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RRcent theoretical and experimental results on non-linear excitations in one dimensional 
classical antiferromagnetic chains are reviewed with a particular emphasis on dynamic prop- 
erties. The main investigated substance is TMMC which can be regarded as a quasi-one- 
dimensional antiferromagnet with easy plane anisotropy. A discussion of Haldane's conjec- 
ture that there is an excitation gap for integer, but not half-integer spin is given. The open 
questions and possible investigation for the future are discussed. 

I. Introduction 

The methods of theoretical physics, with few xex- 
ceptions, have been dominated by linear equations, lin- 
ear vector spaces, and linear methods (Fourier trans- 
forms, perturbation theory and linear iesponse theory). 
Although the irnportance of non-linearity was recog- 
nized a long time ago, it was a t  that time hardly pos- 
sible to treat the effects of non-linearity, except as a 
perturbation to the basis solution of the linearized the- 
ory. During the last two decades, however, it has be- 
come more widely recognized in many areas that non- 
linearity can result in qualitatively new phenomena 
which cannot be constructed via perturbation theory 
starting from linearized equations. Moreover, the com- 
mon characteristics of non-linear phenomena in very 
distinct fields have allowed progress in one discipline to 
transfer rapidly to others. Although we do not have an 
entirely systematic approach to non-linear problems, we 
do, however, have an increasing number of well-defined 
paradigms that both reflect typical qualitative features 
and permit qualitative analysís of a wide range of non- 
linear systems. One of these paradigms that we will 
be concerned with in this review paper is the soliton, 
which is an essential part of non-linear science. To de- 
fine a soliton precisely, we consider the motion of a wave 
described by an equation that, in general, will be non- 
linear. A traveling wave solution to such an equation 
is one that depends on the space x and time t variables 
only through the combination s = 2-ut, where u is the 
constant velocity of the wave. If the traveling wave is 
a localized single pulse moving through space without 
changing its shape and, in particular, without spread- 
ing out or dispersing, it is a solitary wave or a kink. 
A solitary wave, with the additional property that it 
preserves its form exactly when it interacts with other 
solitary waves,was called by Zabusky and Kruskall by 
the name of soliton. 

For good reviews of soliton theories see Scott et aL2 

and Barone et a1.3. For application of solitons in Con- 
densed Matter, see refs. 48, and, in particularg, for an 
excellent review paper dealing with statistical mechan- 
ics of solitons. 

Solitons are best realized in one dimensional (lD) 
models where theory and experiments are well devel- 
oped and, to date, topological solitons have been clearly 
experimentally identified only in these models. It  is well 
known that in magnetic - l D  models the regime of strong 
correlation without long-range order (LRO) is present 
a11 the time because LRO is suppressed in ideal 1D sys- 
tems: we have only short-range order (SRO) charac- 
terized by the correlation length I .  In one dimension, 
the spin system is never static but always dynamic and 
therefore large-amplitude fluctuations are important. 

The first theoretical description of solitons in 
magnetic systerns was proposed by Villain in 1975 
for a one-dimensional antiferromagnetic (AF) Ising 
~ami l tonian '~ .  In 1978 ~ ikeska"  showed that the 
dynamics of a quasi-1D ferromagnet (F) with easy- 
plane anisotropy, subjected to  an externa1 field in the 
anisotropic plane, reduces to the sine-Gordon equation 
which has a soliton solution describing localized 2n- 
rotations of spins lying in the easy plane. In the same 
year, Kjems and Steiner12 presented the first experi- 
mental evidence for the existente, in the quasi-1D fer- 
romagnet CsNiF3, of the soliton predicted by Mikeska 
being sooner after contested by Reiter13 who showed 
that two-magnon scattering should also give rise to a 
central peak with a similar dependence of its width on 
the transfered momentum. A lot of research followed 
then (see [14] for references) and even today some prob- 
lems still remain15. 

In 1980, Boucher et a1.'6-22, in a study on the 
compound (CH3)4NMnC13 (TMMC), were the first to 
show that soliton excitations also existed in planar an- 
tiferromagnetic chains in a field, resulting in a partic- 
ularly intense central peak. Theoretical studies done 
also in 1980, by M i k e ~ k a ~ ~ ,  Leung et and Maki25 
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showed that a 1D-classical easy-plane antiferromagnetic 
Harniltonian could be reduced to a sine-Gordon Hamil- 
tonian. Correcticns t o  the sine-Gordon model with al- 
lowance for fluctuations which bring the spins out of the 
easy plane were tlone later by Harada et Fluggen 
and Mikeska, Etrich and ~ikeska", Costa and Piresz8, 
Gouvêa and Piresz9, and Wysin et a1.30*31. The role 
of quantum effects for a chain with finite spin values 
were considered I)y ~ a k i ~ ' ,  Wright et and Pires 
et a1.34, while the role of the lattice discrete structure 
was studied by Talim and Pires 35. 

Soliton effectri in an AF-quantum Ising like chain 
have also been r ~ e a s u r e d ~ ~ - ~ % n d  Villain's theory1° 
was used to interpret the experimental data. There 
is a good review paper by Izyumov14 about solitons 
in ferromagnetic materials; the AF-chain is analysed 
briefly. We will, in this paper, be interested in the 
study of dynamical fluctuations induced by solitons in 
the antiferromagletic chain. Here we will be inter- 
ested mostly in theoretical aspects since Boucher 39 

has recently reviewed how non-linear excitations can 
be observed experimentally in antiferromagnets. The 
experimental results in 1D-AF rely mostly on data ob- 
tained on three different compounds: (CH3)4 NMnC13 
(TMMC)3, CsCoC13 and Ni(C2Hs N2)2 ND2 (C104) 
[NENP]. 

Solitons in 111-antiferromagnets are of interest for 
several reasons: 

In most 1D- magnetic salts the exchange coupling 
is anti- ferromagnetic 40; 
Solitons in ferromagnets and antiferromagnets 
have very diiferent properties. For instance, much 
larger magnc tic fields are required to drive the an- 
tiferromagnet into the regime where the soliton 
rest energy iir large compared to kBT and solitons 
form a dilute gas of noninteracting e4lementary 
excitations ''; 
Solitons are best observed in antiferromagnets 
where the contribution to the central peak is large 
compared tc two-magnon processes, whereas in 
ferromagnets both processes are of the same or- 
der. Besides, experiments and numerical simula- 
tions which have been made hitherto upon the fer- 
romagnetic chain seem still to leave some degree 
of uncertainty with regard to soliton influence15. 
In the last qears new basic questions have been 
raised conce-ning the properties of low dimen- 
sional anti-ferromagnetic systerns. The discovery 
of the high I!',, superconductors has renewed the 
interest in tvro dimensions and Haldane's conjec- 
ture which predicts a non-magnetic ground state 
for integer spin antiferromagnetic chains has de- 
veloped new theoretical approaches 41. 

From a fundamental point of view the antiferre 
magnet is also more interesting since its Hamilte 
nian can be niapped to  the Hamiltonian of the dy- 

namical non-linear u model, a well studied model 
in quantum field theory42143. 

We should also note that domain walls in three- di- 
mensional crystals with characteristics similar to  soli- 
tons in the 1D-model have been largely investigated by 
several a ~ t h o r s ~ ~ - ~ O  but these are macroscopic struc- 
tures which cannot make an intrinsic contribution to 
dynamics. 

11. Classical Models 

Tetramethyl ammonium manganese trichloride 
(TMMC) is one of the most studied one dimensional 
antiferromagnets. Due to  the large spin value ( S  = 512) 
of the Mn ions, a classical description can be used to de- 
scribe the spin dynamics in this compound. The (quasi) 
one dimensional character of TMMC is due to  the phys- 
ical separation imposed by the large [CH&N+ groups 
resulting in Mn-chains magnetically isolated from one 
another: the ratio of interchain to intrachain exchange 
interactions is r ~ u ~ h l ~ l O - ~ .  The three dimensional or- 
dering temperature TN (which is a function of the mag- 
netic field) is about two orders of magnitude below in- 
trachain exchange energy. TMMC has an anisotropy 
of dipolar origin 6SiS:+1 leading the system to a 
crossover to the XY model at low temperatures5', and 
a single-ion anisotropy in the e a ~ ~ - ~ l a n e ~ ' .  At low tem- 
perature and for small anisotropy, [Snl2 has the same 
effect ass3 -Sisi+, so that we can start with a Hamil- 
tonian given by: 

where y = gpB.FOr J > 0, 5 > O and b > O the ground 
state is along the y-direction. Although there is no long- 
range magnetic order in the one-dimensional model 
(2.1), a strong correlation is observed and this correla- 
tion creates an antiparallel alignment of the neighboring 
spins, so that at T = O we can speak of two antiparallel 
sublattices which are oriented at almost right-angles to 
the applied field with a slight bending along the mag- 
netic field because of the smallness of yH/JS .  We will 
always consider 6 and b << 1 which is the case in real 
quasi-1D antiferromagnets: it has been found that (2.1) 
can describe the experimental findings in TMMC if we 
assume J/kB = 6.51<, 5 = 0.008, and b = 2.6 x 10-4. 

After obtaining the equations of motion by using 

i9 = [S, x], 
we treat the spin components as classical vectors with 
spherical componentsl1, 
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where A and B refer to each sublattice. However, for 
small magnetic fields (yH << JS )  and at low temper- 
atures, the spins are almost antiparallel and it is more 
convenient to rewrite Eq. (2.3) using the angle variables 
introduced by M i k e ~ k a ~ ~ ,  

g n  = (-1)"s {sin [O, + (-i)"~,] 

[4n + (-1)"anJ , 
sin [O, + ( - l ) "~n]  sin [4, + (-l)"a,] , 
tos [en + (-I), V,]) . 

(2.4) 

Of course both parametrizations are equivalent to 
one another. 8, and 4, are slowly varying angle fields, 
and since v, and a, describe deviations from perfect 
antialignment, they can be assumed to be small at low 
temperatures. The variables on neighboring sites can 
be expressed through an expansion about z = na, where 
a is the lattice parameter and z is the coordinate along 
the chain. Going over to the continuum limit amounts 
to substitute a11 angle fields as O, by 0(z) and to neglect 
the terms in order higher than a2. Full non-linearity in 
the angle fields 8 and 4 must be maintained, but the 
equations of motion can be approximated by an expan- 
sion up t o  quadratic order in v, a and a/&. Notice 
that if we write, 

we have, 

* e = (sin 8 cos 4, sin 8sin 4, coso), (2.6.a) 

which gives 
rn2 = v2 + a2 sin2 8. (2.6~) 

The equations of motion for the angle variables are 
then given by, 

1 88 -- - 
4 JS â t  

- 2a  sin 8 + h, sin 4, (2.7) 

1 84 -- - _ -- 'V - + h, cos 4 cot 6 - h,, (2.8) 4 J S 8 t  sino 

b 
2va cos O - - sin O sin 24 + h,a tos 4, 

2 
(2.9) 

1 8a a2 a20 + 2u2 C- 8 -- = -- 
4 J S  a t  2 sin 0 az2 sin2 8 

where h, = 7H,/4JS. After eliminating the small an- 
gles v and a, we find 

i ad2 
sin e cos 0 [ (2) ' - ;j (=) '1 + 

(2b + h;) sin O cos O cos2 4 - 
(26 + h:) sin O cos O - h, h, cos 4 sin2 0 - 

and 

-(2b + hf ) sin 4 cos 4 - h, h, sin C$ cot 8 

where c = 4JSa.  On the other hand using the classical 
and continuum approximations directly on Eq. (2.1) 
we get 

2 

x = constant + / $ {(a + 

2b sin2 6 cos2 4 - 4 h, (v cos O cos 4 - 
-a sin 6 sin 4) - 4h,v sin 8) . (2.13) 

Using Eqs.(2.7) - (2.10) to eliminate the variables 
v and a in (2.13) and taking h, = O for simplicity we 
obtain, 

7~ = constant + J S ~  1: {(:I2+ 
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+26 cos 'q + (2b + h:) sin2 O cos2 q5) . 
(2.14) 

To treat (2.14) as a classical Hamiltonian we have 
to write 31 in terms of O, q5, dO/dz, dq5laz and the 
momenta pe and I; 4. Taking, 

1 ib' Sh, 
pe = --- +-si114 ; 

8 J i ) t  2 

we can rewrite (2.14) as, 

31 = JS' 1 dzh + constant; (2.16) 

with, 

Using now Hamilton's equations for a continuum 
system, 

with q = 8 ,  4 and q, = dq/dr we obtain Eqs.(2.11), 
(2.12) with h, = O showing that (2.16) is indeed 
the correct classic.al Hamiltonian. We remark that 
it is not straightforward to write a classical Hamil- 
tonian starting f r ~ m  a quantum Hamiltonian when 
spin variables are involved. For instance, the qu_an- 
tum Hamiltonian h r  a spin 9 in a magnetic field H is 
31 = I? whereas the classical counterpart is not 
?ic = -7SH cos 0 crince the kinetic energy term is miss- 
ing. In fact, in taliing the classical limit directly from 
the quantum Hamiltonian for the ferromagnet we ob- 
tain an incomplete classical Hamiltonian and to obtain 
the correct equations of motion an extra term would 
have to be added (%e, for instance, refs. [54] and [55]). 
For the antiferrorragnet we get the correct result be- 
cause the, at  first indetermined, variables v and cr pro- 
vide the extra degrees of freedom which transform into 
the kinetic energy terrns when we go to the classical 
limit . 

If the solutions of (2.11) and (2.12) are constrained 
to make only small excursions about the ground state 

- 
0 = 7r/2,4 = ~ / 2 ,  we write: q5 = a / 2 - ~ 4 , 0  = 7r/2-~0, 
and obtain, in the small-angle limit, taking h, = 0, 

and 

with subscripts t and z implying differentiation with 
respect to t or z. To lowest order (we take E = O in the 
above equations) the solutions are, 

6, = Aexp[i(wlt - qz)], 

and 
& = Bexp[i(w2t - qz)]. (2.21) 

This is, we have two magnon branches with energy, 

here q is measured in units of the lattice constant along 
the chain, and the zone center is at  Q = a ,  with q being 
q = a - Q. Physically, one of the modes, 1-magnon, 
represents the spin fluctuations out of the easy plane 
(out-of-plane mode) while the other mode, Zmagnon, 
is the fluctuation in the easy plane (in plane mode) 
against the magnetic field. 

For the discrete lattice the magnon energy is given 
by 

which for small q reduces to (2.22). ~ o t e  that the divi- 
sion of the system into sublattices splits the [O, r ]  range 
into two ranges: [O, a/2] which gives the 1-magnon; and 
the range [7r/2, n] (mapped into [O, 7r/2]), which gives 
the 2-magnon. 
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To obtain higher-order solutions for (2.19) and 
(2.20), the term proportional to E miist be retained. 
This term, for h, # 0, introduces a coupling between 
the lowest-order solutions $1 and 81 and is responsible 
for the appearance of double magnon-modes. These 
modes have in fact been observed by Boucher et a1.56 
in TMMC using inelastic neutron scattering combined 
with neutron-polarization analysis. 

Let us now discuss the full non-linear equations 
(2.1 1) and (2.12): their static limit agrees with the cor- 
responding limit for the equations of motion for a ferro- 
magnet with two anisotropies (b+h2/2) and (5+h,2/2). 
The field-anisotropy equivalence was discussed in [29] 
where it was shown that, for the calculation of some 
properties, an antiferromagnet with a field h, applied 
along an a-direction is entirely equivalent to a ferro- 
magnet ;.;ith anisotropy B, = hi/2. The dynamics, 
however, is quite different for both models. We note 
also that for h, = O Eqs. (2.11) and (2.12) exhibit 
Lorentz invariance. It  means that, in this case, a11 ef- 
fects of soliton dynamics are reduced to Lorentz con- 
traction of its thickness, and, therefore, if a soliton is 
stable for zero velocity (u = O), then it remains stable 
for a11 velocities u < c. 

Let us consider here the case h, = 0, leaving the 
more general case to the next Section. Since for this 
case 0 = 7712 and 4 = 7712 satisfy Eq~(2.11)  and (2.12), 
complete dynamical solutions are obta.ined from 

a24 i a2d  , g = ~ / 2 ,  ----- 
8 2 2  c2 at2 

- -2b cos 4 sin 4 (2.24.~) 

with 
1 a4 a=O and V=--- (2.24.b) 

2c dt ' 
and 

a2e i a2e 4 = ~ / 2 ,  ----- - -26 cos 9 sin 0 (2.25.a) az2 ~2 at2 

Eqs. (2.24) and (2.25) are the well known sine- 
Gordon (SG) equations in the variables 24 and 28, re- 
spectively. The SG equation, 

a2q 1 d 2 *  _ _ - -  
6z2 c2 at2 - m

2 sin. Q (2.26) 

is completely integrableS7 with the result that only 
three mode types are required to specify the solution 
of an arbitrary initial value problem. These modes are: 
a) small amplitude solutions (in our case, magnons), 
i.e. extended periodic harmonic waves with dispersion 
relation 

w2(q) = (m2 + q2)c2, 

b) traveling waves of permanent profile, described by, 

where y = (1 - u2/c2)-'I2, and the plus (+) and mi- 
nus (-) signs correspond to solitons and antisolitons, 
respectively. 

The soliton (or antisoliton) describes a localized 
change in the phase of two physically equivalent values : 
Q = O and Q = 277. In the ytiferromagnet, this implies 
rotation of the spin vector S in the plane by an angle ir 
in an interval < of the order l l m y .  Apart from the sim- 
plest solution (2.27), the SG equation also has n-soiiton 
solutions which can be regarded as a set of n separate 
solitons, each one with its own parameters u, and t o ,  
representing the velocity and coordinate of the soliton- 
center. This n-soliton solution satisfies the principle of 
asymptotic superposition implying that individual soli- 
tons recover their profile after collisions. Thus the only 
result of a collision between solitons is a phase change or 
better, after a collision with other soliton with velocity 
u', the position of a soliton with velocity u is displaced 
by an amount, 

As(u, u') = 2m-'ln(2/lu - u'l). (2.28) 

It is this circurnstance that allows us to  treat the n- 
soliton solution, when the soliton density is small, as a 
superposition of independent quasiparticles. 
c) breathers, which are large amplitude solutions given 
by, 

(wi/wi - 1)'l2 sin ywB [(t - uzlc;)] 
cosh[ym(z - ut)(l  - w ~ / w $ ) ~ / ~ ]  

where the oscillation frequency WB lies in the range O < 
WB < wo with wo = me. Breathers can be viewed as co- 
herent anharmonic (i.e. non linear) magnons. Indeed, 
in quantized theory, breathers are multimagnon bound 

Because breather's effects can be analysed in 
terms of perturbation t heory (anharmonic magnons)58, 
we will not consider that mode in this paper. For a dis- 
cussion about breather's effects see, for instance, refs. 
[59-621. 

Thus, the soliton solution of Eq. (2.24) is, 

or 
sin 4 = t anh [~d%(z  - ut)] (2.31) 

A similar solution ( b  -+ 5) exists for the 0 variable in 
Eq. (2.25). Inserting these solutions in the continuum 
Hamiltonian (2.13), we obtain the soliton energies 

where xy refers to the soliton in the xy plane and yz 
to the one in the yz plane. The soliton stability will be 
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studied in Section 111, where it will be shown that only 
the lowest energy soliton is stable. We can also write 
the soliton energy (say for the x y  soliton) as, 

where E& = 45S2J28 and p is the soliton momentum. 
It  is possible then t o  interpret a soliton as a relativis- 
l ic  particle of r e ~ t  energy E:,, and mass rn = E:, /c2, 
moving with a v,:locity u and localized at a point zo. 
The limiting velocity c represents the magnon velocity. 
In the non relati.ristic limit (u << c), we have for the 
soliton energy 

111. Discussion cgf Solutions to the Equations of 
Mot ion  

The general solutions to  Eqs. (2.11) and (2.12) are 
very difficult to obtain and, for this reason, we will 
consider here some special cases only. First, let us insert 
4 = n/2 into those equations obtaining, 

a2e laiO -- - -- = -(26 + h:) sin 6 cos O, (3.1) 
3.22 c2 ai2 

Eq. (3.2) is satisfied for h, = O and in this case, from 
(3.1) we have a dy namical soliton solution (SG solution 
- as given by Eqs. (2.30) and (2.31)) in the yz plane. 
If h, # O and h, I= 0, then (3.2) implies in bO/bt = 0, 
and we have a staiic soliton in the yz plane. 

Of course, we have a similar situation for the xy 
case (0 = 7r/2): a dynamical xy soliton exists only if 
h, = O. For h, # O and h, = O, we have a static soliton 
in the x y  plane wi;h energy 

In (3.3) we have tztken b = O for the sake of simplicity 
and because in mcst materials this anisotropy is very 
small (in TMMC, b = 10-~).  Thus if h, < h, = J26, 
the x y  soliton has energy lower than the yz soliton. 
However, for h, # O (which implies v # O - see Eq. 
(2.27)), there is no analytic solution. More generally, 
we can treat the additional terrns in (2.11) and (2.12) 
as small perturbati ms expanding the out of plane devi- 
ation 6(s), where s = r - ut, around the static solution 
6 = n/2. Keeping terms up to  first order, 

where d,,(s) is the dynamical sine-Gordon soliton 
(Eq(2.30)),we obtain the formal s o l ~ t i o n ~ ~ s ~ ~ ,  

r 
cosech (p) } - xsech(h,s), 

where 
26 A = - -  h, 1 and r =  -. 
h; h, 

For h, << 25 and h, << h,, the soliton energy is 
given by [63], 

E , ,  = E,, [I + g (i + &) + f (fF1- $1 , 
(3.6) 

where S/A represents Soliton/Antisoliton. We see that 
for h, # O (r # O) we have a nonvanishing out-of-plane 
amplitude even for zero velocity, u = O. This additional 
out-of-plane component due to  h,, for a soliton mov- 
ing in the h, direction, is opposed t o  the out-of-plane 
component due to soliton motion. 

For h, = O and h, -i h, the energy is given by27, 

The curvature of the xy soliton dispersion (3.7) 
changes sign at h, = h,, which means that for h, > h, 
the x y  soliton is unstable against spontaneous motion. 

A more detailed numerical calculation, for the case 
b = O and h, = 0, has been carried out by Costa and 
pires2" and Wysin et A continuum limit ansatz 
and direct numerical simulations on the discrete lattice 
performed by Wysin et a1.30 show that the xy and yt 
solitons belong to a single continuously connected en- 
ergy dispersion branch, this is, the x y  and yz branches 
are continuously connected. They also show that for 
h < h,, where static yz solitons are unstable, there 
can be stable moving yz solitons. From the numerical 
integration, it was found that the xy solitons are sta- 
ble above and below the critica1 field h,, a t  least for 
6 = 0.08 (the value for TMMC), 0.08 5 h < 0.6 and 
Ju/c( < 1. Even for h > h, they show no tendency 
to decay to lower energy yz solitons. At the critica1 
field h,(h, = 0.4 for TMMC) there is a continuum of 
xy solitons a11 with the same energy and velocity. For 
small velocities u << c, the sine-Gordon theory ade- 
quately describes the yz branch. Static yz  solitons are 
stable only if h > h,, while dynamic yz solitons require 
a rninimum applied field to be stable. This minimum 
field decreases with the increase of velocity. For h < h, 
the static yz soliton decays towards a configuration in- 
volving a lower energy x y  soliton. In Figure 1 we show 
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the soliton eneqy for the general solution as a function, 
of the soliton velocity u for field values h < h,, h = h, 
and h > h,. 

r I 

Figure 1: Soliton energy as a function of velocity in 
case of TMMC (from [gol). The full line corresponds 
to x y  solitons; for h = h, this branch collapses in one 
point: a11 the solitons become static. The dashed lines 
describe the yz soliton. 

A numerical investigation of collisions of soliton- an- 
tisoliton pairs in the model discussed above has also 
been done by Wysin and ~ i s h o ~ ~ ~ ,  the results being: 
for low- velocity x y  solitons and low fields h < 0.2hc 
there is sine Gordon like transmission. At higher fields 
but still with h < h,, the low-velocity pairs annihi- 
late to spin waves, or possibly form breathers, and the 
higher-velocity x y  solitons undergo SG-like transrnis- 
sion. For h > h, the negative-effective mass x y  solitons 
reflect. Most of the cases tested for yz soliton- antisoli- 
ton pairs resulted in transmission consistent with their 
nearness to SG behaviour. The exceptions included 
some cases a t  small velocity for h > h,, where anni- 
hilation occurs. Then in the strict sense of the word, 
in general, the xy and y t  solitons are not solitons and 
should better be called by the name of kinks. 

The Hamiltonian (2.1) with fourth-order anisotropic 
terms (Si)4, (St)4 and (SnSi)4 (but without a mag- 
netic field) has been studied by Pires65. Dynamical 
solitons in a 1D antiferromagnet with both an easy 
axis (Ising-like) and an applied magnetic field along the 

easy axis have been studied theoretically by Kimura 
and de J ~ n g e ~ ~  (for more details, see Section XII). 
A classical one dimensional Heisenberg antiferromag- 
net with a single-ion anisotropy and a Dzyaloshinskii- 
Moriya term has been investigated by Pandit et 
in order to explain experimental data on the polymer 
{ C O [ ( C ~ H ~ ) ~ P O ~ ] ~ ) ~ .  They showed that,  in certain 
ranges of coupling constants, solitons in such antiferre 
magnet can be approximated by sine-Gordon or double- 
sine-Gordon solitons. 

The ~arametrization (2.4) is not suítable when the 
applied magnetic field is very large, because the spin- 
flop angle will also be large destroying the antialign- 
ment implicit in (2.4). In this case, parametrization 
(2.3) is more indicated and we will have two topologi- 
cally distinct .rr solitons in the x y  plane. In the first type 
soliton one sublattice experiences a phase jump of 2a, 
where a = cose' (h,/2) is the spin-flop angle while the 
other sublattice rotates by 2 ( ~ - a ) .  For small magnetic 
fields, this type of soliton is the one which corresponds 
to the sine-Gordon soliton. For large fields this soliton 
has a more complicated structure. In the second type 
soliton, the two sublattices interchange their directions 
by rotating through st2a angles. For more details see 
[34] and [68]. 

Talim and Pires35 have used perturbation theory 
to study corrections to  the xy and y t  solitons arising 
from the influence of lattice discreteness. They have 
shown that for TMMC, at the temperatures where most 
experiments have been done, these corrections are so 
small that can be neglected. 

We have based our theory of solitons, even in [35], 
entirely on a continuum approximation to the lattice 
model. One of the qualitative differences between a 
lattice model and a continuum model is that a soliton 
in the former model is somehow pinned to  a lattice site 
whereas a soliton in the latter model is free to slide 
without any extra cost of energy. The pinning energy 
is the rninimum energy required to  move the soliton 
from one lattice site to another. However S a ~ a k i ~ ~  has 
shown that, for TMMC, very large magnetic fields, as 
compared to h,, would be needed in order to  have ap- 
preciable values for the pinning energy. Therefore it is 
impossible to observe the effects of soliton pinning in 
this material. 

Numerical sirnulations carried out directly on 
the discretized sine-Gordon model and ferromagnetic 
chains have revealed, besides the pinning effect, de- 
crease of velocity, distortion of the profile, damping 
and decay of solitons into small amplitude oscillations 
(spin-wave modes). The narrower soliton (half width 
of 2 lattice spacings) becomes unstable and decays at a 
relatively early evolution stage than the wider one (see 
[70] and references cited therein). Possibly the same 
would be true for the AF chain. A qualitative measure 
of discreteness importance is the ratio of the lattice con- 
stant c .  to the characteristic width < of the soiiton so- 
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lution to the unperturbed sine-Gordon equation. The 
lattice discreteness effect is negligible for static solitons 
if a/( << 1. Wc have seen that for u = O,  a/< = h 
for the xy solitori and a/< = J26 for the yz soliton. In 
TMMC, 6 = 0.01 and the highest magnetic field used in 
experiments corr.sponds to h = 0.19, showing that the 
discreteness effect can be expected to be quite small. 
Note also that, for h > h, = J26 the important soliton 
is the yz soliton whose width independs on h. 

IV. Phenomenoilogical Calculation of t h e  Soliton 
Density 

In this sectiol we will discuss a phenomenological 
calculation for the soliton density in the antiferromag- 
netic chain, and, in doing so, we will study the soliton 
stability. For h : h, the xy soliton is the lowest en- 
ergy soliton and we will treat only this case (a similar 
treatment can be done for h > h,). For a phenomene 
logical theory we need the spectrum and phase shift of 
spin waves in the presence of solitons7'. The behavior 
of small oscillations in the presence of a single static 
soliton q50(z) is determined by solutions to (2.11) and 
(2.12) (with h, = O) of the form, 

where 8 is the out-of-plane deviation given by Eq.(3.5). 
Substitution of (4.1) into (2.11) and (2.12), lineariza- 
tion in < and r], and writing 

lead to the following eigenvalue equations: 

d2r w2 2hz - + -r = m2(1 - 2sech2mr)r + i-ws sech mz 
dz2 c2 C 

(4.3) 

d2s W 2  
-+-s= 2h, m2(1 - 2sech2mr)s - i-wr sech mz 
dz2 c2 C 

(4.4) 

center7'. Eq.(4.4) has the same form, only now W = O 
gives a bound state with frequency 

As we see ~ 2 2 ~  has to be positive for the out-of-plane 
motion (fluctuations in the z direction), this means 
b < 6. The bound state becomes soft at the crossover 
anisotropy b = 6, i.e., the static xy soliton becomes un- 
stable. Both (4.3) and (4.4) for h, = O have the same 
phase shift A(q) for the continuum states. We have 
[71,721 

A(q) = ~ t a n - ~ ( J S b / q ) .  (4.7) 

For h, # O the calculations are more complicated 
and only recently have been performed by Costa73 US- 

ing the Born approximation, which for this reason just 
misses the points specifically of interest for a real anti- 
ferromagnetic chain in an externa1 magnetic field. 

The soliton density for Hamitonian (2.1) (with b = 
0, and h, = 0, for simplicity) can be easily calculated. 
According to Currie et the average number of both 
solitons and antisolitons is given by 

where F is the free energy per unit length, L is the 
system size, z is the position of soliton (or antisoliton), 
P = l / k B T  and E(p)  is the energy-dispersion of soli- 
tons. S is the self-energy given by 

(4.9) 
where wl(q), wz(q), and A(q) are the frequencies and 
asymptotic phase shift of the linear scattering solutions 
to the equations of motion [Eq.(4.5) and Eq.(4.7) mul- 
tiplied by 21 and wia are the frequencies of the bound 
states. 

For h, << 26 the essential contribution to the free 
energy F comes from the lower branch of the spectrum, 
(i.e. the xy soliton), then we can neglect effectsof the 
yr branch. Inserting (4.51, (4.7) (multiplied by 2), (4.8) 
and (4.9) into (4.12) we obtain 

. , 

where m2 = h: + 2b and W 2  = w 2  - (26 - m2)c2. Using the expression for E(p) given by (2.33) we can 
Far from the soliton center we find write 

where M = M ( 1 t  8/3A), M = E&/c2. 
in agreement with Eqs.(2.22). Inserting (4.13) and (4.14) into (4.11) we finaily 

Let us consider just the case h, = O. For this case find 
the problem can be solved exactly. Eq.(4.3) possesses a 
bound state so1ut:on with wlb = O, as in the SG prob- 
lem, describing translational invariance of the soliton n=n.(~+h,/Jià)[(:f~~~~~)]~'~ (4.12) 
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where n, is the soliton density for the SG model given 
by 

. , 

(4.13) 
As we can see, for low temperature and small mag- 

netic fields, the leading correction to the SG result 
comes from spin fluctuations out of the easy plane, i.e. 
the out-of-plane magnon mode not present in the pure 
SG model. 

For h, << J26, we see from the above calcula- 
tions that we can use the decoupled model. Thus, we 
neglect the last term on the right hand sides of (4.3) 
and (4.4) and replace the magnetic field by an effec- 
tive a n i s o t r ~ ~ ~ ~ ~  b = h2/2. This agrees with the well 
known fact that the thermodynarnical properties of the 
Hamiltonian (2.1) are equivalent to those of a ferromag- 
netic Heisenberg model with two single-site anisotropic 
t e r ~ n s ~ ~ ? ~ ~ .  

V. Dynamics S t ruc tu re  Factors: Transverse 
Correlation Function for  t h e  xy Soliton 

We start by studying the transverse spin-correlation 
function in the xy plane given by 

< sin 4(z, t)  sin 4(O, 0) sin 6(z, t) sin 6(0,0) >, 
(5.1) 

where r = na. In antiferromagnetic chains, the soliton 
regime gives rise to a very special feature: each time a 
soliton passes by there is a flipping of the spins associ- 
ated with the two sublattices, i.e., the spin components 
perpendicular to the field change its orientation from 
f Si to  7% destroying the long range correlation that 
would exist in the absence of solitons. In this manner, 
the SY spin components can be correlated only within a 
distance comparable to the distance between 2 solitons. 
In an approximate description on a length scale large 
compared to the soliton extension, we can write (5.1) 
aa23 

< SY (e, t)SY(O, 0) >= 
= (-1). < ( x ) 2  >< u(r,t)u(O, O) >, (5.2) 

where u(r,  t)  = f 1 is a quantity of the Ising type. We 
have 77 u(r,t)u(O,O) = (-l)m, where m is the number 
of solitons in the space-time interval between the points 
(0,O) and (z,t). Since for a soliton gas with N particles 
the probability p(m) of finding na solitons obeys the 
Poisson distribution, p(m) = ( ~ " / r n ! ) e - ~ ,  we have 

N(z,t) is the average number of solitons (and antisoli- 
tons) at  t = 0, consisting of two contributions: (i) the 
number of solitons between O and z, which will not pass 
r in the time interval between O and t ;  (ii) the number 
of solitons outside the range from O to r ,  which will pass 
z in the time interval between O and t .  The number of 
solitons and antisolitons with velocity u is given by 

where P(u), the probability of finding a soliton with 
velocity u is, within Boltzmann statistics, expressed as 

where ue = c ( 2 p h ~ ~ ~ ) - ~ / ~  is the thermal velocity. We 
find then for N(r ,  t)  

f (y) = [e-Y' + 2y lY e-z2dx] . (5.8) 

For t -. O, we have f(y) - y leading to 

Thus if E-' is the inverse correlation length for the 
transverse correlation function we have 

characterizes the average size of an antiferromagnetic 
region between two solitons. Note that the calculation 
above, although performed in the xy lirnit, does not 
depend on the form of the soliton and therefore is quite 
general. 

For y >> 1 or y << 1, we can approximate f(y) by 
the function ~ - ' / ~ ( 1 +  f i y )  ~ b t a i n i n g ~ ~ ,  

with 
rw = 4nsue/a1/2. (5.12) 

A different approximation of f (y) by a-1/2(1+ay2)-1f2 
gives the e x p r e s s i ~ n ~ ~  
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These two differ:nt approximations lead to essentialy 
the same result : the transverse fluctuations give rise 
to an intense :extra1 peak around q = O and w = 0. 
However, (5.11) predicts the energy width to be inde- 
pendent of q, AJ = 2r,, while (5.13) yields Aw = 
1.533 I', (1 + q2/i?i)1/2. 

We can see fi.om (5.11) and (5.12) that the trans- 
verse correlation function for an antiferromagnet is of a 
different nature than for the xx or zz correlation func- 
tions (see Sectioiis VI and VII). This difference is re- 
lated to  the fact that the S2 and SL spin components 
behave differently in respect to solitons: they do not 
suffer the flipping experienced by S i  when a soliton 
passes. In parti(.ular the widths of SYY(q,w) along q 
and w are propoi.tiona1 to the soliton density, indicat- 
ing that interfere ~ c e  effects occur in the scattering pro- 
cem, so that the central peak is not associated with 
the scattering by a single soliton. Neutrons are scat- 
tered coherently by the region in a chain between two 
solitons . 

We also remark that the characteristic properties 
of the antiferromignetic chain from a physical point of 
view are quite distinct from the ferromagnetic chain, 
in particular the antiferromagnetic central peak is a 6- 
function when no solitons are present whereas in the 
ferromagnet the externa1 magnetic field induces long 
range order, which is not destroyed by solitons. 

Using the eqiiivalence between Hamiltonian (2.1) 
(with h, = 0) ancl a ferromagnet with 2 anisotropies, < 
can be calculated via the transfer matrix m e t h ~ d ' ~ ~ ~ ~ .  
In the limits h .:< h,, h E h, , h >> h,, the re- 
sul& agree with tlie phenomenological calculations per- 
forrned in Section IV (see [29] for these limits). Since 
it is almost impcssible to  perform an analytical phe- 
nornenological calculation of n, for a11 values of h, we 
can use the result obtained from transfer matrix cal- 
culation for < in order to have n,. However, it would 
be very interesting to have numerical calculations of n, 
for an antiferromzgnetic chain for a11 values of h,  in the 
line of ~ a u l i n ~ '  arid Gerlingao in order to compare with 
the result from the transfer matrix method. 

Equations (5.1 1) and (5.13) were derived ignoring 
interference between solitons and magnons. For a study 
of the influence oj' soliton-magnon interferences on the 
zereorder magnoii and soliton peaks, we consider a lin- 
ear superposition of 2N (anti) solitons and the real part 
of a general m a g ~ o n  solution. We consider also the 
smalI-amplitude fluctuations v and a neglected in Eq 
(5.1). Calculationi performed in the sine-Gordon limit, 
for the xy soliton contribution, give the following result 
for the soliton peak (flipping mode)" , 

where P = ~ J S ~ / ~ ~ T ,  and SYY(q, W) is gi\en by (5.11) 
or (5.13). As we can see from (5.14) the soliton-induced 
central peak is reduced in intensity if soliton-magnon 
interferences are taken into account. Also, the small 
amplitude v diminishes the intensity: the contribution 
due to v leads to the term 47rh2 in (5.14). Besides the 
soliton peak, the calculation furnishes a magnon peak, 
which is absent when soliton-magnon interaction is ne- 
glected, and two magnon process. The extra contribu- 
tion t o  the central peak from multi-magnon processes 
is very small compared to the flipping mode and can 
therefore be neglected. 

VI. Longitudinal Correlation Function in the SG 
Limit 

For h << h, the SZx(q, w) correlation function is 
given by 

/ dzdt(-i)ns2 SZ2(q,w) = - 
(27r)' 

< cos 4(z, t )  cos 4(0,0) > ei('Jz-wt) . (6.1) 

The average in (6.1) can be calculated initially by con- 
sidering that only one soliton is excited thermally in 
a chain. In this case this average implies in integra- 
tion with respect to a11 possible soliton positions and 
velocitiesZ3, i.e. 

< cos 4(z, t )  cos 4(0,0) >= 

/ N(u) coa 4(z, 1) cos 4(O, O)dzodu, (6.2) 

where N(u) is given by (5.4). In the non - relativistic 
sine-Gordon limit we have (see section 2) 

cosd(z,t) = sech[h(r - zo - ut)] .  (6.3) 

From (6.1), (6.2) and (6.3) we obtain 

2n.v" J eiqze- iwte-nu2 S x 2 ( q , ~ )  = -- 
(ar)' f i u e  

X 

where q is measured from a, and a = u;'. Defining 
y = r - zo - ut, and using 

eaqYsech mydy = 

we find 
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Eq (6.5) gives a central peak superimposed on the 
flipping mode. It becomes narrower as q -r O with 
a diverging intensity. However when the instrumental 
resolution is taken into account, the resulting peak be- 
comes much smaller than the Syy(q, W) peakla. In fact , 
the contribution from SZz(q,w) is comparable to the 
contribution from multimagnon processes to the cen- 
tral peak 13. The different nature of the transverse and 
longitudinal correlations in an antiferromagnetic chain 
is manifested by different temperature dependences of 
the intensity of the central peak. For the longitudinal 
correlations this dependente shows an increase with T 
as the soliton density is increased, whereas in the case of 
the transverse correlation there is a reduction inversely 
proportional to the soliton density. 

The longitudinal correlations in an antiferromagnet 
are entirely due to the structure factor of one soliton 
and behave sirnilarly to a ferromagnet. Therefore, in 
the range of the parameters where the intensity of the 
transverse correlation is high, the corresponding inten- 
sity for the longitudinal correlation should be low. 

If we now take into account the soliton-magnon in- 
teraction and the small amplitude fluctuations v and a, 
we obtainel 

where 

and SZZ(q,w) is given by (6.5). The contribution 
A2(q,w) comes from the small amplitude v. This 
term gives rise to a peak in S,Z,?(q,w) at a frequency 
wp = u ~ q .  The soliton-induced central peak is reduced 
in its intensity by a factor that differs from the one in 
the longitudinal case due to the different way of cal- 
culations of the averages in the sine and cosine terrns. 
For the contributions to the magnon peak, see ref [82]. 
This peak, which is sharp as long as only harmonic 
inagnons are taken into account, acquires a width due 
to the soliton-magnon interaction. 

We must point out that in this section we have con- 
sidered only the case of extremely high anisotropy so 
that spins are confined to the easy plane. When the 
anisotropy parameter is finite, we should obtain impor- 
tant corrections that would aIter the above results. The 
classical SG model can be regarded only as a first ap- 
proximation which provides a qualitative understand- 
ing of the non linear dynamics. A quantitative theory 
requires allowance for the out-of-plane motion. 

Despite of the theoretical calculations presented 
here and in the latter section the influence of the soli- 
tons on the magnons has not been unambiguously mea- 
sured by experiment. Also solitons and non linear cou- 
pling between single-and higher-order spin waves can be 
described theoretically quite well, however a coherent 
theory describing both on the basis of the same Ansatz 
does not exist at  present. 

VII. The Out-of-Plane Structure Factor 

In this section we will calculate the out-of-plane cor- 
relation function in the limit of low temperatures. For 
h: << 26 ( b  = O), the spins are mainly restricted to 
the xy plane and the out-of-plane spin component Sn, 
described by 8, and V (cf.eq.(2.4)), is very small. The 
expressions for 6, and v, corresponding to a soliton in 
that plane were derived in Section I11 (eq.(3.5)) and are 
given by 

8, cz n/2 + u ( ~ / 2 ~ S ) s e c h ~ [ h , ( z  - ut)], 

v, 2 -u(hz/4JS)sech[h,(r - ut)] 

( 7 4  

where z = na and R = h0/26. Because 8, and v,, are 
both small quantities we will not start here by consid- 
ering initially the sole effect of one soliton in the chain 
- as we did in the calculation of SzZ(q, w ) .  Here it is 
more convenient to include solitons and pagnons from 
the very beginning. Then we describe Si as a superpo- 
sition of a soliton and the real part of a general magnon 
solution, i.e., 

Up to lowest order in soliton density there is no 
soliton magnon interference. Isolating the soliton con- 
tribution to SZZ(q,w) we obtain 

Obviously this equation refers to the part of Szz(q,w) 
due to the structure factor of the out-of-plane compo- 
nent of one soliton and we remark here that, as will 
be shown below (eq.(7.4)), it is more complex than the 
corresponding quantity for a ferromagnet because of the 
contribution from v. Inserting eqs.(7.1) into (7.3) and 
integrating in respect to a11 soliton positions and veloc- 
ities, we obtain 
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where the contribution to the Bragg peak was ne- 
glected. We note that Sg,tl(q,w) vanishes at  w = 0, 
but has peaks ai. w = f ueq. This component is difficult 
to be observed experimentally. However, if observed, 
it will consist oi' a direct observation of the soliton, in 
the sense that w hat will be obtained will be the scatter- 
ing from the soli tons thernselves, and not from domains 
between solitons - this is also true for the longitudinal 
ccrrelation funcrion. However, comparing (7.4) with 
SZz(q,w) we see that whereas the temperature depen- 
dente is the sanie in both cases, the w and q depen- 
dentes are differont . 

The calcu1ati~n of the averages appearing in (7.3) 
led to the solitoii density n, [in (7.4)] which refers to 
the SG result. However, we must remark that for con- 
sistency, we should have used the soliton density cal- 
culated in Secticin IV since we are strictly handling 
quantities, as thl: out-of-plane component, related to 
deviations from the SG model. 

We also empliasize that calculations performed in 
this section are virlid only for small magnetic fields h,. 
For large fields, a more complex structure would be 
obtained. 

Besides the central peak we have also, similarly to 
what happens in ,SxZ, magnon peaks. We remark that 
for the out-of-plane correlation function, the magnon 
bound states discussed in Section IV will cause addi- 
tional magnon peitks. However, up to the present m e  
ment, these modeti have not been observed experimen- 
tally. 

Dynarnical efkcts of soliton-soliton and soliton- 
magnon collisions in the sine-Gordon limit have been 
discussed in refs.[83-871. 

VIII. Quantum Corrections 

Let us consider quantum corrections at T = 0. 
For simplicity we l ~ i l l  consider Hamiltonian [2.1] with 
h, = h, = O. The effect of the magnetic field h, will be 
taken into account via an effective a n i s o t r ~ ~ ~ ~ ~ .  In the 
absence of solitons, the energy of the vacuum comes 
only from continuiim states (magnon modes). When 
the soliton is introduced, the first two continuum states 
disappear to beconie bound states with w = O and wb. 

The first state (q = O) of wl(q) becomes the bound state 
w = O (translation :node) and the first state (q = O) of 
wz(q) becomes the bound state w = wb. The contribu- 
tion of these two sti~tes to the energy of the soliton will 
then be 

where m: = 2b, mi = 26. The contribution from other 
states, which remain ín the continuum in the presence 
of the kink, will be 

where q, is the wave number of the n-th mode in the 
continuum in the presence of the kink, and k, ihe wave 
number in the vacuum. Since we have used a periodic 
box of length L, qn and kn are related by the periodic 
boundary condition 

Lq, + A(q,) = 2 n ~  = k,L, (8.3) 

where A(q) is given by Eq. (4.7). From (8.3) we obtain 

In the lirnit L -+ oo the discrete sum (8.2) becomes 
an integral 

where A is the ultraviolet cut-off, given by the latticé 
spacing. Integrating (8.5) by parts, adding (8.1) and 
doing a few manipulations we find 

Although we have a discrete chain (finite A), one loop 
correction to the magnons m a ~ s ~ ~  is equivalent to nor- 
mal ordering of the Hamiltonian. This contributes with 
terms 

These terms renormalize the magnon masses, i.e. 
they are res~onsible for the renormalization of the pa- 
rameters of the ~ a m i l t o n i a n ~ ~ .  Thus if we use renor- 
malized values for the anisotropy parameters 6 and b, 
as obtained from experimental data for instance, or cal- 
culating them following the procedure presented in [33], 
these terms have already been taken into account and 
we do not need to write them here. Collecting all terrns 
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we arrive finally to the static soliton energy, at zero 
temperature 

In the sine Gordon limit, this is, for ml >> ma we 
obtain the well known result4' 

At finite temperature the soliton energy is given 
by 34 

where 

We must bear in mind, however, that there are cer- 
tain difficulties in reducing the dynamics of a quantum 
Heisenberg chain t o  the quantum SG equation. There- 
fore, a t  present there is no self-consistent quantum the- 
ory of a quasi-one-dimensional antiferromagnet (or fer- 
romagnet) of the type of TMMC. 

IX. Results in TMMC 

As we have already discussed, the externa1 field 
H, = H(Hz = 0) plays the role of a magnetic 
anisotropy which competes with the dipolar interaction 
6. The two types of solitons, xy and yz, studied in sec- 
tion I1 and 111 result from this competition. The cor- 
responding soliton phase diagram has been established 
e ~ ~ e r i r n e n t a l l y ~ ~  and is shown in figure 2. 

The transverse function SYY(q, W)  has been exper- 
imentally investigated by using inelastic neutron scat- 
tering and NMR m e t h o d ~ ~ ~ - ~ %  In order to properly 
analyse the experimental data, the quantities we must 
keep on mind are the soliton energy E, and the widths 
rq and I', which in the (xy) sine-Gordon limit are given 
by equations (5.10) and (5.12)' respectively. We have 
seen in section I11 that for h << h, the sine-Gordon 
soliton energy Ezy increases proportionally to  the field 
H, i.e, E& = gpsSH = a s c H  which, for TMMC, 
gives f f ~ ~  = 0.336K kOe-'. However, for T = 2.5K and 
H = 36 kOe, the experimental value obtained2' for a 
was (0.269k0.03) KkOe-', much lower than CYSG. This 
discrepancy can be explained by 'the discussion done 
in section 111: the out-of-plane fluctuations are crucial 
and must be considered whenever dynarnical problems 

Figure 2: Soliton phase diagram in TMMC. The curve 
T3D represents the three dimensional ordering temper- 
ature and the curve H / T  = 10kOe/K the limit where 
AN,/N, 5 0.3 (AN, = number of spins inside one soli- 
ton, and Nd = number of spins between solitons) (from 
[221). 

are being studied. Due to out-of-plane fluctuations, the 
xy-soliton deviates from the sine-Gordon behavior, i.e. 
the sine Gordon limit does not describe correctly the 
real anti ferromagnetic chain. We can incorporate the 
effects of the fluctuations on the soliton energy by writ- 
ing Esy = o H ,  with a =  as^ - o g p ,  where a o p  is 
related to the out-of-plane fluctuations. As the mag- 
netic field increases up to H 2 H, (H, = 4JShc/y), 
the soliton energy must show a crossover behavior be- 
cause now the yt-sine-Gordon soliton is the one with 
lower energy and this energy independs on H. In or- 
der to put a11 these facts together and to  analyse the 
experimental data, we define a function E, which will 
be called the soliton energy. This function must be de- 
fined such that it reduces to and Eyz energies in 
the limits H << H, and H >> H,, respectively. We 
define 

and 

where u = H / T  and kp = T/4JS2.  These definitions 
,arise naturally from equations (5.10) and (4.16) if we 
substitute 4JS2h, = E:y by E, (arguing that there 
is a renormalization on the soliton energy) and impose 
E, = a H .  Equations (9.1) and (9.2) can be used to 
calculate E, and CY if we know how to  calculate I', for 
any value of T and H .  Now using the fact that from the 
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thermodynamici~l point of view the easy plane antifer- 
romagnetic chain in an externa1 magnetic field is equiv- 
alent to the feriomagnetic chain with two anisotropic 
terrns, and that for this latter model transfer matrix 
results for rq ar? available at  low temperature we can 
calculate E, and a so that no sine-Gordon approxima- 
tion is involved2". Computing rq (see eq.(3.33) of [29]) 
for T = 2.5K ancl H = 36kOe and using (9.2) we obtain 
a = 0.28K kOe, in close agreement with the experimen- 
tal valueZ0. In figure 3 we present I ' q [ ~ ( ~ / ~ ) 1 / 2 ] ' 1  as 
a function of H/:" for T = 2.5K on a semilog scale. The 
experimental data were taken froml%nd the agreement 
is very good. The data shown in Figure 3 correspond 
to H < Hc(Hc 69 kOe), the region where the xy 
soliton is the relevant one. In figure 4 we show rqT 
as a function of T- for an applied magnetic field of 
H = 83kOe and the agreement is quite good. Notice 
that the theoretical calculat ion~ does not make use of 
any adjustable parameter. 

Figure 3: Comparison between theory (solid line, from 
[29]) and experimmtal data ( from [18]) for rq as a 
function of H /T  (I'* is given in reciproca1 lattice units). 

In figure 5, we show the soliton energy calculated 
from (9.1) as funct ion of H ,  for T = 2.4K. The exper- 
imental data were taken from [22]. We have used the 
renormalized valueg for the parameters of the Hamilto- 
nian as discussed in ref. (331. We remark that in [29] 
only the renormalization of the anisotropic term was 
included whereas here we consider the renormalization 
in the magnetic fidd term a 1 s 0 ~ ~  and this leads to a 
slight better agreerzent with the experimental data. 

If in Eq.(8.7) wc: take ml = h,  i.e. we use an equiv- 
alent anisotropy foi* the magnetic field, use for mi and 
r n z  the same renorrnalized values for TMMC as we did 
above and calculate E: numerically we find that for 
H < 60kOe the calculated values can be fitted by the 

Figure 4: rqT as a function of T-l for an applied mag- 
netic field of H = 89kOe. The solid line was calculated 
as explained in the text. The experimental data are 
from [I$]. 

expression E: = a H  with a = 0.28 (the same value ob- 
tained above). The calculation for E at  finite tempera- 
ture performed in [34] is valid only for small magnetic 
fields ( H  <C 60 KOe) and therefore can not be used 
here. In the classical calculations, at finite tempera- 
ture, of Fig.3, 4 and 5 the spins moved out of the xy 
plane (since no SG approximations was used). Thus if 
we believe that the quantum result at  T = O is correct 
for TMMC then it seems likely that quantum fluctua- 
tions at finite T restrict the spin motions more strongly 
than expected to the easy plane, thereby reducing the 
out-of-plane motion. Experiments that probe SYY(q, W)  
show evidence for nonlinear excitations but they do not 
provide information about the structure (form factors) 
of the solitons. 

However, analysing data obtained for Sxx (9, w ) 
by using inelastic polarised neutron scattering exper- 
iments, Boucher and coworkers" were able to observe 
directly the soliton excitations in TMMC. In order to 
reach the desired soliton regime, the field value was 
fixed at H = 45kOe and the temperature was varied be- 
tween 2K 5 T 5 15K. Sxx(q,w) was obtained from the 
measured cross section after subtracting the residual 
contribution from Syy(q, w). The experimental values 
of the frequency width obtained from sSzz(q, w ) (from 
[84]) are shown in Figure 6. At q = O the width has a 
non-nu11 value, in contradiction with the non interact- 
ing soliton gas model (Eq. (6.5)) but consistent with 
the theory discussed in Ref. [83]. The full line in Fig- 
ure 6 was calculated theoretically by Boucher et aLM 
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Figure 5: Soliton energy E, as a function of the mag- 
netic field. The solid line is calculated theoretically for 
2.4K. The experimental data are from [22]. 

by taking into account the collision effects discussed in 
Ref . [8 31 . 

It  should be mentioned that the agreement between 
theory and experiment for SZZ(q, w )  is remarkable if we 
recall that the theoretical calculation was performed 
using the SG limit. The SG theory appears however 
to be a useful starting point and we would expect a 
gradual change over from SG to some other description. 
It is therefore not too surprising that the experiments 
show sine- Gordon-like features. 

Effects due to the three-dimensional ordering tem- 
perature TN have been discussed in Refs. [89-911. 

X. Thermodynamics  of a One-Dimensional Mag- 
netic  chain 

From transfer matrix calculations we have the free 
energy for hamiltonian (2.1) in the limit h << h, [92] 

N T M M C  H=45kOe 
OíX - - 

>r 
O 
C 
0 1 
3 
CT 

L 0.02 - t 
L 

C . - _ _ _ _ - - - - - - -  E 
I 
3 0.01 - 
L 

Figure 6: Energy width (FWHM) as observed for the 
soliton mode SZZ(q,w) a) as a function of wavevector q,  
and b) as a function of temperature. The dashed Iines 
correspond to the noninteracting soliton gas model and - 
the full lines account for the dynarnical damping (from 
~ 4 1 ) .  

The first three terms are contributions from spin 
waves: The first two are linear spin wave contribu- 
tions from the in plane magnons fi and from out of 
plane magnons f i  as can be obtained directly by an 
harmonic treatment of the Hamiltonian. The T' and 
higher-order terms are contributions of non-linear spin 
waves: interaction between magnons, multi- magnons 
states, breathers, and so on. The last two terms in 
(10.1) are interpreted as the free energy of kinks (Fk) .  

The leading term is equal to the free energy of an ideal 
gas of kinks with thermally renormalized creation en- 
ergy. This renormalization arises from phase sh2,ft in- 
teractions between magnons and kinks. There are three 
possible sources to the finite temperature correction to 
Fk. In the sine- Gordon limít they are given by: 

i) relatiuistic dependence of the bare kink energy on 
2 112 the momentum p, E(p) = ((E:,) + p ) . 

ii) momentum dependence of the renormalization, 
and 

iii) anharmonic magnon contribution to the renormal- 
ization. 

The first and second corrections can be included in 
the phenomenological treatment using the correct ex- 
pression for the soliton energy instead of taking the 
non-relativistic result. This gives a correction of the 
form 1 - (5/8)(T/E&). The third correction appears 
due to the contribution of anharmonic magnons to the 
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renormalization of the soliton energy via a phase shift. 
~ h e o d o r a k o ~ o u l ~ x ~ ~  using the relativistic energy and 
including a11 contributions to the relevant phase shifts 
(even magnon-m.tgnon scattering) has obtained the cor- 
rect factor 1 - ( ; ' /8) (T/EzY) .  The last term in (10.1), 
e-2EzvlTl is due to two-soliton interactiong4. 

For the contribution of non-linear excitations to the 
specific heat of TMMC see [92, 95-99]. However, as 
pointed out by Steiner and Bishop7, thermodynamic 
measurements have the drawback that they are not se- 
lective but pick iip the contributions from a11 excita- 
tions and therefore the unambiguous identification of 
one contribution s difficult. 

We close this section mentioning some others rel- 
evant works in cne-dimensional classical AF chains. 
Buys et al.'OO measured the magnetic field dependence 
of the thermal cor ductivity of TMMC and DMMC be- 
tween 1.5 and 7 I{ and in fields up to 90 kOe. They 
found that, in the paramagnetic phase, the data could 
be very well interpreted by soliton-phonon scattering. 

De Jongh and de Grootgl have argued that the field 
induced transitions in a weakly anisotropic quasi-one- 
dirnensional Heiseriberg antiferromagnet were examples 
of soliton-mediatetl phase transitions. Agreement with 
data on TMMC and K2FeF4 was found. Those au- 
thors extended their analysis to below the 3 0  transition 
temperature in order to  interpret experimental results 
of Mossbauer effect in the compound K2FeF5. They 
showed that to  explain the field dependence of the av- 
erage angle < 4 > (in the ideal soliton gas approxima- 
tion, < 4 >= 272, jYw $,(.z)dr) between the hyperfine 
field and the AF axis in the spin-flopping configuration 
it is necessary to a m m e  that the static ?r - SG soli- 
tons should be exc ted in pairs with an energy equal 
to 2EsG. Thiel et al.lO' studied the contribution to 
the Mossbauer lineividth in quasi-one-dimensional an- 
tiferromagnets with easy axis anisotropy due to ther- 
mal excitations of inoving kinks. Experimental data 
on Fe(N2H5)2(S04):!, RbFeC132H20 and CsFeC132H20 
confirm the predicted exponential temperature depen- 
dente of the 1inewid;h. 

Gaullin and Col ins 'O2 reported evidence for the 
presence of solitons in CsMnBr3 at 15K by neutron 
scattering experimer ts. 

Sasaki 'O3 calculated soliton contributions to the 
dynamical structure factors of the easy-plane antifer- 
romagnetic chain in t he sine-Gordon approximation for 
q 2 ?r(Q = O). He obt ained soliton modes similar to Eq. 
(6.8) but with a much smaller intensity. 

Riseborough and Reiter104 calculated multi spin- 
wave contributions to the central peak in TMMC. They 
found, however, that the theoretical results were not in 
agreement with the e~perimental data, which required 
the additional solitonj contribution to describe them. 

Holyst lo5 has stutlied the dynamical properties of a 
quasi-one-dimensiona antiferromagnet in the presence 
of the magnetic field ~e low the Néel temperature, TN,  

of such a model. By the use of an interchain mean field 
approach the equations of motion were reduced to the 
double-sine-Gordon equation which has as special so- 
lutions moving 2n-solitons having a form of pairs of 
weakly coupled n-solitons. He found that,  on the con- 
trary of what happens above TN , the transverse cor- 
relation function SL(ql w )  had a Gaussian form instead 
of a Lorentz-like distribution, and that the intensity 
of this peak increased with temperature but decreased 
with the strength of the magnetic field. Such behavior 
reflects the fact that above TN, Sl(q, W )  is determined 
by the regions between the n-solitons while below TN it 
depends on the spin distribution inside the sofitons. A 
qualitative agreement with data for TMMC was found. 
Before that however ~ e t t o r i " ~  had performed a more 
consistent analysis of the soliton excitation taking into 
account explicitly, via mean field approximation, the 
interchain interaction. 

XI  - Easy Axis Model 

In this section we will consider the easy-axis anti- 
ferromagnetic model described by the Hamiltonian 

Classically we have a doubly degenerate ground state 
with aligned Néel order along the z axis. The study of 
this model has become important in connection with 
the so called Haldane's c ~ n j e c t u r e ~ ~ ,  as we will see in 
this and in the next section. 

Using the results given in section (11) we can readly 
write the equations of motion, in the continuum limit, 
for Hamiltonian (1 1.1) 

â20 1 d20 2 

az2 ~2 at2 sin O cos O [(g ) 

We also have 

Eqs.(l 1.2) and (1 1.3) have small-amplitude spin- 
wave solutions, 

0 = 00 << 1 4 = w(k)t- kz,' (11.5) 
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where 

w2(k) = W: + k2c2, with w$ = 26c2. (11.6) 

The stationary soliton solution can be sought in the 
form41~lo7 

Lorentz invariance allows the moving solution to be 
obtained by a boost of the static soliton. Taking (11.7) 
into (11.2) and (11.3) we find 

As boundary condition for the function 8(z) we 
choose the condition 

ae 
9 -+ O, s ,  - -i O when Izl-. co, (1 1.9) ar 

which corresponds to  localization of magnetization in 
the soliton. For w2 < wi Eq.(11.7) has, as we saw in 
section 11, the soliton solution 

cos 8 = tanh[(z - z ~ ) / r ] ,  (11.10) 

where r2 = c2(wg - w2)-l. This solution describes a 
180° domain wall of the antiferromagnet with e(-oo) = 
s ,  O(+co) = 0, and 0 = s /2  at the center of the soliton. 

Since the anisotropy term does not depend on 4,  
there exists one integral of motio: - the z component 
of the total magnetization 2 = S,, + &+i. We shall 
represent this integral in the form, using Eqs.(2.6b) and 
(2.8), 

The total azimuthal spin carried by the soliton can 
be interpreted as given by 

where we have used (11.10) to integrate (11.12). Thus, 

The field momentum of-the magnetization field 

is also a conserved quantity. Using Eq(2.15) we obtain, 

From (11.4) and (11.16) we obtain the soliton 
energy- momentum relation, 

Now we introduce the semiclassical quantization of the 
allowed values of the internal precession frequency of 
the soliton 41. This simply means that Sz is quantized 
in integer steps SZ = m (taking li = I).  Eq.(11.17) 
becomes then 

and the parameter w is given by w = ~ o m ( m ~ + ~ ~ ) - ' / ~ .  
We have now an extra degree of freedom, as compared 
to the xy (or yz) soliton studied in Section 111, since 
there we kept, let us say, 4 = constant, where here we 
have 4 = wt. This extra degree of freedom leads to the 
term m2wz, representing internal modes, in the soliton 
energy (1 1.18). 

Comparing (11.18) with (11.6) we see that in the 
semi-classical limit (i.e. S large) the soliton energy 
gap is always much larger than that of the elemen- 
tary magnon. For Jm] << S we have Em(0) E 

Swo + m2wo/2S. For Irnl >> S, w -+ wo, E,(O) cz m o  
and the rest energy can be interpreted in terms of Irnl 
magnons weakly bounded. In (11.18) the allowed dis- 
crete values of m were not specified, only their integer 
spacing. However, as Haldane has pointed out41, we 
know that the spin wave functions are eigenstates of 
T (where T is the time-reversal operator) with T2 z 
( - I ) ' ~  = ( - I ) ~ *  = f 1. The soliton extended struc- 
ture involves an odd number of spins of the underlying 
magnetic chain: thus its wave function must also have 
the eigenvalue T2 = The allowed values of the 
soliton spin m are then integers if the underlying spin 
chain has integer spin, and half integers if S is half inte- 
ger. However, as we will see below, the two cases have 
distinct behavior. 

In Fig.(7) we show the result for half integer spins. 
In the classical case the energy of the soliton is larger 
than the energy of the magnon. Due to the internal 
precession it is also decomposed in severa1 states. The 
lowest energy state is characterized by the magnetic 
quantum number m = f 1/2. The application of an 
externa1 field will split these soliton states allowing, in 
principle, the observation of the internal precessions39. 
We remark here that for the quantum AF Ising-like 
chain with S = 1/2 the lowest excited states are states 
with one wall centered at a site n. A spin-wave state 
with just one spin Aipped has a higher energy value (see 
Fig. 8). Then the magnon has a higher energy than 
the soliton. Note however that a propagating domain 
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wall in this casc? can only be called a soliton in the 
sense that it moves with a constant velocity and shape 
and connects two degenerate ground $ates. It is not a 
sine Gordon soliton as the one in the classical m0de1~~'. 
However for the classical or quantum model the gap 
vanishes in the ir:otropic limit. 

E + Ma non 

Figure 7: Energy of the excited states in AF-Ising-like 
chain for the half integer spins. 

Figure 8: Excited states in AF-Ising-chains for s = 1/2. 
a) Néel ground state. b) soliton, and c) one spin flipped 
(magnon) . 

In the case of integer spin, Figure 9, the semiclassi- 
cal picture of the s,>liton and magnon described above 
will only be valid for weak but finite anisotropy. What 
happens is that the magnon excitation for the isotropic 
Hamiltonian in the harmonic approximation is gapless. 
However, as we will see in the next section, the nonlin- 
ear vacuum fluctuations dynamically break this sym- 
metry and the collrctive mode develops a finite rest 
energy EQ for integcr spins. This nonlinear mechanism 
will only be suppressed by the anisotropy if wo >> Eo. 
As the isotropic lirn t wo -+ O is approached, these non- 
linear effects mean that the renormalized soliton rest 

energy will eventually become lower than the renormal- 
ized magnon rest energy. The lowest-energy excitation 
is then the principal rn = O soliton (see Fig.(9)). As 
pointed out by Haldane41 the eventual disappearance 
of Néel order in the ground state as the isotropic limit 
is approached will be signaled by an instability against 
pairs of the order- destroying topological soliton exci- 
tation; i.e. if E. is comparable to the energy associated 
with non-linear quantum fluctuation we have the cre- 
ation of pairs of soliton - antisoliton and the ordering 
will be destroyed (sirnilarly to the Kosterlitz - Thouless 
transition in the 2D-XY modeliog.) Also, it is the ther- 
mal excitation of solitons, not the thermal excitations 
of magnons, that disorders the system at any finite tem- 
perature. 

Magnon ', 

\'\ E . I Magnon 

b) 

Figure 9: Energy of the excited states in AF-Ising- 
like chains for classical integer spins. For a decreasing 
anisotropy (a)+ (b) (Ising -+ Heisenberg) the energy 
for the non magnetic soliton (m = O) is renormalized 
and becomes smaller than the magnon energy. Finally, 
in the isotropic limit (c), a non magnetic ground state 
is reached with a first excited state a t  the energy EQ. 

XII - The Haldane Gap 

In this section we will present some arguments for 
the origin of the gap for an AF with integer spin. First 
we will discuss a field theoretical argument in the line of 
~ a l d a n e ~ '  and ~ f f l e c k " ~ ~ ' ~ ' .  In order to  do so we will 
rederive the continuum limit for Hamiltonian (11.1), 
taking only the exchange term since the anisotropic 
term will not be affected by Jhe following procedure. 
Here we will define variables $J and h?, combining each 
spin on an even site, 2i, with the spin to  its right, at 
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(2 i+  1) as in refs. [110, 1111, with constraint J2 = 1 and where E"' is the Levi-Civita 
antisymmetric symbol. To understand the meaning of 

$(2i + 112) = (S2i+i - S Z ~ ) / ~ S  O we note that on the compactified Euclidean space (i.e 
G ( 2 i  + 112) = (S2i+l+ S2i)/2 $(i?) -+ constant a t  IZ] - m) both 6 and 's: can be 

(12.1) represented by points on a sphere S2 and the integral 

d and 2 obey the constraints 4.  I$? = O and Q = (1/8n) / d25ru"4.  (au$ x au6 (12.6) 
t+P = 1 + 1/S  - M ~ / s ~  -+ 1. 

Assuming that 4 and 2 are slowly varying on measures the winding number of the sphere onto the 

the lattice scale we can write the Hamiltonian H. = ~ p h e r e ~ ~ .  It is the Jacobian for the change of variables 
.. from polar coordinates in I - space (with 3 the spatial 2 J Sn . S,+l using a gradient expansion. Keeping -. 

terrns up t o  0(G2) and 0 ( M 2 )  only, since M effectively coordinate on a sphere) to  polar coordinate in 4- space. 
Q is an integer for any smooth (finite - action) field contains a time derivative, and using -. -. configuration. Since the action is given by 

s2i . ~ 2 i + l  = ~ M ( 2 i  + 1/212 + constant -. + 
Szi . S2i-1 = -s24(2i  + 112) . J(2i - 3/2) S = [ cd t  

we can write 

In terms of the angle parametrization given by Eq.(2.4) 
the last term on the right hand side of Eq.(12.3) can 
be written as dF/dr,  a total derivative of a function F, 
and it has no effect on the classical equations of motion. 
Therefore this term has been neglected in the study we 
have done before. 

J 

we obtain112 from. Eq.(l2.5) 

S = SO + i6Q. 

Since Q in an integer-valued topological charge, e -$  
is a periodic function of 6 for any smooth field con- 
figuration. Thus we expect a11 physical properties of 
the model, which in Feynman's formulation of quan- 
tum mecJanics can be derived from the path inte- 
gral Jd$e-'s/h, to be periodic in 8. Thus we see 
that for integer-S chains we effectivelly have O = 0. 
The action is then real and corresponds to a classical 
twedimensional ferromagnet at finite temperature112, 
T = g.  On the other hand, for half-integer S we have 
8 = ?r. The action is now complex and there is no 
correspondence to a standard classical tw*dimensional 
problem. 

The generation of a mass, for O = 0, can be seen 
using th.e large n-limit of the O(n) non linear a model 
as f o l l o ~ s ' ~ ~ .  This model is defined by the Lagrangian, 

+ Classical'y we can take the of this term as with (Ii a n-component vector. It  is convenient to in- 
a constant, and since M 2  = S2(v2 + a2sin26) We ob- clude the constraint in the ~~~~~~~i~~ wnting 
tain the exchange part of Eq.(2.13). However, following 
Af f l e~k '~~~" '  we rewrite (12.3) n 

2 
C = - [(q2 + iA(@ - i)] . (12.9) 

2g 

Hence $ is then no longer constrained. The path inte- 
gral becomes then 

+L g2 (g) '1 dr (12.4) Z = J d $ d ~ e x ~  ($s) (12.10) 

where g = 21.9 and 6 = 27~s .  Writting 3-10 = where here s = Jd2 .3~.  ~h~~ 
(cS/4) J hdz, we observe that h follows from the La- 
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Integrating over the field, using, 

we obtain 

up to an irrelevmt constant factor. We have thus an 
effective action 

Sef (A) = i (- 1 d2P [: + tr  ln(-8' + iA) . I > 
(12.13) 

Because there is it factor of n in Sen we may ignòre thé 
fluctuations of A and evaluate Z using the method of 
steepest descent at  the lowest action saddle point. This 
method113 is applicable, in general, to integrals of the 
for m 

r(&) = J e a j ( z ) d ~ .  (12.14) 

The saddle point is given by $$ f t z 0  = O The integral is 
then approximated by 

where p and 4 are defined in Ref. [113]. In our case 

f ( r )  = / d2z {: + tr  h ( -a2  + A) . (12.16) 1 
Let us write the :,addle point Ao as i A o  = m2, then 

IAo = O gives 

Fourier transformiiig Eq.(12.17) we find, 

where we have iotroduced an ultraviolet cut-off X 
(A" = a, the lattice spacing). The mass parameter 
m is then given by, 

leading to the gap mergy for the collective modes 

and to the correlation length (in units of a) at  T = O 

The mapping pe.:formed above, between the 1D an- 
tiferromagnetic systctm and the non linear sigma model, 

shows that a11 integer-spin models will be massive, at 
least for large enough spin where the mapping works. 
The mapping may not be very accurate at  S = 1, 
but should be at least qualitatively correct, providing 
a useful phenomenological model. However the study 
of exactly solvable r n o d e l ~ ' ~ ~ ,  quantum Monte Carlo 
c a l c ~ l a t i o n ~ ~ ~ ,  finite size c a l ~ u l a t i o n ~ ' ~  and finite size 
scaling117 supports the existente of a finite gap for 
S = 1 isotropic-Heisenberg AF system. Recently this 
gap have been calculated by Sakai and Takahashi"' us- 
ing the Lanczos algorithm and by FkzendeUg using a 
modified spin-wave theory. In Rezende's calculation it 
is easy to see that the antiferromagnetic ground state is 
quantum disordered and therefore the gap in the spin- 
wave spectrum has a simple interpretation: it costs en- 
ergy to create an infinite- wavelength magnon in the 
disordered ground state. The spin-wave theory is how- 
ever unable to predict the absence of a gap in half-odd- 
integer spin systems. 

Experimental evidence for the Haldane gap has 
been sought-intensively by inelastic neutron scatter- 
ing, because this is the only method of investigating 
the magnetic excitations over the whole Brillouin zone. 
So far three systems have been studied: NENP'~', 
AgVP2Ss 121 and CsNiCla 122-125. 

The first evidence came from experiments on the 
S = 1 system CsNiC13, which is highly isotropic in 
its c ~ u ~ l i n g s ' ~ ~ .  In the organic, S = 1 AF chain sys- 
tem N ~ ( C ~ H ~ N - Z ) ~ N O ~ ( C ~ ~ ~ )  (NENP), Ni ions are the 
magnetic ions and the system does not order three di- 
mensionally down to 1.2K. The magnetic properties of 
this compound are well described by the Hamiltonian 

with J = 24K, D z 6K and S = 1. Magnetic excita- 
tions have been observed by neutron inelastic scatter- 

I1 ing measurements, showing two energy gaps 30K 
and 2 14K ( ( 1  and I, with respect to the chain 
axis). The average value (E: + d ) / 2  N 0.4(25) is in 
agreement with the value for the isotropic chainlZ0. A 
time of flight inelastic neutron scattering experiment on 
the powder sample of AgVP2Ss 121 has also indicated 
an energy gap. But because of the powder averaging 
the available information is rather limited. Apart from 
zero-field neutron scattering, a number of other mea- 
surements have been made in nonzero applied magnetic 
fields. These include s u s ~ e ~ t i b i l i t ~ ' ~ ~ ,  NMR3', high- 
field m a g n e t i ~ a t i o n ' ~ " ~ ~ ~ ,  and neutron scattering in a 
finite fieldlZ6. In a11 these measurement the Haldane 
gap is quite evident. 

To conclude this section let us consider the half- 
integer spin models. Haldane41 has conjectured that 
the isotropic model is massless. One reason is that the 
spin-1/2 chain, solvable by the Bethe ansatz is mass- 
less as is the spin - 3/2 chain studied numerically by 
Schulz and Zimanl". Recently Shankar and Read13' 
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have shown that the nonlinear O(3) sigma model in 
1+1 dimensions with topological parameter 0 = a is 
indeed massless for a11 values of the coupling g. A 
search for a physical understanding of the difference 
between the half-integer and integer case has also been 
initiatedllO-131 invoking the 'zero-spin-defect' picture. 
Gomez Santos13' has presented a simple model to study 
the behavior of the spin-1 chain in the antiferromag- 
netic regime, identifying domain walls as the relevant 
excitations, and constructing a variational Hamiltonian 
as follows: keeping in mind the interest in the antifer- 
romagnetically dorninated regime, he has discarded a11 
the states with nearest-neighbor parallel spins. Thus, 
the only sources of AF disorder are sites with S, = O 
(spin-O defects, SZD). The two spins at the left and 
right of a single SZD should be antiparallel. A typical 
example oC a state within this restricted set could have 
the following form 

where arrows mean S, = f 1 and circles mean S, = 0. 
The Hamiltonian has been then approximately solved, 
and its critica1 properties fully analyzed, obtaining com- 
plete agreement with Haldane's proposal. 

XIII - Conclusion 

In the present review we have shown that antifer- 
romagnetic chains offer good examples of soliton exci- 
tations, and that the soliton picture is consistent with 
experimental observations. Some points however de- 
serve a further study. The ballistic-diffusive crossover 
observed in TMMC for broad solitons is not completely 
understood and a clear understanding of the impurity- 
induced diffusion process is needed. Also the questions 
of the soliton mode damping (if it is due to collisions or 
not) must be considered. The theory for these collision 
effects is pratically phenomenological and more work is 
necessary for a proper understanding. 

Concerning the Haldane gap problem, recent polar- 
ized neutron inelastic scattering in CsNiC13 with ap- 
plied magnetic field125 showed that neither the classi- 
cal spin wave theory nor more elaborated theory132113" 
fully accounts for the experimentally observed disper- 
sion relation in the 3D ordered phase. The experimen- 
tal information available about the ground state of the 
quasi-1D AF CsNiC13 cannot be explained without .a 
thorough theoretical treatment of the influence of a 
magnetic field on the ground state and the excitations 
of a Haldane ~ ~ s t e m l ~ ~ .  

It seerns to us that low-dimensional magnetic mzl- 
terials will continue to develop as accessible models in 
which to investigate fundamental nonlinear processes. 
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