which are routinely used to mea-
sure the (3D) Fermi surface in more familiar materials
include angularly resolved photoemission spectroscopy
(ARPES), 2-dimensionally resolved positron annihila-
tion spectroscopy (ACAR), and, most usefully of all, de
Haas-van Alphen oscillations (dHvA). Unfortunately,
to date none of these techniques has definitively an-
swered the question of interest to us. In the case of
ARPES, this is because almost all experiments!4 have
been done in a geometry where the relevant surface of
the sample is (for reasons of experimental practicality)
the ab-plane. Since it is only the components of mo-
mentum parallel to the surface which are conserved in
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the process of escape from the crystal, such experiments
give no information on the c-axis dispersion, except for
the qualitative information that if a Bloch-wave picture
is applicable, it is very small. Similarly ACAR experi-
ments with the usual geometry?® measure only the mo-
mentum distribution n(p) integrated with respect top,,
and hence again primafacie cannot distinguish between
coherent and incoherent models. The most interesting
recent data in the present context are the dHVA re-
sultsof Fowler et al.2! on YBCO (with field || ¢); these
show evidence for three (and only three!) dHVA peri-
ods, which in thestandard interpretation?? are ascribed
to extremal orbitson the Fermi surface. One might at
first sight think that the mere existence of more than
one period should be evidence for a 3D Fermi surface
as in figure 3, with for example two of the periods as-
sociated with points A and B; however, it isclear, even
apart from detailed band-structure calculations, that
provided the transport between the pair of CuO4 planes
withintheY BCO unit cell is coherent, this already must
provide two extremal orbits (corresponding to the even-
and odd-parity bands), and a third will arise from the
“chain” band, so that even in a purely 2D picture it
is possible to accommodate the observations. Finally,
in the context of a question which is different but re-
lated, we should note that inelastic neutron scattering
experiments on YBCO?3 show a modulation along the
c-direction which clearly reflects coherence in the nag-
netic structure between the pair of planes within unit
cell, but no evidence for any coherence between planes
in neighboring cells. (In any case, even if such coherence
were to be seen, it is not clear that it would necessarily
imply coherence in the single-electron transport).

To sum up, the usual Fermi surface probes have so
far given no clear answer to the question of the nature
of c-axis transport in the HTS. In part this may be
because very little work has been done on the experi-
mental consequences of alternatives to the 3D Bloch-
Sommerfeld picture. In this context one can make
one qualitative prediction without detailed calculation,
namely that if the c-axis transport is totally incoher-
ent then any component of the magnetic field in the
ab-plane should be very nearly irrelevant?4, and that
hence the dHVA behavior should be simply afunction
of the component of the field along the c-axis. Unfor-
tunately, to date no dHvVA experiments have been done
in which the field direction is varied.

IV. The Superconducting State: Experiment

The influence of inter-layer coupling on the super-
conducting state of the HTSisin many ways much more
dramatic then its effects in the normal state. From a
theoretical point of view thisis not altogether surpris-
ing, since it is known that the off-diagonal long-range
order associated with bulk 3D superconductivity cannot
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occur in astrictly 2D system?®, and in such asystem the
phase transition to a superconducting state is of a dif-
ferent type (the so-called Kosterlitz-Thouless? or topo-
logical type). One might expect intuitively that if one
starts from completely uncoupled planes an gradually
switches on the interplane interaction, the properties
of the system would change gradually from Kosterlitz-
Thouless to bulk 3D-a qualitatively change. Thus, in
some sense one might expect that many of the most fun-
damental aspe:ts of superconductivity are controlled by
the interplane contact, and thisis borne out by experi-
ment, particularly (but not only) in the presence of high
magnetic fields. It isimpossible in the space of a short
paper such as this to review all the relevant data, so |
shall concentrete on a few selected experiments which
show up therole of theinter-layer contact most directly.

An important qualitative difference between the
HTS and the conventional "old-fashioned" supercon-
ductors is that in the case of the former the very def-
inition of "sup~rconductivity"is a nontrivial question.
At the transition temperature T, in a conventional su-
perconductor, the electrical resistivity p(T') falls from
a finite value typical of the normal state to zero over
a range AT, which is usually unmeasurably small and
aways very small compared to 7, itself. By contrast, in
atypical HTS :he decrease of p(T') is much less abrupt
and AT, particularly in high magnetic fields, may be
comparable to T;: see for example the graphs in the
paper of Briceiio et al?”. Thus, rather than introduc-
ing a single parameter T, it is conventional to define
an "onset temperature” Toneet at which the resistivity
starts to deviate appreciably from its (usually dowly
varying) normal-state form, a “midpoint”temperature
Thi¢ at which g(T") is half its normal-state value and/or
a "zero-resistar ce” temperature T,, at which p(T") be-
comes unmeasurably small. It should be emphasized
that in general these temperatures may be different for
pab and p. (cf. below).

The most cbvious question one can raise is. Is a
finite degree of interplane contact essentia to the ex-
istence of superconductivity (zero resistance)? In one
sense this question is definitively answered in the neg-
ative by the experiment of Terashima et al?®, who find
that a single layer (i.e. a layer one unit cel thick) of
Y BCO sandwiched between the semiconducting mate-
rial PrBCO shows zero ab-plane resistance, though at a
temperature (~ 30K) far below the (fairly well-defined)
T. of bulk YBCO (~ 90K). It is significant that the
depression of the onset temperature is much smaller
(~ 10K); since the measured Hall number o thesingle
layer is smaller than for bulk YBCO, Terashima et al.
conjecture that this depression issimply due to the de-
creased carrier lensity in the CuQ, plane rather than
to the absence of interplane coupling, and that if by a
suitable choice cf matrix the carrier density of thesingle
layer could be made equal to the bulk then T,,s.¢ Would
take the bulk value. Other work?®3% had demonstrated

that when YBCO is intercalated with PrBCO T, is
very sensitive to the intercalation, dropping rapidly
with the spacing of YBCO layers and eventually sat-
urating around 10-20 K, while Typeet iS much less sen-
sitive. The most natural conclusion from this group of
experiments is that the basic transition responsible for
superconductivity occurs in the individual layers, at a
temperature Tonset Which is essentially the bulk value
for the relevant value of carrier concentration, but than
when the layer is sufficiently decoupled from its neigh-
bors fluctuations keep the resistivity finite down to a
temperature which is a small fraction (~ 0.1 — 0.2) of
Tonset- The principal role of the interlayer coupling is
then to stabilize the individual layers against the fluc-
tuations and thereby decrease the width of the resistive
transition.

It should be emphasized that all the above remarks
refer to the ab-planeresistivity; tothe best of my knowl-
edge the c-axis resistivity has not been measured for
any intercalated structure (nor, of course, for a sin-
gle layer!). However, recent experiment?’ on the c-axis
resistivity o pure BSCCO show a very intriguing be-
havior, particularly as regards the effect of a magnetic
field applied parallel to the c-ais. For the single crys-
tal used in the experiments the normal-state values of
pas(T) and p.(T) are insensitive to field, and show, re-
spectively, the usua linear dependence on T and the
familiar upturn a little above T, (~ 90K for this sam-
ple). In zero magnetic field, Tonset (= T¢) is the same
for pay and p., and the temperature-dependence below
T, is virtualy identical; both p,;(7T") and p.(7") drop
rapidly, reaching "zero resistance” around 85 K. Appli-
cation of a magneticfield of afew Teslaalong the c-axis
dramatically changes these results: in the ab-plane the
resistive transition has the same onset temperature but
is much broader, with T,, ~ 15K for H ~ 7T (seefig-
ure5). Thisinitself isnot particularly surprising, since
qualitatively similar behavior is seen when the field is
in the ab-plane (see e.g. ref. 31); the obvious qualita-
tive explanation in each case is in terms of phase dips
mediated by the vortices created by the field. What is
more intriguing is the behavior of the c-axis resistivity
(figure 5). In afield of 7T this simply extrapolates its
normal-state "upturn" behavior past 7., continuing to
rise down to ~ 60K, whereit reaches a sharp maximum
and thereafter dropssteeply to reach the zero-resistance
axis at ~ 15K (similarly to pq3). In other words, the
effective onset temperature of superconductivity along
the c-axis is a factor of ~ 30% lower than that for the
ab-plane! A possible explanation for this intriguing be-
havior has been proposed by Kim et al3? (see also ref.
27).

| now turn to a set of measurements of a rather dif-
ferent nature, whose goal is to understand whether the
themnodynamic (as distinct from the transport) prop-
erties correspond to 2D or 3D behavior. Provided one
works sufficiently close to the transition temperature
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Figure 5.: Temperature-dependence of pgp and p. for
BSCCO in a field of 7T (schematic, after ref. 27). Note
the different scales. T, is the approximate onset tem-
perature in zero field.

(on either side), a good description of the thermody-
namics should be given by Ginzburg-Landau theory
(see e.g. ref. 33, and below, section V). It is then possi-
ble to calculate the effect of critical fluctuations of the
order parameter on quantities such as the specific heat,
the diamagnetic susceptibility etc., and the theory pre-
dicts that the temperature-dependence of these quan-
tities should depend on the effective demensionality of
the fluctuations. For example, the diamagnetic suscep-
tibility should diverge as the temperature approaches
T, from above: for effective dimensionality d = 3 the
divergence should be of the form (T, — T)~1/2, while
for 2D it is proportional to (7, — T)~!. Analysis of
the experiments shows3* that the 3D formula holds in
the limit T — T,, while for larger values of T, — T the
2D formula takes over. This is consistent with theo-
retical considerations (see section V). Analysis of the
specific heat data is also consistent with this picture
though in this case there are substantial experimental
complications.34

V. Superconducting State: Theoretical Consid-
erations

Since there has been a certain tendency in some of
the literature to assume that all the concepts of BCS
and Ginzburg-Landau theory can be taken over unmod-
ified to the case of the HTS, I will start with a brief
discussion of relevant aspects of the former, restricting
myself for simplicity to the case of a pure superconduc-
tor.

A. J. Leggett

In the BCS theory of a translation-invariant elec-
tron system, the ground state in zero external field
in the particle-number-conserving representation takes
the form®®

‘I’N = A(ﬁ(??l - 772)¢(7_‘.3 - 7:‘4)...(}5(771\1_1 bt T-"N), (51)

where A is the antisymmetrization operator and I have
omitted the spin indices for simplicity of notation.
Note that the relative wave function ¢ is the same for
all pairs, so that the wave function (5.1) is qualita-
tively similar to that of a Bose condensate of diatomic
molecules, the crucial difference of course being that
the range of ¢ is large compared to the typical inter-
electron distance. It is often more convenient to use the
“number-nonconserving” representation introduced by
BCS38, and in particular to introduce the “anomalous
average”

F(7: R) =< W/(R+#/2¥|(R-7/2)>, (52)

which plays the role of an effective wave function for
the Cooper pairs. In the ground state (or more gen-
erally in thermodynamic equilibrium) in zero external
field F(7: R) is a function only of the relative coordi-
nate 7 and is then related to the function ¢ by a simple
integral equation33; however, in the presence of e.g. a
magnetic field or in nonequilibrium situations it may
depend also on the center-of-mass coordinate R. Con-
sidering the case where F is a function of 7 only, we may
define the BCS zero-temperature coherence length £q as
the effective “range” of the function F', which charac-
teristically falls off as e="/€o for r >> £o; thus, in an
intuitive sense £p i1s the “radius” of the Cooper pair at
zero temperature. This radius is only weakly depen-
dent on temperature and in particular is finite and of
order &y even for T' — T,.

In the Ginzburg-Landau theory3?, one mtroduces
a phenomenological complex order parameter \II(R)
which with hindsight may be identified, apart from nor-
malization, with the quantity F(0 : R) defined in BCS
theory; i.e. \II(R) is effectively the wave function of the
center of mass of a Cooper pair. One then expresses
the free energy of the system, for T close to T,, as a
functional of \II(R) in the standard way®3. As a result
there appear two characteristic lengths: the London
penetration depth A(T"), which is the length over which
an external magnetic perturbation is screened out, and
the “correlation length” or “temperature-dependent co-
herence length” £(7"), which effectively measures the
length over which one has to bend the phase of the
order parameter through an angle ~ 7 in order that
the bending (kinetic) energy associated with this pro-
cess equals the condensation energy of the (stationary)
superconducting phase. As is well known, the lengths
MT) and &(T) both diverge as (T, —T)~ 1/2 in the limit
T — T, and their ratio determines whether the system
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is a type-I or a type-II superconductor. If it is type-
II, then A(T) may be obtained from the slope of the
lower critical field H.(T) and &(T) from that of the
upper critical field H.2(T). (Crudely speaking we have
He 6% ~ Hy)\? ~ he/2e). Further, since A(T') is pro-
portional to the zero-temperature coherence length Ag
and Ao = (m*/ne?)!/?, we can extract from A(T) the
effective mass m*. It is also a remarkable property of
BCS theory (for a pure system) that the prefactor g
in &(T) = €,'1 — T/T.)~%/? is, apart from a numeri-
cal factor, simiply the zero-temperature BCS coherence
length, o, i.e. the pair radius.

Now let us consider how the above ideas need to be
modified in order to apply them to a highly anisotropic
layered systeri such as a typical HTS. In the first place,
it is clear thzt even for the ground state the form of
eq.(5.1) is inadequate: in it we must replace ¢(71 — 7)
by ¢(1§+F/2, 4‘_2’—7?/2), where the dependence of ¢ on the
z-component of the center-of-mass variable R, at least,
is likely to be substantial. (Intuitively, we expect ¢ to
be large wher. R lies close to a CuO, plane and small
elsewhere). "This fact already means that we should
be skeptical about simply taking over the relationship
between BCS and GL concepts which holds in “old-
fashioned” superconductors.

Suppose, however, that we for the moment ig-
nore this caveat and simply proceed to write down an
anisotropic Ginzburg-Landau theory; the only differ-
ence from the simple case is then that the coefficient of
the gradient terms depends on whether the variation of
¥ is within the ab-planes or along the c-axis. We can
now proceed just as above to derive anisotropic values
Xi(T) and &(T) of the Landau penetration depth and
correlation length, and in this way extract A;p (hence a
ratio of effective masses m}) and &;o. (Note that in ex-
tracting the ratio of the m} we must postulate that
the number of carriers n — in general not a directly
measurable quantity — is the same for all directions).
Such an analysis has been carried out in ref. 34, with
the result that the “effective mass ratio” for YBCO,
m* /m}, is 37 + 10, while the in-plane and c-axis cor-
relation lengths &0, §10 are approximately 12 and 3
A respectively. It is sometimes remarked that the last
result “should not be taken seriously” because €1 ¢ is
considerably less than the interplane spacing (~ 12 A)
However, this is not an indictment of GL theory as such,
since £, o has only a formal meaning as the prefactor
in £(T), which in turn is itself only a formal measure
of the relative importance of bending energies. We get
into difficulties only if we try to identify £, ¢ with the
“radius of the Cooper pairs along the c-axis” — a ma-
neuver for whi:zh there seems no obvious justification in
cases where ¢ depends on R as well as 7. It is also worth
noting that thzre is no good reason to identify the “ef-
fective masses” m’] which are extracted from the data
with the effective means for c-axis Bloch wave motion

in the normal phase; indeed, as we have seen, a Bloch-
wave description of the c-axis transport may not even
exist.

This last point leads to the question: do we actu-
ally have any reason to believe that the GL free en-
ergy, which approximates the energy associated with
bending of the order parameter in the z-direction by
a simple term of the form |d¥/dz|?, is even qualita-
tively correct? An alternative point of view is that
in such a strongly layered system the order parameter
¥ () should be thought of as defined only on the CuO,
planes, and that interaction between the values of ¥ on
a given plane and its neighbor should be described by
a Josephson type of coupling, i.e.

AF = —const./dﬁ”\lll(f"")[ . |\I’2(T-’.“)!

cos(Xl(r”) = x2(m)), (5.3)

where x;(7)) is the phase of the complex order param-
eter ¥(r)), with 7 the in-plane coordinate. This is the
so-called Lawrence-Doniach®’ (LD) model.

It is important to note that under many circum-
stances it does not matter whether we use the GL or LD
model: if only the phase of the order parameter varies
along the c-axis (a common situation) and the varia-
tion is slow on a scale of the interlayer spacing a, then
it is easy to see that the cosine can be replaced, apart
fr_gm an irrelevant constant, by a term proportional to
(Vx)?, and we recover the phase-bending part of the
GL free energy. The difference between the two mod-
els is important only if it is possible to bend the order
parameter sufficiently to make the above approxima-
tion unsatisfactory, while at the same time staying in
the superconducting phase (i.e. the kinetic energy in-
volved is less then the bulk condensation energy). It is
straightforward to verify that the relevant condition is
£1(T) < a. Since (T') diverges as (T, —T)~12 we con-
clude that sufficiently close to T, where £, (T) >> a,
it is adequate to treat the thermodynamics by a 3D GL
approach, whereas at lower temperatures ({.(T') < a)
it is necessary to use the LD model (which is never
wrong!) explicitly, and we should expect some aspects
of the thermodynamics, at least, to be governed by 2D
rather than 3D fluctuations. This is exactly what is
seen experimentally, see section IV. Note that we ex-
pect that the region of validity of 3D GL is smaller, the
more “extreme” the layered nature.

A very striking piece of evidence in favor of the
LD description for BSCCO has been obtained very re-
cently by Kleiner et al®® They found that the c-axis
current-voltage characteristics obtained in their sample
had multiple (~ 100) branches, which is exactly what
one would expect if each pair of layers formed effec-
tively a Josephson junction, so that the whole system
can be thought of as a large number of junctions in se-
ries. While alternative explanations of the data of ref.
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38 cannot at present be totally excluded, it is certainly
very suggestive.

So far we have implicitly assumed that the order
parameter is at least approximately uniform within
each ab-plane (perhaps with small fluctuations super-
imposed). But what happens when it is not, for exam-
ple when a magnetic field is applied along the c-axis
and creates vortices? While for relatively "tightly cou-
pled" HTS such as LSCO the traditional 3D vortex-
like picture rnay be adequate (with the necessary al-
lowance made for the anisotropy), in the case of ex-
tremely weakly coupled systems such as BSCCO or the
intercalates a more appropriate zeroth-order model rnay
be the "pancake vortex" model®, which envisages the
vortices as forming independently in the individual lay-
ers and then coupling together. The possible mech-
anisms of inter-plane coupling of vortex pancakes are
then of great interest, sinceit islikely that it will domi-
nate not only some of the static properties but also the
in-plane transport.

To date, two obvious mechanisms of coupling have
received attention, the Ampére (current-current) in-
teraction and the Josephson coupling. The Ampére
coupling dominates at short distances and gives rise
to an interaction between parallel-oriented vortex pan-
cakes on neighboring layers which is attractive but fals
off as 1/r. The Josephson coupling, by contrast, is
very weak at short distances; however, it is “confin-
ing” for a neutral system, in the sense that to separate
two (parallel-oriented) vortex pancakes as neighboring
planes to infinity costs infinite energy, since the rela-
tive phase Ax(ry) is then finite for an infinite area.
The interplay between the two effects is then nontriv-
ial, and has been studied in a number of papers (see
especialy ref. 40); the net upshot is that a pair (or
"string of beads”) of parallel-oriented vortex pancakes
always suffer an attractive interaction, which rnay how-
ever be rather weak.

Very recently, J.-M. Duan and the author! have
discovered athird mechanism of coupling, which derives
from the higher-order effects of the inter-plane Coulomb
interaction. It rnay be shownl4? that these effects
tend tofavor afiniterelative velocity of the electronsin
neighboring planes, and it therefore gives rise to a net
repulsion between parallel-oriented vortices. Whether
this interaction can, in any realistic system, actually
outweight (over alimited range of relative separation, of
course) theeffect of both the Josephson and the Ampere
interactions-in which case we might expect interesting
effects on the statics and dynamics-is at present un-
clear, though it seems plausible that for systems with
low carrier density and relatively small interplane sep-
aration (but weak Josephson coupling) it rnay indeed
do so.

A. J. Leggett

V1. Conclusion

We have seen that the question of the nature of ¢
axis contact and transport is still an open one, both
in the normal state and, to a somewhat lesser degree,
in the superconducting state. As regards the former,
there are strong a priori arguments against the Bloch-
Sommerfeld picture, and alternative models based on
"dynamically detuned hopping" are being developed:
it isa challenge to bring the predictions of such models
to the point where meaningful experiments to test them
can be done. As regardsthe superconducting state, the
picture which seerns to be emerging is that, at least
in the more weakly coupled systems, the basic process
of formation of the superconducting state takes place
plane by plane, but the interplane coupling, which for
the uniform case is best described as of Josephson type,
plays a crucial role by stabilizing the individual planes
against fluctuations which might increase the resistiv-
ity. Of course, there are many open questions concern-
ing the relation between the normal-state c-axis prop-
erties and the Josephson (or other) coupling in the su-
perconducting state. Finally, for the non-uniform case
the importance of the new “Coulomb” mechanism of
coupling of pancake vortices is still an open question.
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