
Brazilian Journal of Physics, vol. 22, no. 2, June, 1992 123 

Negative Absorption by an Ionized Gas Due to Coulomb 
Scat tering 

H. Torres-Silva'and P. H. Sakanaka 
Instituto de Física, Universidade Estadual de Campinas 

Caixa Postal 6165, Campinas, 13081, SP, Brasil 

Received March 13, 1992 

A possible effect connected with the process of stimulated Bremsstrahlung emission and 
absorption by free electrons is the negative absorption of an electromagnetic wave in an 
electron gas with drift velocity relative the to  scattering centers. Starting with the Fokker- 
Planclr equation some authors did find a negative conductivity for drift velocity higher than 
the ebxtron thermal velocity. However, others, using classical arguments, show that the 
negative absorption due to collisions in a drifted electron plasma does not exist, because a 
drifted Maxwellian does not satisfy the Boltzman equation. Due to this controversy, in this 
paper we present a re-examination of this problem in terms of the center of mass approach, 
using rlaksical and quantum arguments and considering the effects of the electron velocity 
fluctuations of the center of m a s .  Our conclusion is that for Coulomb centers the electrical 
conductivity is always positive. 

I. Introduction 

An interesting and possible effect connected with 
the process of stimulated Bremsstrahlung ernission and 
absorption by frec: electrons is the negative absorp- 
tion of a linearly polarized electromagnetic wave in 
the presence of a uniform and sufficiently fast elec- 
tron motion relative to  the scattering Coulomb centers. 
In this case, the energy for the amplification (a  pos- 
sible plasma laser) could be supplied by the drifting 
energy. From the quantum-mechanical point of view, 
using a single-particle approach, this effect was first 
proposed by ~ a r c u s e '  and has subsequently been con- 
sidered by a number of authors2l3. For a semiconduc- 
tor plasma, Vinogi adof4 shows that negative absorp- 
tion arises only in scattering by Coulomb potential, 
where, besides Coulomb centers he considers the scat- 
tering of semicond~ictor-current carriers by polar opti- 
cal and acoustic phonons. However this approach does 
not suffice to study amplification in a plasma and it is 
necessary to solve the corresponding kinetic equation. 

A treatment oj' this problem was described by 
Musha and Yoshida5 starting with the Fokker-Planck 
equation which cannot, in principle, describe the elec- 
trical conductivity for frequencies in the vicinity of the 
plasma frequency. Tzoar6, using a similar method to 
that given by Kohr and Luttinger 7 ,  has derived the 
kinetic equation for drifted electron-ion system, which 
is not in thermal ecuilibrium. These authors did find 
a negative conductivity for drift velocity higher than 
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the electron thermal velocity. However, Stenfloa, using 
classical arguments, show that the negative absorption 
due to collisions in a drifted electron plasma does not 
exist, because a drifted Maxwellian does not satisfy the 
Boltzman equation. This conclusion can also be ex- 
tracted from the Dreicer's theory

g
. 

On the other hand, i t  seems that in a plasma with 
a sufficient anisotryic electron distribution, induced 
Brernsstrahlung can lead to  super-radiance, and hence 
to a possible free electron laser, which is related to  nega- 
tive conductivity and wave amplification. However, for 
optical frequencies, a quantum mechanical calculation 
is essential to get a conclusion about this processll. 
In this paper, we present a re-examination of stimu- 
lated Bremsstrahlung in terms of the center of mass 
approach, using classical and quantum mechanical ar- 
guments and considering the role of the electron distri- 
bution and the effects of the electron velocity fluctua- 
tions of the center of mass which determine the condi- 
tions for amplification of wave and negative absorption. 
In section 11, we introduce the center of mass approach. 
In section 111, we give the derivation of the average en- 
ergy change and discuss the energy-balance. Finally, in 
section TV we give the main conclusions on this prob- 
lem. 

11. Formulation of the Center of Mass  Approach 

11.1. Hamiltonian 

In this approach we extend the results on plasma 
transport obtained by us ", by including the veloc- 
ity fluctuations of the center of mass. We restrict 
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the present study t o  a three-dimensional electron sys- 
tem considering N electrons scattered by ni randomly 
distributed ions, in the presence of a spatially uni- -, - 
form vector-potencial A(t) = &Eo coswot. The time- 
dependent Hamiltonian can be written a.s in refs. [10] 
and [ll] .  

eL 

+ C  [<-iy + C U(TT - R,). (1:i 
i j , i< j  ia  

Here 6 and 6 = -%Vi are the coordinate and mo- 
mentum operator of the i th electron with m a s  m and 
charge e. The second term on the right hand side is the 
Coulomb interaction between i th and j th electrons and 
the term u(?- 8,) denotes the potential at  ? due to 
the ion at R,, which is randomly located (RPA). The 
Schrodinger equation for i th electron is 

We perform a unitary transformation on equation 
(2), that is, transformation of the type 

where 

The function Ü ( t )  produces a translation in space and 
is given by 

Under a unitary transformation the Schrodinger 
equation for +' will have a modified Hamiltonian ~ i ,  

which is independent of the function S(t).  The total 
Harniltonian fi = Ci is 

picture which treats the dynamical variables as time- 
dependent. In Heisenberg picture, the concept of cen- 
ter of mass appears as  a simple method for studying 
the transport properties of a many body system in the 
isothermal approximation12. The basis of this method 
lies in separating the center-of-mass motion from the 
relative motion of electrons in the Hamiltonian (equa- 
tion (6)). In these terms we can express the Harnilte 
nian (6) as 

where EiCM is the center of mass Hamiltonian and B 
is the center of mass momentum operators. N  is the 
total number of electrons and M = N m  is the total 
m a s  of electrons. H, is the free-electron Hamiltonian 
in relative coordinates, Ek = fi2k2/2m with hk the mo- -, 
mentum of electron in state k.  c: and ck are electron 
creation and annihilation operators in relative coordi- 
nates. H,, is the Coulomb int,eraction in relative coor- 
dinates. The electron-ion interaction is described by 

where = Ck cbtqck is the electron density operator, 

8 is the coordinate of the center of mass and U ( q )  = 
4rZe2/q2. A completely homogeneous one-component 
plasma, like a homogeneous electron gas, cannot absorb 
light. For absorption to  take place the Harniltonian 
must contain a term which does not commute with P. 
In this case it is fiei. 

11.2. Quantum-kinet ic  equa t ions  for  t h e  drift  
velocity of electrons a n d  ene rgy  change 

Starting from the quantum-mechanical Liouville 
equation, we can derive the kinetic equations for a set 
of macroscopic observables, {Ot(t)). Here we choose 
{Ol(t)) = C, fk(t), W(t ) .  The corresponding operators 
are Ôt = [a, cLck, H C M ]  which are connected with ob- 
servables by 

In this form we can study the nonlinear effects O&) = TT{&P(~)} , 
on the transport phenomena when a strong high fre- 

(11) 

quency electric field is applied. But, instead of us- where 6 is the statistical density matrix. If we solve 
ing the Schrodinger picture, we use the Heisenberg the Liouville equation to the lowest order, the rate of 
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change of any fiinction S of O(t) is given by [10]: Here we are interested in the "steady state" high fre- 

d 
-(S(O(t))) = dt 

where S(Ô(t)) = -i 

quency transport, where the fluctuation terrns of the 
i 
- < [Ho(t), S(O(t))l > + transport equations disappear, but the velocity fluctu- 
h ations of the center of mass remain in the quantum- 
i 
- < [V@), s(Ô(~))] > - kinetic equations. 
h We begin with the requirement 

2 (i) lim Jt dtte'(t-tl) 
€-+O -00 (16) 

A, B is the [ s ( W ) !  w] , [ '1 
comrnutator of operators Â and B, V = H,, + Hei 
and 

,tt, =: exp (,i"fioIs)ds) ~ ( t )  

where H. = HkAr + H,. < . . >z T r  [Po( . .)I with Po 
the unperturbed density matrix, and Tr  means trace. 
Thus, the frictional force operator is 

and the rate of thange of the center of mass energy 
operator is 

The operators in j:quation (12) are in the interaction 

representation, so l? changes with time as the coordi- 
nate of a free part,cle with a large mass M. Equations 
(14) and (15) illustrate the microscopic evolution of the 
momentum and eriergy of the center of mass of elec- 
trons, respectively The relative electron coordinates 
are described by th,: statistical density matrix p(t). The 
center of mass variable enters into the density matrix, 
while the system cif relative electrons acts as a heat- 
bath, which is coupled t o  the center of m a s  through 
electron-ion interactions. The heat-bath variable pq de- 
fined in the second quantized form may be elirninated 
from the equations using the retarded Green's function 
fJ(*,t) 12. By averaging equations (14) and (15) over 
the ensemble (center of mass and heat-bath and ion sys- 
tem), we will obtain the macroscopic momentum and 
energy transport equations. This is the same as to take 

the corresponding I'race of P and H C M ,  respectively. 

Then, by substituting equations (13), (14), (15), and 
(16) into equation (12), we can obtain (to the lowest 
orden in I U(q3 1') the following equations for drift ve- 

locity 2 and energy WcM of the center of rnass: 

Nrn dl?(t) --- - 
v01 dt 

exp (i$. LIt k(s)ds) 

The corresponding memory function is 

t 

p = c G/ dtl exp (i;. 
00 t' 

n; I U(QI2 exp (i;. (9(tt) - 9(t ) ) )  
1 1 

( ~ ( E k t "  -k))- 

(19) 

In a similar way we obtain the energy rate for the 
system of relative electrons 

where 
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and 

and fi(q',w) is the Fourier transformation of the re- 
tarded Green's function fi(p',t) 

In equations (17), (18) and (20) the complex conju- 
gate t e r m  are added because equations (14) and (15) 
must be Hermitian so their average values must be real. 
In these expressions, we have taken the factor related 
to the center of mass motion as 

exp (i<. Jt t I k(s)ds) , 

with R(s) = P ( ~ ) / M  as the drift velocity of the elec- 
tron system. Here the fluctuation of the coordinates of 
the center-of-mass of electrons may be included. We 
note that this factor reflects the non linear dependence 
of the kinetic equations on the electron drift velocity 
and equation (23) is clearly consistent with the large-N 
approximation. 

The factor related to the ion dynarnics, considering 
the presence of the laser field is given by10 : 

We can see that the transport equations contains a 
memory function in a non-Markov form which envolves 
a surn over multiphoton terms and has a non linear 

dependence on the velocity of the center of mass, 2. 
The kinetic equations (17), (18), and (20) cor- 

respond to generalized Langevin equations. One 
can study a variety of transport properties such as 
electrical conductivity, stopping power and inverse 
Brernsstrahlung process". As the mernory funtion is 
associated to the density-density response function, we 
find that when the,fluctuation of the coordinates of the 
center of mass, SR, is included, the structure of the 
response function may change significantly. 

111. Plasma Transpor t  Equations and Electrical 
Conductivity 

Equations (17), (18), and (20) are still in micro- 
scopic form, from the view point of the center of mass. 
The momentum and enetgy equations are quite rigor- 
ous and general. Although we have restricted our treat- 
ment to the lowest-order in the electron-ion interaction, 
our results are valid for any value of the laser electric 
field. However the evaluation of the steady-state trans- 
port equations, including the fluctuation parts of the 

velocity R(t), can be carried out only approximately. 

In general, we can denote the velocity 2 as the sum of - 
the drift velocity ?CM and its fluctuation 62 ,  with 6R 
= 0, where a bar denotes the ensemble average over the 
center of mass cooodinates. The factor affected by this 
average is equation (23), so that using the cumulant 
approximation13 we have 

exp (i?. ltt ~ ( ~ ) d ~ )  = 

then, in the random phase approximation we have 

in which v ( 3  = 4ne2/q2 and IIo(<,w) is given by 

with 6 = Dq2, where D is the diffusion constant for the 
center of mass coordinate13. In this form we have a gen- 
eralised dielectric function, which incorporates velocity 
fluctuation effects 

Here, D can be treated as a control parameter, which 
introduces a damping effect on the electron response 
and the dispersion relation. Finally, by substituting 
equations (25), (26), (27) and (28) into equations (17) 

and (18), and taking the average over the 6R distribu- 
tion, we obtain 

and 
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In a similar way we obtain the energy rate for the 
relative electrons 

In this form, equations (28) - (31) are the gener- 
alized expressionr; of the plasma transport equations, 
which have included the diffusion constant of the center 
of mass. In generd D is field dependent, but in the clas- 
sical lirnit, we cari use the Einstein relation D = E, 
where i is the moinentum transport time. With Dq2, in 
the large-N approríimation, clearly for non degenerated 
plasma, the corre( tion on the memory function, j7, and 
on the energy loss function, Im[l/i], can be neglected. 
However, for degmerated plasma, specially for quasi- 
one and two-dimtmsional electron gas, the correction 
due to  the dampirig D~~ may be significant for smaller 
systems and smaller densities. We note that our theory 
have total validity for 1-D and 2-D electron gas, when 
the "volume" is redefined. In our case, if D = 0, expres- 
sion (29) reduces i,o the frictional force with multiphc- 
ton interactions giren by Jones and Lee14. If D = O and 
VcM = -vi, equation (30) agrees with the recent result 
given by Arista et al.15. If D = O and c VGM << nwo, 
equation (31) cori~esponds to  the Rae and Burnnet's 
resul\16. Also, the linearization of the average memory 
function, p ,  with 13 = 0, leads to the linear prediction 
of the high-frequericy electrical conductivity17. 

In connection uith transport coefficients, the energy 
loss-method has akio been proposed to calculate the d.c. 
resistivity ( p  N 116) of a many body system '% The 
electrical resistivit!~ p is defined as 

4 -, 
where J = n,eVcld; however, this method is not ap- 
propriate in the presence of laser field and the last c* 
efficient must be scen more carefully. For a revision of 
adiabatic and isothermal resistivity, see r e f ~ . ~ ~ ? ~ ~ .  How- 
ever at high frequency, (vCorl/wo < I), the derivation 
of the total energy rate is quite direct if we take HCM 
and a similar expression for H,. After averaging the ion, 
the center of mass m d  relative electron coordinates, we 
have (if we neglect the particle recoil) 

whith < f .  I? > given by 

where f is the current density of the system. Due 
to the presente of VCMl it is necessary to distinguish 
within < J . E > the irreversible dissipation < P, > 
from the reversible kinetic flux. Otherwise, the elec- 
trieal conductivity given by c,, = 2-<* can be 
negative if VCM > vt (thermal velocity of electrons). 
Early papers5~21 show this possibility for a fully ionized 
plasma, overlooking the presence of the particle kinetic 

* 
flux. From equation (34) taking n = 1 and wo < q j c ~ ,  
we obtain that a,, < 0, which corresponds to the re- 
sults of these papers. Also, the same conclusion can be 
obtained for a semiconductor plasma, where the claim 
of Vinogradov4 seem to be wrong. In this sense, it is 
of primary importance to achieve a correct energy bal- 
ance. Fundamentally, the rf-absorption must be equal 
to with the energy moment of the quasilinear term ob- 
tained from the kinetic theory. The knowledge of an 
adequate approximation for the high frequency current 
is not sufficient to establish the correct expression for 

the local power absorption. Indeed, f,?? differs from P, 
by the reversible kinetic flux part, which is due to the 
coherent sloshing motion of the electrons. 

On local power absorption in tokamak geometry in 
hot inhomogeneous plasmas, the problem of the re- 
versible kinetic flux has also been recently considered by 
Srnithe22 and Brambilla and ~ r u c h e n ~ ~ ,  following the 
method suggested by McVey et a1.24. Here, the subjet 
of local wave energy in plasmas is treated via quasilinear 
theory. As our approach is also within the quasilinear 
theory, we can obtain < P, > using a heuristic argu- 
ment: only the relative electron system absorbes energy 
and the center of mass can be considered as a particle 
which gains or loses energy depending on the energy ex- 
change with the radiation field. Thus, the differential 
quantity for < f. I? > is 

Now making the ratio between < 7. E >,,, and 
< P o  >q,n 
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we see that the absorption power is given by 

This expression is always positive and corresponds 
to a system that can only absorb energy (inverse 
Bremsstrahlung process). From (36) we can always 
obtain positive scattering probabilities. If V i M  -' 0, 
we reproduce the heating rate obtained classically by 
Jones and Leel*, ~ l i m o n t o v i c h ~ ~  and o t h e r ~ ~ ~ ~ ~ ' .  The 
velocity fluctuations of the centre of mass are neglected 
because we are considering a three dimensional system. 
When it is assumed that the unperturbed velocity dis- 
tribution function is a displaced Maxwellian, the system 
cannot have a resistive instability which should produce 
a negative conductivity. In a weak externa1 field the 
distribution function will become isotropic in a time 
(v,,ii)l where vc,li is the usual collision frequency for a 
fully ionized plasma. In a strong field the electrons run 
away in a time t 5 vc,ll, so the anisotropy exists in a 
time too short to be able to account for any instability. 
This result can be extended to semiconductor plasma 
where, besides Coulomb centers, we can have acoustic 
phonons and polar optical phonons. 

IV. Conclusions 

Using the center of mass approach we are able 
to show that for an electron gas with a dkplaced 
maxwellian the electrical conductivity is always posi- 
tive and this result agrees with the conclusion given by 
Stenflo and Dreicer. Thus, the amplification of waves in 
plasma (maser or laser action) should not be attributed 
to the collision between electrons and ions but rather 
to some instability (two-stream instability). Also, for a 
three dimensional Coulomb plasma in the large-N ap- 
proximation, we show that the velocity fluctuations of 
the center of mass are negligible. 
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