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Recent theoretical and experimental results on non-linear excitations in one dimensional
classical antiferromagnetic chains are reviewed with a particular emphasis on dynamic prop-
erties. The main investigated substance is TMMC which can be regarded as a quasi-one-
dimensional antiferromagnet with easy plane anisotropy. A discussion of Haldane's conjec-
ture that there is an excitation gap for integer, but not half-integer spin is given. The open
questions and possible investigation for the future are discussed.

|. Introduction

The methods of theoretical physics, with few xex-
ceptions, have been dominated by linear equations, lin-
ear vector spaces, and linear methods (Fourier trans-
forms, perturbation theory and linear response theory).
Although the importance of non-linearity was recog-
nized a long time ago, it was at that time hardly pos-
sible to treat the effects of non-linearity, except as a
perturbation to the basis solution of the linearized the-
ory. During the last two decades, however, it has be-
come more widely recognized in many areas that non-
linearity can result in qualitatively new phenomena
which cannot be constructed via perturbation theory
starting from linearized equations. Moreover, the com-
mon characteristics of non-linear phenomena in very
distinct fields have allowed progressin one discipline to
transfer rapidly to others. Although we do not have an
entirely systematic approach to non-linear problems, we
do, however, have an increasing number of well-defined
paradigms that both reflect typical qualitative features
and permit qualitative analysis of a wide range of non-
linear systems. One of these paradigms that we will
be concerned with in this review paper is the soliton,
which is an essential part of non-linear science. To de-
fine asoliton precisely, we consider the motion of awave
described by an equation that, in general, will be non-
linear. A traveling wave solution to such an equation
isone that dependson the space X and timet variables
only through the combination s = = —ut, where u is the
constant velocity of the wave. If the traveling wave is
a localized single pulse moving through space without
changing its shape and, in particular, without spread-
ing out or dispersing, it is a solitary wave or a kink.
A solitary wave, with the additional property that it
preserves its form exactly when it interacts with other
solitary waves,was called by Zabusky and Kruskal' by
the name of soliton.

For good reviews of soliton theories see Scott et al.2

and Barone et al.3. For application of solitonsin Con-
densed Matter, see refs. 4-8, and, in particular®, for an
excellent review paper dealing with statistical mechan-
ics of solitons.

Solitons are best realized in one dimensional (1D)
models where theory and experiments are well devel-
oped and, to date, topological solitons have been clearly
experimentally identified only in these models. Itiswdll
known that in magnetic - | D modelsthe regimeof strong
correlation without long-range order (LRO) is present
all the time because LRO is suppressed in ideal 1D sys-
tems. we have only short-range order (SRO) charac-
terized by the correlation length £. In one dimension,
the spin system is never static but always dynamic and
therefore large-amplitude fluctuations are important.

The first theoretical description of solitons in
magnetic systerns was proposed by Villain in 1975
for a one-dimensiona antiferromagnetic (AF) Ising
Hamiltonian!®. In 1978 Mikeska'! showed that the
dynamics of a quasi-1D ferromagnet (F) with easy-
plane anisotropy, subjected to an external field in the
anisotropic plane, reduces to the sine-Gordon equation
which has a soliton solution describing localized 27-
rotations of spins lying in the easy plane. In the same
year, Kjems and Steiner!? presented the first experi-
mental evidence for the existence, in the quasi-1D fer-
romagnet CsNiF3, of the soliton predicted by Mikeska
being sooner after contested by Reiter!® who showed
that two-magnon scattering should also give rise to a
central peak with asimilar dependence of its width on
the transfered momentum. A lot of research followed
then (see[14] for references) and even today some prob-
lems still remain!®.

In 1980, Boucher et al.!*~%2, in a study on the
compound (CH3)4NMnClz (TMMC), were the first to
show that soliton excitations also existed in planar an-
tiferromagnetic chains in a field, resulting in a partic-
ularly intense central peak. Theoretical studies done
also in 1980, by Mikeska?®, Leung et al.?*, and Maki®®
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showed that a 1D -classical easy-plane antiferromagnetic
Harniltonian could bereduced to a sine-Gordon Hamil-
tonian. Correcticns to the sine-Gordon model with al-
lowancefor fluctuations which bring the spins out of the
easy plane were done |later by Harada et al.2é, Fluggen
and Mikeska, Etrich and Mikeska??, Costa and Pires?S,
Gouvéa and Pires”, and Wysin et al.?%3!. The role
of quantum effects for a chain with finite spin values
were considered by Maki3?, Wright et al.33, and Pires
et al.34, while the role of the lattice discrete structure
was studied by Talim and Pires 2.

Soliton effects in an AF-quantum lIsing like chain
have also been raeasured*-3® and Villain's theory!®
was used to interpret the experimental data. There
is a good review paper by Izyumov* about solitons
in ferromagnetic materials; the AF-chain is analysed
briefly. We will, in this paper, be interested in the
study of dynamical fluctuations induced by solitons in
the antiferromagietic chain. Here we will be inter-
ested mostly in theoretical aspects since Boucher 3°
has recently reviewed how non-linear excitations can
be observed experimentally in antiferromagnets. The
experimental resultsin 1D-AF rely mostly on data ob-
tained on three different compounds: (CHz)4 NMnClj
(TMMC)3, CsCoCls and Ni(02H6 Ng)z ND, (0104)
[NENP].

Solitons in 1D)-antiferromagnets are of interest for
several reasons:

1. In most 1D- magnetic salts the exchange coupling
is anti- ferromagnetic 4°;

2. Solitons in ferromagnets and antiferromagnets
have very different properties. For instance, much
larger magnetic fields are required to drive the an-
tiferromagnet into the regime where the soliton
rest energy is large compared to kT and solitons
form a dilute gas of noninteracting e4lementary
excitations 2%;

3. Solitons are best observed in antiferromagnets
where the contribution to the central peak is large
compared tc two-magnon processes, whereas in
ferromagnets both processes are of the same or-
der. Besides, experiments and numerical ssimula-
tions which have been made hitherto upon thefer-
romagnetic chain seem still to leave some degree
of uncertainty with regard to soliton influence!®.

4. In the last years new basic questions have been
raised conce:ning the properties of low dimen-
sional anti-ferromagnetic systems. The discovery
of the high I, superconductors has renewed the
interest in tvio dimensions and Haldane's conjec-
ture which predicts a non-magnetic ground state
for integer spin antiferromagnetic chains has de-
veloped new theoretical approaches .

5. From a fundamental point of view the antiferro-
magnet is also more interesting since its Hamilto-
nian can be niapped to the Hamiltonian of the dy-
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namica non-linear ¢ model, a well studied model
in quantum field theory4%43.

We should also note that domain wallsin three- di-
mensional crystals with characteristics similar to soli-
tons in the 1D-model have been largely investigated by
several authors?*~59 but these are macroscopic struc-
tures which cannot make an intrinsic contribution to
dynamics.

I1. Classical Models

Tetramethyl ammonium manganese trichloride
(TMMC) is one of the most studied one dimensional
antiferromagnets. Duetothelargespin value (S=5/2)
of the Mn ions, a classical description can be used to de-
scribe the spin dynamicsin this compound. The (quasi)
one dimensional character of TMM C isdueto the phys-
ical separation imposed by the large [CH3}4N* groups
resulting in Mn-chains magnetically isolated from one
another: the ratio of interchain to intrachain exchange
interactions is roughly10=%. The three dimensional or-
dering temperature Tx (which isafunction of the mag-
netic field) is about two orders of magnitude below in-
trachain exchange energy. TMMC has an anisotropy
of dipolar origin 6S;S;,, leading the system to a
crossover to the XY model at low temperatures®!, and
asingle-ion anisotropy in the easy-plane®2. At low tem-
perature and for small anisotropy, [SZ]? has the same
effect as®3 —S2.52 , sothat we can start with a Hamil-
tonian given by:

Ho= 20 S0 Fapr 6557 +0(52)7] -

yH, Y S5 —yH, ) S; (2.1)

wherey = gug.For 3> 0,5> 0 and b > 0 the ground
stateisalong they-direction. Although thereis nolong-
range magnetic order in the one-dimensional model
(2.1), astrong correlation is observed and this correla-
tion creates an antiparallel alignment of the neighboring
spins, so that at T = 0 we can speak of two antiparallel
sublattices which are oriented at almost right-anglesto
the applied field with a slight bending along the mag-
netic field because of the smallness of yH/J.S. We will
always consider 4 and b << 1 which is the case in real
quasi-1D antiferromagnets: it has been found that (2.1)
can describe the experimental findings in TMMC if we
assume J/kg = 6.5K,5=0.008, and b= 2.6 x 10~4.
After obtaining the equations of motion by using

i$ =[S, H), (2.2)

we treat the spin components as classical vectors with
spherical components!!,

SA = S(sin 82 cos ¢, sin 62 sin ¢, cos 64)
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S5 = S(sin 67 cos ¢2,sin 62 sin ¢2,cos62)

(2.3)

where A and B refer to each sublattice. However, for
small magnetic fields (yH# << JS) and at low temper-
atures, the spins are aimost antiparallel and it is more
convenient to rewrite Eq. (2.3) using the angle variables
introduced by Mikeska?3,

S, = (-1)"S{sin[6, + (=1)"v,]

cos [¢p, T (—1)"an],
sin {8, T (=1)"v,]sin (¢ T+ (-D)"a,],
cos [0, T (1) 1]}
(24)

Of course both parametrizations are equivalent to
one another. 8§ and ¢,, are dowly varying angle fields,
and since v, and a, describe deviations from perfect
antialignment, they can be assumed to besmall at low
temperatures. The variables on neighboring sites can
be expressed through an expansion about z = na, where
a is the lattice parameter and z is the coordinate along
the chain. Going over to the continuum limit amounts
tosubstitute all anglefieldsasé, by 8(z) and to neglect
the termsin order higher than a?. Full non-linearity in
the angle fields 8 and ¢ must be maintained, but the
equations of motion can be approximated by an expan-
sion up to quadratic order in v, a and 8/8z. Natice
that if we write,

7 Sa— 5B .._§A+§B
b=—"75 » Mm="7%5 (25)
we have
7 (sin8cos ¢, Sinfsin ¢, cosb), (2.6.9)
m = (—asinfsing+ vcosfcosd,asinfcos¢
+vcosfsing, —vsinf), (2.6.b)
which gives
m? = v2+a?sin?8. (2.6¢)

The eguations of motion for the angle variables are
then given by,

1 86 . :
= v _ +
1355 = 2asinfth, sin4, 2.7
1 8¢ _ 2w +
5o - _m h cosgcot6—h, (2.8)
1 v _a 2¢_ 2 069605
TS o =Rl o

2vacos0 — gsm osin24t hyocos @,

(2.9)
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1 0o & 9% . 2v%cost
4JS 8t ~ 2sinf 922 sin?4

d¢ 2
—c050[2 (6—2-) + 2a ] +bcosf

—beosfcos? ¢ — h, (a sin ¢ cot 8 + v c‘osz¢ )
sin” 6

(2.10)

where h, = yH,/4JS. After eliminating the small an-
gles v and a, wefind

8% 10% _
Bz c2 rz

9¢ i a¢2)2 +
sin€cosd ((?z) 5 (E_
(2b+hz)5in0cosOcosz¢—

(26F h%)sinOcos 0= h, h, cos¢sin?g —
he (845) cos ¢sin? 4 — P (8¢) cos fsin 9,

2JS \ 8¢ 2JS \ 6t
(2.11)
and
0% 10% _
822 2912 T

e[ (8) (3)-3(3) ()]

—(2bF h2)singcosg — h h, singcotd
hy (00 h, (08
+'2—]—§ (‘37) ¢+2JS <3t>COt0 (2.12)

where ¢ = 4JSa. On the other hand using the classical
and continuum approximations directly on Eq. (2.1)

we get
M = constant + J52/ {(69) +
Jz

2
412 +sin% 9 {4&2 + (-gi:i) :’ + 26 cos® 6 +

2sin?6cos’4 — 4h, (Veos0cos 4 —

~aSin6sing) — 4h,vsing) . (2.13)

Using Egs.(2.7) - (2.10) to eliminate the variables
v and ain (2.13) and taking h, = 0 for simplicity we

obtain,
x{ey-
H =constant T JS2/ a 9z

., [06\2 1 [/00\?
smﬁ(az> +;2— b—t)
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2
+sin? 8 (Zf) ] +

+26 cos” 0 + (2b+ h2)sin?0cos’ ¢} .
(2.14)

To treat (2.14) as a classica Hamiltonian we have
to write 3L in terms of O, ¢, 86/8z, d¢/0z and the
momenta pg and 4. Taking,

_ 106 Sh sing :
Pe = grar T o
1 9,06 Shg . ‘
P = 33 Hat 3 cos @ sinf cos ¢,
(2.15)

we can rewrite (2.14) as,

H=JS? / dzh + constant; (2.16)
with,

0\ .5, (06\* 4

h= (g—;) +sin? 6 (-3—?) + -S—ng
4p? 4h, .
tStamte 5 Snomet
+4T’;'£ cot 8 cos ¢py + 26 cos? 6 + 2bsin? 0 cos® ¢
(2.17)

Using now Hamilton's equations for a continuum
system,

—ﬁ. ) __Q’l+i(ﬁﬁ_)
~ Bp, 4T dq " dz \Oq.
with g = 4, 4 and ¢, = dg/dz we obtain Eqs.(2.11),
(212) with h, = 0 showing that (2.16) is indeed
the correct classical Hamiltonian. We remark that
it is not straightforward to write a classical Hamil-
tonian starting from a quantum Hamiltonian when
spin variables are involved. For instance, the quan-
tum HamHtonlan for a spin Sina magnetic field H is
H = —yS - H whereas the classical counterpart is not
‘H. = —ySH cos 8§ since the kinetic energy term is miss-
ing. In fact, in taking the classical limit directly from
the qguantum Hamiltonian for the ferromagnet we ob-
tain an incomplete classical Hamiltonian and to obtain
the correct equations of motion an extra term would
have to be added (see, for instance, refs. [54] and [55]).
For the antiferrorragnet we get the correct result be-
cause the, at first indetermined, variables v and « pro-
vide the extra degrees of freedom which transform into
the kinetic energy terms when we go to the classical
limit.
If the solutions of (2.11) and (2.12) are constrained
to make only small excursions about the ground state

(2.18)
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9=r/2 ¢ = /2, Wewrite: ¢ = 7/2—¢¢, 0 = n/2—¢9,
and obtain, in the small-angle limit, taking h, =0,
Gos ~ b2 =~ (82 - 54

—(2b+ h2)e204% - —52603

ehy [0 ~
278 (?9?) ¢.

(2.19)
and
bes = b=~ B+ 123 =
__52(21; + h2)§® + 2620 (5152—
250,45,) + mhxétq?,
(2.20)

with subscripts t and z implying differentiation with
respect tot or z. Tolowest order (wetakee = Oin the
above equations) the solutions are,

61 = Aexpli(wit - g2)),

and
é1 = Bexpli(wyt — q2)]. (2.21)
Thisis, we have two magnon branches with energy,

(26 + )¢,
(26 + % + ¢%)c?,

wi(q) =
w3(q)

(2.22)

here gis measured in units of thelattice constant along
the chain, and the zone center is at Q = a, with gbeing
g = a— Q. Physically, one of the modes, 1-magnon,
represents the spin fluctuations out of the easy plane
(out-of-plane mode) while the other mode, 2-magnon,
is the fluctuation in the easy plane (in plane mode)
against the magnetic field.

For the discrete lattice the magnon energy is given
by

Zgggg } = c?[1+ 6 % cosg]

e0s (1-2) e,

which for small g reduces to (2.22). Note that the divi-
sion of the system into subl attices splits the [O, x] range
into two ranges: [O,7/2] which givesthe 1-magnon; and
the range [7/2, 7] (mapped into [O,#/2]), which gives
the 2-magnon.

(2.23)
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To obtain higher-order solutions for (2.19) and
(2.20), the term proportional to ¢ must be retained.
This term, for h, # 0, introduces a coupling between
the lowest-order solutions ¢1 and 4, and is responsible
for the appearance of double magnon-modes. These
modes have in fact been observed by Boucher et al.5¢
in TMMC using inelastic neutron scattering combined
with neutron-polarization analysis.

Let us now discuss the full non-linear equations
(2.11) and (2.12): their static limit agrees with the cor-
responding limit for the equations of motion for aferro-
magnet with two anisotropies (b+42/2) and (6+h2/2).
The field-anisotropy equivalence was discussed in [29]
where it was shown that, for the calculation of some
properties, an antiferromagnet with a field h, applied
along an a-direction is entirely equivaent to a ferro-
magnet with anisotropy B, = h2/2. The dynamics,
however, is quite different for both models. We note
also that for h, = 0 Egs. (2.11) and (2.12) exhibit
Lorentz invariance. It means that, in this case, all ef-
fects of soliton dynamics are reduced to Lorentz con-
traction of its thickness, and, therefore, if a soliton is
stable for zero velocity (u = O), then it remains stable
for all velocities u <c.

Let us consider here the case h, = 0, leaving the
more general case to the next Section. Since for this
cased = w/2 and ¢ = w/2 satisfy Eqgs.(2.11) and (2.12),
complete dynamical solutions are obtained from

0% _108% _ -
=x/2 , 927 2o —2bcospsing (2.24.a)
with | 86
a=0 and v = —%a—t—, (224b)
and
0% 1% .
$=mx/2 , 57 2R - —25cosdsing (2.25.a)
with L 80
v=0, and « = S (2.25.0)

Egs. (2.24) and (2.25) are the well known sine-
Gordon (SG) equations in the variables 24 and 20, re-
spectively. The SG equation,

6_"’_\2 1 8%y
9z 2 o2

is completely integrable®” with the result that only
three mode types are required to specify the solution
of an arbitrary initial value problem. These modes are:
a) small amplitude solutions (in our case, magnons),
i.e. extended periodic harmonic waves with dispersion
relation

(2.26)

wZ(q) — (m2 + q2)c2’
b) traveling waves of permanent profile, described by,

¥(z,t) = 4tan” {exp[kym(z — ut — ]} (2.27)

Brazilian Journal of Physics, vol. 22, no. 2, June, 1992

where ¥ = (1 - u?/¢?)~1/2, and the plus (+) and mi-
nus (-) signs correspond to solitons and antisolitons,
respectively.

The soliton (or antisoliton) describes a localized
changein the phase of two physically equivalent values:
¥ = 0and ¥ = 2x. In the antiferromagnet, thisimplies
rotation of the spin vector Sin the plane by an angle «
in an interval ¢ of theorder 1/my. Apart from the sim-
plest solution (2.27), the SG equation also has n-soliton
solutions which can be regarded as a set of n separate
solitons, each one with its own parameters u,, and zon
representing the velocity and coordinate of the soliton-
center. This n-soliton solution satisfies the principle of
asymptotic superposition implying that individual soli-
tons recover their profile after collisions. Thusthe only
result of a collision between solitons is a phase change or
better, after a collision with other soliton with velocity
u', the position of a soliton with velocity u is displaced
by an amount,

As(u,U) =2m~n(2/|u - o). (2.28)
It is this circurnstance that allows us to treat the n-
soliton solution, when the soliton density issmall, as a
superposition of independent quasiparticles.
¢) breathers, which are large amplitude solutions given

by,

Up(z,t;ws) = 4tan~!
[ (wi/wk - DY2sinywg[(t - uz/co)]}
\coshym(z = w1 - w3/ 73] S’

(2.29)

where the oscillation frequency wp liesin the range 0 <
wp < wgy With wg = me. Breathers can be viewed as co-
herent anharmonic (i.e. non linear) magnons. Indeed,
in quantized theory, breathers are multimagnon bound
states*2. Because breather's effects can be analysed in
terms of perturbation theory (anharmonic magnons)®3,
we will not consider that mode in this paper. For a dis-
cussion about breather's effects see, for instance, refs.
[59-62].
Thus, the soliton solution of Eq. (2.24) is,

6 =7/2+2tan"" [eﬂm(z-"ﬂ} (2.30)
or
sing = tanh[yv/2b(z — ut)) (2.31)

A similar solution (b — 5) exists for the 8 variable in
Eq. (2.25). Inserting these solutions in the continuum
Hamiltonian (2.13), we obtain the soliton energies

Egy = 4J S*yV/2b,

where xy refers to the soliton in the xy plane and yz
totheonein the yz plane. The soliton stability will be

E,. =4JS*yV26,  (2.32)
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studied in Section III, where it will be shown that only
the lowest energy soliton is stable. We can also write
the soliton energy (say for the xy soliton) as,

E(p) = [(E2,)” +91'/?, (2.33)
where ES, = 4J7$2v/2b and pis the soliton momentum.
It is possible then to interpret a soliton as a relativis-
tic particle of rest energy EJ,, and mass m = E2, /c?,
moving with a vzlocity u and localized at a point zq.
The limiting velocity ¢ represents the magnon velocity.
In the non relativistic limit (u << c), we have for the
soliton energy

p2
E(p) ~ ES, + 2~ (2.34)

m’

II1. Discussion of Solutions to the Equations of
Motion

The general solutions to Egs. (2.11) and (2.12) are
very difficult to obtain and, for this reason, we will
consider here some: special casesonly. First, let usinsert
¢ = m/2 into those equations obtaining,

0% 10% :
3T 2o = —(26*F h?)sindcosQ (3.1)
h, (066 _
~hgh, cotd + 575 (E) cot 8 = 0. (3.2)

Eqg. (3.2) is satisfied for h, = 0 and in this case, from
(3.1) we have a dy namical soliton solution (SG solution
- asgiven by Egs. (2.30) and (2.31)) in the yz plane.
If h, #0and h, ==0, then (3.2) impliesin 86/8t = 0,
and we have a static soliton in the yz plane.

Of course, we have a similar situation for the zy
case (f = n/2): a dynamical zy soliton exists only if
h =0. For h, # 0and h, =0, we have astatic soliton
in the zy plane with energy

ES, = 47S%h,. (3.3)

In (3.3) we have tuken b = 0O for the sake of simplicity
and because in most materials this anisotropy is ver

small (in TMMC, ba 10~*). Thusif h, <h, = \/§gj
the xy soliton has energy lower than the yz soliton.
However, for h, # 0 (which implies v # 0 - see EQq.
(2.27)), there is no analytic solution. More generally,
we can treat the additional terms in (2.11) and (2.12)
assmall perturbations expanding the out of plane devi-
ation 6(s), where s= z — ut, around the static solution
6 = x/2. Keeping terms up to first order,

() % ug(s) , Bz +0,  (34)
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where ¢,4(s) is the dynamical sine-Gordon soliton
(Eq(2.30)),we obtain the formal solution®%63,

f(s) = :L»§ {sechz(h,s) - % / dé

2 i tanh(h,
iy og)] & 22 )

cosech (1'5—)} - gsech(h,s),

(3.5)

where % b
A= Ez—‘ -1 and r= h_z
For hh << 26 and h, << h,, the soliton energy is
given by [63],

E,, ~E, {1+§(%+%>+§(i§g““§>]’
(3.6)

where S/A represents Soliton/Antisoliton. We see that
for h, # 0 (r# Q we have a nonvanishing out-of-plane
amplitude even for zero velocity, u = Q This additional
out-of-plane component due to h,, for a soliton mov-
ing in the h, direction, is opposed to the out-of-plane
component due to soliton motion.

For h, = 0 and h, — h, the energy is given by?’,

u? (7?2 1
E~E), [1 +3 (5 + 5)} : (3.7)

The curvature of the zy soliton dispersion (3.7)
changessign at h, = h,, which meansthat for h, > h,
the xy soliton is unstable against spontaneous motion.

A more detailed numerical calculation, for the case
b= 0and h = 0, has been carried out by Costa and
pires® and Wysin et al.3°. A continuum limit ansatz
and direct numerical simulations on the discrete lattice
performed by Wysin et al.3 show that the xy and yz
solitons belong to a single continuously connected en-
ergy dispersion branch, thisis, thexy and yz branches
are continuously connected. They also show that for
h < h, where static yz solitons are unstable, there
can be stable moving yz solitons. From the numerical
integration, it was found that the xy solitons are sta-
ble above and below the critical field h,, at least for
6 = 0.08 (the value for TMMC), 0.08 < h < 0.6 and
lufe] < 1. Even for h > h, they show no tendency
to decay to lower energy yz solitons. At the critical
field he(he = 0.4 for TMMC) there is a continuum of
zy solitons all with the same energy and velocity. For
small velocities u << ¢, the sine-Gordon theory ade-
quately describes the yz branch. Static yz solitons are
stable only if h> h,, while dynamic yz solitons require
a minimum applied field to be stable. This minimum
fied decreases with the increase of velocity. For h < h,
the static yz soliton decays towards a configuration in-
volving a lower energy xy soliton. In Figure 1 we show
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the soliton energy for the general solution as afunction,
o the soliton velocity u for field valuesh < h,, h= h,
and h> h,.

\\\ TMMC /

’

\ H<He [
04

{reduced units)
o
[#3]

> \
o A /,
- \ ’
() N .
c 04} Sao L -
L >*
C A s 5 '] 1
o]
phant
—0- \\ ,l
2] \ ’
\ /
\ ’
. /
\\ 4
04r NS §
Hs>H
e, . ' ? L
-04 0] 04
v/¢c

Figure 1. Soliton energy as a function of velocity in
case of TMMC (from [90]). The full line corresponds
to zy solitons; for h = h, this branch collapses in one
point: all the solitons become static. The dashed lines
describe the yz soliton.

A numerical investigation of collisionsaf soliton- an-
tisoliton pairs in the model discussed above has also
been done by Wysin and Bishop®*, the results being:
for low- velocity xy solitons and low fields h < 0.2k,
there is sine Gordon like transmission. At higher fields
but still with h < h,, the low-velocity pairs annihi-
late to spin waves, or possibly form breathers, and the
higher-velocity xy solitons undergo SG-like transmis-
sion. For h > h, the negative-effective mass zy solitons
reflect. Most of the cases tested for yz soliton- antisoli-
ton pairs resulted in transmission consistent with their
nearness to SG behaviour. The exceptions included
some cases at small velocity for h > h,, where anni-
hilation occurs. Then in the strict sense of the word,
in general, the zy and yt solitons are not solitons and
should better be called by the name of kinks.

The Hamiltonian (2.1) with fourth-order anisotropic
terms (S2)*%, (52)* and (S2S%)* (but without a mag-
netic field) has been studied by Pires®®. Dynamical
solitons in a 1D antiferromagnet with both an easy
axis (Ising-like) and an applied magnetic field along the
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easy axis have been studied theoretically by Kimura
and de Jonge®® (for more details, see Section XII).
A classica one dimensional Heisenberg antiferromag-
net with a single-ion anisotropy and a Dzyaloshinskii-
Moriya term has been investigated by Pandit et al.%”
in order to explain experimental data on the polymer
{Co[(C4H4)2PO2}2},. They showed that, in certain
ranges of coupling constants, solitons in such antiferro-
magnet can be approximated by sine-Gordon or double-
sine-Gordon solitons.

The parametrization (2.4) is not suitable when the
applied magnetic fidd is very large, because the spin-
flop angle will also be large destroying the antialign-
ment implicit in (2.4). In this case, parametrization
(2.3) is more indicated and we will have two topologi-
caly distinct = solitons in the zy plane. Inthefirst type
soliton one sublattice experiences a phase jump of 2a,
where a = cos~!(h,/2) is the spin-flop angle while the
other sublatticerotates by 2(x —a). For small magnetic
fields, this type of soliton is the one which corresponds
to the sine-Gordon soliton. For large fields this soliton
has a more complicated structure. In the second type
soliton, the two sublattices interchange their directions
by rotating through +2a angles. For more details see
(34] and [68].

Talim and Pires®® have used perturbation theory
to study corrections to the xy and yt solitons arising
from the influence of lattice discreteness. They have
shown that for TMMC, at the temperatureswhere most
experiments have been done, these corrections are so
small that can be neglected.

We have based our theory of solitons, even in (35],
entirely on a continuum approximation to the lattice
model. One of the qualitative differences between a
lattice model and a continuum model is that a soliton
in the former model is somehow pinned to alattice site
whereas a soliton in the latter model is free to dide
without any extra cost of energy. The pinning energy
is the minimum energy required to move the soliton
from one lattice site to another. However Sasaki®® has
shown that, for TMMC, very large magnetic fields, as
compared to h,, would be needed in order to have ap-
preciable values for the pinning energy. Thereforeit is
impossible to observe the effects of soliton pinning in
this material.

Numerical sirnulations carried out directly on
the discretized sine-Gordon model and ferromagnetic
chains have revealed, besides the pinning effect, de-
crease Of velocity, distortion of the profile, damping
and decay o solitons into small amplitude oscillations
(spin-wave modes). The narrower soliton (half width
o 2 lattice spacings) becomes unstable and decays at a
relatively early evolution stage than the wider one (see
[70] and references cited therein). Possibly the same
would be true for the AF chain. A qualitative measure
of discretenessimportance is the ratio of the | attice con-
stant « to the characteristic width & of the soliton so-
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[ution to the unperturbed sine-Gordon equation. The
lattice discreteness effect is negligiblefor static solitons
if a/¢ << 1. We have seen that for u =0, a/é = h
for the xy solitor. and a/¢ = +/28 for the yz soliton. In
TMMC, 6 = 0.01and the highest magnetic field used in
experiments corrzsponds to h = 0.19, showing that the
discreteness effect can be expected to be quite small.
Note also that, for h> h, = /2§ the important soliton
is the yz soliton whose width independs on h.

IV. Phenomenoilogical Calculation of the Soliton
Density

In this section we will discuss a phenomenological
calculation for the soliton density in the antiferromag-
netic chain, and, in doing so, we will study the soliton
stability. For h < h, the xy soliton is the lowest en-
ergy soliton and we will treat only this case (a similar
treatment can be done for h > h,). For a phenomeno-
logical theory we need the spectrum and phase shift of
spin waves in the presence of solitons”. The behavior
of small oscillations in the presence of a single static
soliton ¢o(z) is determined by solutions to (2.11) and
(2.12) (with h, = O of the form,

¢(z,t) = do(z) +&(2,1)

8(z,t) = /2 + 6(z,1) + 1(z,1) (4.1) |

whered is the out-of-plane deviation given by Eq.(3.5).
Substitution of (.1) into (2.11) and (2.12), lineariza-
tionin ¢ and ], and writing

(at) = ot
(z,t) =

r(2)e
S(Z)eiwt
(4.2)

lead to the following eigenvalue equations:

2 2 2h
d—; w—zr = m%(1 - 2sech?mr)r +i s sech mz
dz c c

(43)

d2s
dz?

wherem? = A2+ 2 and &? = w2 - (26 — m2)c2.
Far from the soliton center we find

2 2 2 . 2h,
+ 55= m<(1 — 2sech“mr)s — i—wr sech mz
(4.4)

wi(g) =26+ %) , wile)=(m?+ %)  (45)

in agreement with Egs.(2.22).

Let us consider just the case h, = 0. For this case
the problem can be solved exactly. Eq.(4.3) possesses a
bound state solution with w;y =0, asin the SG prob-
lem, describing translational invariance of the soliton
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center’. Eq.(4.4) has the same form, only now & = 0
gives a bound state with frequency

w2, = 2(6 — b)c?. (4.6)

As we see w3, has to be positive for the out-of-plane
motion (fluctuations in the z direction), this means
b < §. The bound state becomes soft at the crossover
anisotropy b = 6, i.e., the static xy soliton becomes un-
stable. Both (4.3) and (4.4) for h, = 0 have the same
phase shift A(g) for the continuum states. We have
[71,72]

A(g) = 2tan~1(v/2b/q). (4.7)

For h, # 0 the calculations are more complicated
and only recently have been performed by Costa™ us-
ing the Born approximation, which for this reason just
misses the points specificaly of interest for area anti-
ferromagnetic chain in an external magnetic field.

The soliton density for Hamitonian (2.1) (with b =
0, and h, = 0, for simplicity) can be easily calculated.
Accordingto Currieet al.”! the average number of both
solitons and antisolitons is given by

n=-~fF = %ln/ g—:dpexp[—ﬂ(E(p) +3)], (4.8)

where F is the free energy per unit length, L is the
system size, z is the position of soliton (or antisoliton),
B = 1/kpT and E(p) is the energy-dispersion of soli-
tons. S isthe self-energy given by

8 = / .:‘f_grd_Adg—q)W(wl(qwz)q))] + ‘;ln(ﬂww)»
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where wi(g), wa(g), and A(q) are thefrequencies(an(%
asymptotic phase shift of the linear scattering solutions
to the equations of motion [Eq.(4.5) and Eq.(4.7) mul-
tiplied by 2] and w;; are the frequencies of the bound
states.

For h << 26 the essential contribution to the free
energy F' comesfrom the lower branch of the spectrum,
(i.e. the zy soliton), then we can neglect effects of the
yr branch. Inserting (4.5), (4.7) (multiplied by 2), (4.8)
and (4.9) into (4.12) we obtain

2Bch, (1 + hy/V26)
(1-hZj28)1727 -

exp(—pS) = (4.10)
Using the expression for E(p) given by (2.33) we can
write
~ 2 /9 i1
E(p) > E), +p*/2M,

where M = M(1+8/3)), M =E2, /e
Inserting (4.13) and (4.14) into (4.11) we finaily
find

(4.11)

1+8/3A

1/2
- hz/za)] (4.12)

n=n,(l+ h,/\/ﬁ) [
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where n, is the soliton density for the SG model given
by

2 ho \ M2
n, = 4\/;-J‘/2Sh, (—%) exp(—4JS?h,/T).

(4.13)

As we can seg, for low temperature and small mag-
netic fields, the leading correction to the SG result
comes from spin fluctuations out of the easy plane, i.e.
the out-of-plane magnon mode not present in the pure
SG model.

For h, << /23, we see from the above calcula-
tions that we can use the decoupled model. Thus, we
neglect the last term on the right hand sides of (4.3)
and (4.4) and replace the magnetic field by an effec-
tive anisotropy’® b = h2/2. This agrees with the wel
known fact that the thermodynamical properties of the
Hamiltonian (2.1) are equivalent to those of aferromag-
netic Heisenberg model with two single-site anisotropic
terms™ 5,

V. Dynamics Structure Factors: Transverse
Correlation Function for the xy Soliton

Westart by studying the transverse spin-correl ation
function in the xy plane given by

< §¥(z,1)8Y(0,0) >= (-1)"S? x
<sing(z,t)sin¢(0,0)sind(z,t)sin8(0,0) >,
(5.1)

where r = na. In antiferromagnetic chains, the soliton
regime givesrise t0 a very special feature: each time a
soliton passes by thereis aflipping of the spins associ-
ated with the two sublattices, i.e., the spin components
perpendicular to the field change its orientation from
+SY to +5Y destroying the long range correlation that
would exist in the absence of solitons. In this manner,
the S¥ spin components can be correlated only within a
distance comparable to the distance between 2 solitons.
In an approximate description on a length scale large
co;gpared to the soliton extension, we can write (5.1)
as

< S(e,)S/(0,0) >=
=(=1)" < (S8Y)? >< o(z,t)0(0,0) >, (5.2)

where o(z,t) = £1 is a quantity of the Ising type. We
have 7 o(z,t)o(0,0) = (=1)™, where m is the number
of solitons in the space-time interval between the points
(0,0) and (z,t). Sincefor a soliton gas with N particles
the probability p(m) of finding re solitons obeys the
Poisson distribution, p(m) = (N™/m!)e~¥, we have

< o(z,t)0(0,0) >=< (-1)™ >

=) p(m)(-1)™ = e"NED, (5.3)
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N{z,t) is the average number of solitons (and antisoli-
tons) at t = 0, consisting of two contributions: (i) the
number of solitons between 0 and z, which will not pass
z in the time interval between 0 and ¢; (ii) the number
of solitonsoutside the rangefrom O to r, which will pass
z in the time interval between 0 and t. The number of
solitons and antisolitons with velocity « is given by

N(u) = 2n,P(u), (5.4)

where P(u), the probability of finding a soliton with
velocity u is, within Boltzmann statistics, expressed as

P(u) = \/;ua- exp [— (i‘;) 2] , (5.5)

where up = ¢(28hJS?)~1/2 isthe thermal velocity. We
find then for N(z,t)

0 z—vt z[t z-vt
N(z,t) = (/ du] dzo+/(; du/ dzg
—00 [¢] ¢
%) ]
+ /Z/t du /z_ut dzo> N(u)
‘ (5.6)
or
N(z,t) = 2n,uplt|f[z/(uolt])] (5.7)
with

f(y)=="1/2 [e—v’ +2y / ’ e-f’dx] . (5.8)
0

For t — Q we have f(y) ~ y leading to
< 5Y(2,0)8¥(0,0) >=< (SY)? > (-1)*e™ . (5.9)

Thus if £~ is the inverse correlation length for the
transverse correlation function we have

6"1 = I‘q = 4n,. (510)

¢ characterizes the average size of an antiferromagnetic
region between two solitons. Note that the calculation
above, although performed in the xy limit, does not
depend on theform of the soliton and therefore is quite
general.

For y >>1or y <<1, we can approximate f(y) by
the function #=1/2(1 4 /7y) obtaining?3,

1. n, T,
T2 w2 + T2 T2+ ¢2

S¥¥(gq,w) =< (SY)? > (5.11)
with

T. = 4n,ug/n/2, (5.12)
A different approximation of f(y) by #~1/2(14my?)~1/2
gives the expression?®

1 nyr,
2x T3 (1 + /1) 2P/
(5.13)

S¥(g,w) =< (S¥)? >
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These two differnt approximations lead to essentiay
the same result: the transverse fluctuations give rise
to an intense central peak around g = 0 and w = O.
However, (5. 11) predicts the energy width to be inde-
pendent of g, Aw = 2T, while (5.13) yields Aw =
15331, (11 ¢%/12)1/2,

We can see ﬁom (5.11) and (5.12) that the trans-
verse correlation function for an antiferromagnet is of a
different nature than for the & or zz correlation func-
tions (see Sectioiis VI and VII). This difference is re-
lated to the fact that the S* and S* spin components
behave differently in respect to solitons: they do not
suffer the flipping experienced by S¥ when a soliton
passes. In particular the widths of S¥¥(q,w) along q
and w are proportional to the soliton density, indicat-
ing that interfereace effects occur in the scattering pro-
cess, SO that the central peak is not associated with
the scattering by a single soliton. Neutrons are scat-
tered coherently by the region in a chain between two
solitons.

We also remark that the characteristic properties
of the antiferromagnetic chain from a physical point of
view are quite distinct from the ferromagnetic chain,
in particular the antiferromagnetic central peak is a é-
function when no solitons are present whereas in the
ferromagnet the external magnetic field induces long
range order, which is not destroyed by solitons.

Using the egunivalence between Hamiltonian (2.1)
(with h, = 0) and aferromagnet with 2 anisotropies, ¢
can be calculated via the transfer matrix method?%73,
In the limits h << h,, h =~ h, , h >> h,, the re-
sults agree with the phenomenological calculations per-
forrned in Section 1V (see [29] for these limits). Since
it is amost impcssible to perform an analytical phe-
nornenological calculation of n, for all values of h, we
can use the result obtained from transfer matrix cal-
culation for \ in order to have n,. However, it would
be very interesting to have numerical calculations of n,
for an antiferromegnetic chain for all valuesof h, in the
line of Gaulin™ arid Gerling® in order to compare with
the result from the transfer matrix method.

Equations (5.11) and (5.13) were derived ignoring
interference between solitons and magnons. For a study
of the influence of soliton-magnon interferences on the
zero-order magnon and soliton peaks, we consider alin-
ear superposition of 2N (anti) solitons and the real part
of a general magion solution. We consider also the
small-amplitude fluctuations v and « neglected in Eq
(5.1). Calculation; performed in the sine-Gordon limit,
for the zy soliton contribution, give the following result
for the soliton peak (flipping mode)3! ,

‘ 1 h 2n 1
5¥%(q, ={1———-—~ [1+————’+—
3ol(q w) 271',Bh m h 9
3n, < sin® ¢cos? ¢ >
(—1 h -4am ) < cos2¢ > ] }Syy(lbw)

(5.14)
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where 3 = 2J52/kpT, and S¥¥(q,w) is given by (5.11)
or (5.13). Aswe can seefrom (5.14) the soliton-induced
central peak is reduced in intensity if soliton-magnon
interferences are taken into account. Also, the small
amplitude v diminishes the intensity: the contribution
due to v leads to the term 47r? in (5.14). Besides the
soliton peak, the calculation furnishes a magnon peak,
which is absent when soliton-magnon interaction is ne-
glected, and two magnon process. The extra contribu-
tion to the central peak from multi-magnon processes
is very small compared to the flipping mode and can
therefore be neglected.

VI. Longitudinal Correlation Function in the SG

Limit
For h << h, the §**(q,w) correlation function is
given by

S (q,w) = @r )2/dzdt(—l)",5'2

< cos ¢(z,t) cos $(0, 0) > ile7~wt), (6.1)

The average in (6.1) can be calculated initially by con-
sidering that only one soliton is excited thermally in
a chain. In this case this average implies in integra-

tion with respect to all possible soliton positions and

velocities??, i.e.

< cos ¢(z,t)cos $(0,0) >=
/N(u) cos ¢(z,t) cos ¢(0,0)dzodu, (6.2)

where N(u) is given by (5.4). In the non - relativistic
sine-Gordon limit we have (see section 2)

cos ¢(2,t) = sech[h(z — 25 — ut)]. (6.3)

From (6.1), (6.2) and (6.3) we obtain
1 2n,5°

T _
ST = Gy
sech[h(z — 2o — ut)]sech(hzp)dudtdzydz,

. . _ 2
:qze zwte au”

(6.4)

where g is measured from a, and a = u;2. Defining
y =1 — 2 —ut,and using

(o0
/ e'%sech mydy = %sech (2h)

-0

and | e
- (qu—w)t 3y _ _
o7 ) e dt = 6(qu — w),
we find
5°%(q,w) = S*(n,7'/2 [ h?uqq)

exp[—w?/(ugq)?|sech?(rq/2h). (6.5)
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Eq (6.5) gives a central peak superimposed on the
flipping mode. It becomes narrower as g — 0 with
a diverging intensity. However when the instrumental
resolution is taken into account, the resulting pesk be-
comes much smaller than the $¥¥(q,w) peak!®. In fact,
the contribution from SZ*(g,w) is comparable to the
contribution from multimagnon processes to the cen-
tral pesk 3. Thedifferent nature of the transverse and
longitudinal correlations in an antiferromagnetic chain
is manifested by different temperature dependences o
the intensity o the central peak. For the longitudinal
correlations this dependence shows an increase with T
asthesoliton density isincreased, whereasin the case of
the transverse correlation there is a reduction inversely
proportional to the soliton density.

The longitudinal correlationsin an antiferromagnet
are entirely due to the structure factor o one soliton
and behave similarly to a ferromagnet. Therefore, in
the range of the parameters where the intensity of the
transverse correlation is high, the corresponding inten-
sity for the longitudinal correlation should be low.

If we now take into account the soliton-magnon in-
teraction and the small amplitudefluctuationsv and «,
We obtain3!

Sralg,w) = [1 = A1(g,w) = Ba(g,w)}5*(g,w) (66)

where
1 h 2n, 1
Ay(q, ST P L -
1g,w) 27rﬁh[+\/2_6 RT3
3n, h2+q2
(1"77) —ghT‘] 6.7)
1w [ h \2[/h2+¢?
mtao= 12 () (B5L), oo

and S*%(q,w) is given by (6.5). The contribution
A,(g,w) comes from the small amplitude v. This
term gives rise to a peak in S%5(q,w) at a frequency
wp = uyq. The soliton-induced central peak is reduced
in its intensity by afactor that differsfrom the one in
the longitudinal case due to the different way o cal-
culations of the averages in the sine and cosine terms.
For the contributions to the magnon peak, see ref [82).
This peak, which is sharp as long as only harmonic
inagnons are taken into account, acquires a width due
to the soliton-magnon interaction.

We must point out that in this section we have con-
sidered only the case of extremely high anisotropy so
that spins are confined to the easy plane. When the
anisotropy parameter isfinite, we should obtain impor-
tant corrections that would alter the above results. The
classica SG model can be regarded only as afirst ap-
proximation which provides a qualitative understand-
ing of the non linear dynamics. A guantitative theory
requires allowance for the out-of-plane motion.
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Despite o the theoretical calculations presented
here and in the latter section the influence of the soli-
tons on the magnons has not been unambiguously mea-
sured by experiment. Also solitons and non linear cou-
pling between single-and higher-order spin wavescan be
described theoretically quite well, however a coherent
theory describing both on the basis of the same Ansatz
does not exist at present.

VII. The Out-of-Plane Structure Factor

In thissection we will calculate the out-of-planecor-
relation function in the limit of low temperatures. For
h% << 26 (b = 0), the spins are mainly restricted to
the ¢y plane and the out-of-plane spin component Sz,
described by 8, and v (cf.eq.(2.4)), is very small. The
expressions for 8,, and v, corresponding to a soliton in
that plane were derivedin Section III (eq.(3.5)) and are

given by

8 ~ /2% u(R/2JS)sech?(h.(z — ut)],
vp =~ ~u(hg /4T S)sech[h (2 — ut)]
(7.1)

where 7 = na and R = h%/26. Because 6, and v, are
both small quantities we will not start here by consid-
ering initially the sole effect of one soliton in the chain
- as we did in the calculation o S*2(q,w). Here it is
more convenient to include solitons and magnons from
the very beginning. Then we describe S as a superpo-
sition of asoliton and the real part of ageneral magnon
solution, i.e.,

Sz = (-1)"Ssin|[(6n + (=1)"vn + Re Z*yqéq(z,t)]
& (=1)"[0n + (=1)"vn + Re Y _1404(2,1)]  (7:2)

Up to lowest order in soliton density there is no
soliton magnon interference. Isolating the soliton con-
tribution to S**(g,w) we obtain

Se(gw) = 4%2—2 / / dtdze'(9: =)

{< 8(r,1)6(0,0) > + < v(r, t)v(0,0) > +

+ < 8(r,t)v(0,0) > + < v(r,1)8(0,0) >}
(7.3)

Obvioudly this equation refers to the part of S**(q,w)
due to the structure factor of the out-of-plane compo-
nent of one soliton and we remark here that, as will
be shown below (eq.(7.4)), it is more complex than the
correspondingquantity for aferromagnet becaused the
contribution from v. Inserting egs.(7.1) into (7.3) and
integrating in respect to all soliton positions and veloc-
ities, we obtain

2
2z n /T w
Si(0.) = el exp{-w?/(un0)’)
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{ (-2%)2 csch®(nq/2h;) —
(26) sech(wq/2hz)esch(mg/2h,) +
-;t-sech2 (7rq/2hx)} (7.49)

where the contribution to the Bragg peak was ne-
glected. We note that S23(¢,w) vanishesat w = 0,
but has peaks a.w = ugq. This component is difficult
to be observed experimentally. However, if observed,
it will consist of a direct observation of the soliton, in
the sense that what will be obtained will be the scatter-
ing from the soli tons themselves, and not from domains
between solitons - thisis aso truefor the longitudinal
ccrrelation function. However, comparing (7.4) with
S57%(¢q,w) We see that whereas the temperature depen-
dente is the sanie in both cases, the w and q depen-
dentes are different,

The calculation of the averages appearing in (7.3)
led to the soliton density n, [in (7.4)] which refersto
the SG result. However, we must remark that for con-
sistency, we should have used the soliton density cal-
culated in Section 1V since we are strictly handling
guantities, as the out-of-plane component, related to
deviations from the SG model.

We also emphasize that calculations performed in
this section are valid only for small magnetic fields h,.
For large fields, a more complex structure would be
obtained.

Besides the central peak we have also, similarly to
what happens in 5*%, magnon peaks. We remark that
for the out-of-plane correlation function, the magnon
bound states discussed in Section 1V will cause addi-
tional magnon peitks. However, up to the present mo-
ment, these modes have not been observed experimen-
taly.

Dynamical eff:cts of soliton-soliton and soliton-
magnon collisions in the sine-Gordon limit have been
discussed in refs.[83-87].

VI1ll. Quantum Corrections

Let us consider quantum corrections at T = 0.
For simplicity we -#ill consider Hamiltonian [2.1] with
h =h, = 0. Theeffect of the magnetic field h, will be
taken into account via an effective anisotropy®*. In the
absence of solitons, the energy o the vacuum comes
only from continuiim states (magnon modes). When
thesoliton is introduced, thefirst two continuum states
disappear to beconie bound states with w= 0 and ws.
Thefirst state (q = O of w;(g) becomesthe bound state
w = 0 (translation mode) and the first state (q = 0) of
w(q) becomes the bound state w = w;. The contribu-
tion of these two states to the energy of the soliton will
then be

E, = ((‘ - mlc) + (wb mgc), (81)

wlr-a
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where m? = 2b, m3 = 26. The contribution from other
states, which remain in the continuum in the presence
o the kink, will be

Econe = % [nz::l(wl(q") _wl(kn))

+ D (walgn) — wz(kn)] ,  (82)
n=1

where ¢, 1s the wave number of the n-th mode in the
continuum in the presence of the kink, and k the wave
number in the vacuum. Since we have used a periodic
box of length L, ¢, and &, are related by the periodic
boundary condition

Lo, F Alga) = 2 = koL, (8.3)
where A(g) isgiven by Eq. (4.7). From (8.3) weobtain

wlg) = (k) - Ak 2. (8.4

In thelimit L — oo the discrete sum (8.2) becomes
an integral

/ awiar -] / a2,

(8.5)
where A is the ultraviolet cut-off, given by the lattice
spacing. Integrating (8.5) by parts, adding (8.1) and
doing afew manipulations we find

2wi(0) 1 me

Ey+ Econt = Ty + iwb -

A dk A dk
[/o Vmi+k? +/o Vmi + k2
A (md-m)dk ]
(k2 +m?) k2 +mZ|

(8.6)

Although we have a discrete chain (finite A), one loop
correction to the magnons mass3 is equivalent to nor-
mal ordering of the Hamiltonian. Thiscontributes with
terms

A
/ dk(m? + k%12,
0

These terms renormalize the magnon masses, i.e.
they are responsible for the renormalization of the pa-
rameters of the Hamiltonian®®. Thus if we use renor-
malized valuesfor the anisotropy parameters 6 and b,
as obtained from experimental datafor instance, or cal-
culating them following the procedure presented in [33],
these terms have already been taken into account and
we do not need to write them here. Collecting all terrns
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we arrive finally to the static soliton energy, at zero
temperature

2 1 /m? 12
o _ 0 e {2
o= {i- ek (m)

2
(1——gtan'1 Lﬂ—g——l)}.
T m3

In the sine Gordon limit, this is, for m;y >> ms we
obtain the well known result*?

(8.7)

E)=(1~1/xS)E,.

At finite temperature the soliton energy is given
by

E, = E?+wp(eP —1)"t —2mcH(FY + FY) -
2m1c2w¢2,/ dk[rwi(k)wi(k)(”r — 1)1,
0
(8.8)
where
1 [ dk 1
TR a®EEs@-n G

We must bear in mind, however, that there are cer-
tain difficulties in reducing the dynamics of a quantum
Heisenberg chain to the quantum SG equation. There-
fore, at present there is no self-consistent quantum the-
ory of a quasi-one-dimensional antiferromagnet (or fer-
romagnet) of the type of TMMC.

IX. Resultsin TMMC

As we have already discussed, the external field
H, = H(H, = 0) plays the role of a magnetic
anisotropy which competes with the dipolar interaction
6. The two typesof solitons, zy and yz, studied in sec-
tion II and III result from this competition. The cor-
responding soliton phase diagram has been established
experimentally?? and is shown in figure 2.

The transverse function S¥¥(q,w) has been exper-
imentally investigated by using inelastic neutron scat-
tering and NMR methods??~2%, In order to properly
analyse the experimental data, the quantities we must
keep on mind are the soliton energy E, and the widths
Iy and T, whichin the (xy) sine-Gordon limit are given
by equations (5.10) and (5.12), respectively. We have
seen in section III that for h << h, the sine-Gordon
soliton energy Egy increases proportionally to the field
H, i.e, Egy = gﬂBSH = asgH WhiCh, for TMMC,
givesasg = 0.336K kOe™!. However, for T = 2.5K and
H = 36 kOe, the experimental value obtained?? for a
was (0.2694:0.03) KkOe™?!, much lower than asg. This
discrepancy can be explained by 'the discussion done
in section II1: the out-of-plane fluctuations are crucial
and must be considered whenever dynamical problems
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Figure 2 Soliton phase diagram in TMMC. The curve
T3p represents the three dimensional ordering temper-
ature and the curve H/T = 10kOe/K the limit where
AN, /N, < 0.3 (AN, = number of spinsinside one soli-
ton, and N4 = number of spins between solitons) (from

[22)).

are being studied. Due to out-of-plane fluctuations, the
xy-soliton deviates from the sine-Gordon behavior, i.e.
the sine Gordon limit does not describe correctly the
real anti ferromagnetic chain. We can incorporate the
effectsof the fluctuations on the soliton energy by writ-
ing E,,-y = aH, with a = asg — Cop, where Qop is
related to the out-of-plane fluctuations. As the mag-
netic field increases up to H > H, (H, = 4JSh./¥),
the soliton energy must show a crossover behavior be-
cause now the yt-sine-Gordon soliton is the one with
lower energy and this energy independs on H. In or-
der to put all these facts together and to analyse the
experimental data, we define a function E, which will
be called the soliton energy. This function must be de-
fined such that it reduces to £2, and E_, energies in
the limitsH << H, and H >> H,, respectively. We
define

1/2 271/2
E,z_Tln[(ﬁ) JST rq], (9.1)

2)  (HSP
and
a=-——1In [Eiu’a/z] , (9.2)
kp

where u = H/T and k, = T/4JS?. These definitions
arise naturally from equations (5.10) and (4.16) if we
substitute 4JS?h, = EJ, by E, (arguing that there
is a renormalization on the soliton energy) and impose
E = aH. Equations (9.1) and (9.2) can be used to
calculate E, and o if we know how to calculate I’y for
any valueof T and H. Now using thefact that from the
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thermodynamical point of view the easy plane antifer-
romagnetic chain in an external magnetic field isequiv-
alent to the feriomagnetic chain with two anisotropic
terrns, and that for this latter model transfer matrix
results for T'y ar2 available at low temperature we can
calculate E, and a so that no sine-Gordon approxima-
tion isinvolved?'. Computing T'y (see eq.(3.33) of [29])
for T=2.5K anc H = 36kOe and using (9.2) we obtain
a = 0.28K kOe, in close agreement with the experimen-
tal value?. Infigure 3 we present T'y[H(H/T)?]~! as
afunction of H/." for T = 2.5K on asemilogscale. The
experimental datawere taken from!® and the agreement
is very good. The data shown in Figure 3 correspond
to H < H.(H. ~ 69 kQe), the region where the xy
soliton is the relevant one. In figure 4 we show T',T'
as afunction of 7-! for an applied magnetic field of
H = 83kQe and the agreement is quite good. Notice
that the theoretical calculation®® does not make use of
any adjustable parameter.

100p

-5 /2 -¥2
0K koe )

T‘q/[H(H/T)UZ](I

Olg=6— 15 20 25
H/T (kOeK')
Figure 3. Comparison between theory (solid line, from

[29)) and experimzntal data ( from {18]) for 'y as a
function of H/T (I'y isgivenin reciprocallattice units).

In figure 5, we show the soliton energy calculated
from (9.1) as function of H, for T = 2.4K. The exper-
imental data were taken from [22]. We have used the
renormalized values for the parameters of the Hamilto-
nian as discussed in ref. [33]. We remark that in {29]
only the renormalization of the anisotropic term was
included whereas here we consider the renormalization
in the magnetic field term also3® and this leads to a
dlight better agreeraent with the experimental data.

If in Eq.(8.7) we take my = h,i.e. we use an equiv-
alent anisotropy foi*the magnetic field, use for my and
mq the same renorrnalized valuesfor TMMC as we did
above and calculate E? numerically we find that for
H < 60kOe the calculated values can be fitted by the
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Figure 4: T, T asafunction of 7= for an applied mag-
netic field of H = 89kQ0e. The solid line was calculated
as explained in the text. The experimental data are
from [18].

expression E? = aH with a = 0.28 (the same value ob-
tained above). The calculation for E at finite tempera-
ture performed in [34] is vaid only for small magnetic
fidds (H << 60 KOe) and therefore can not be used
here. In the classica calculations, at finite tempera-
ture, of Fig.3, 4 and 5 the spins moved out of the zy
plane (since no SG approximations was used). Thus if
we believe that the quantum result at T = 0 is correct
for TMMC then it seems likely that quantum fluctua-
tions at finite T restrict the spin motions more strongly
than expected to the easy plane, thereby reducing the
out-of-plane motion. Experimentsthat probe S¥¥(g,w)
show evidence for nonlinear excitations but they do not
provide information about the structure (form factors)
of the solitons.

However, analysing data obtained for S%*(q,w)
by using inelastic polarised neutron scattering exper-
iments, Boucher and coworkers™® were able to observe
directly the soliton excitations in TMMC. In order to
reach the desired soliton regime, the field value was
fixed at H = 45kQOe and the temperature was varied be-
tween 2K < T < 15K. S**(qg,w) wasobtained from the
measured cross section after subtracting the residual
contribution from S¥¥(¢q,w). The experimental values
o the frequency width obtained from $*%(g,w) (from
[84]) are shown in Figure 6. At ¢ = 0 the width has a
non-null value, in contradiction with the non interact-
ing soliton gas model (Eq. (6.5)) but consistent with
the theory discussed in Ref. [83]. The full linein Fig-
ure 6 was calculated theoretically by Boucher et al.3*
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Figure 5. Soliton energy E, as afunction of the mag-
netic field. The solid line is calculated theoretically for
2.4K. The experimental data are from [22].

by taking into account the collision effectsdiscussed in
Ref.[83].

I't should be mentioned that the agreement between
theory and experiment for $°*(gq,w) is remarkable if we
recal that the theoretical calculation was performed
using the SG limit. The SG theory appears however
to be a useful starting point and we would expect a
gradual change over from SG to some other description.
It is therefore not too surprising that the experiments
show sine- Gordon-like features.

Effects due to the three-dimensional ordering tem-
perature Ty have been discussed in Refs. [89-91].

X. Thermodynamicsof aOne-Dimensional Mag-
netic chain

From transfer matrix calculations we have the free
energy for hamiltonian (2.1) in thelimit h << h, [92]

2S . T?
F_T1n7—+T(J5+JE)—ZJ—§+...

5/ T\Y[ 1/T
— 2 — — — ————
wisn2(z5) 15 (%)
5 (TN | ey
128 \ ZT,

256757 [, (41.Eg,) 5( T
T |\ T 1 \E,
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Figure 6: Energy width (FWHM) as observed for the
soliton mode S*%(g¢,w) a) as afunction of wavevector g,
and b) as afunction of temperature. The dashed lines
correspond to the noninteracting soliton gas model and
the full lines account for the dynamical damping (from

[84]).
476E2 —2E° /T
1+In *Tl +...]e b4

The first three terms are contributions from spin
waves. The first two are linear spin wave contribu-
tions from the in plane magnons v and from out o
plane magnons v/ as can be obtained directly by an
harmonic treatment of the Hamiltonian. The T? and
higher-order terms are contributions of non-linear spin
waves. interaction between magnons, multi- magnons
states, breathers, and so on. The last two terms in
(10.1) are interpreted as the free energy of kinks (F%).
The leading term is equal to the free energy of an ideal
gas of kinks with thermally renormalized creation en-
ergy. This renormalization arises from phase shift in-
teractions between magnons and kinks. There are three
possible sources to the finite temperature correction to
Fp. In the sine- Gordon limit they are given by:

(10.1)

i) relativistic dependence of the bare kink energy on
the momentum p, E(p) = ((E2,) T p?)'/2.
ii) momentum dependence of the renormalization,
and
iii) anharmonic magnon contribution to the renormal-
ization.

Thefirst and second corrections can be included in
the phenomenological treatment using the correct ex-
presson for the soliton energy instead of taking the
non-relativistic result. This gives a correction of the
form 1 - (5/8)(T/E2,). The third correction appears
due to the contribution of anharmonic magnons to the
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renormalization o the soliton energy via a phase shift.
Theodorakopoulos®® using the relativistic energy and
including all contributions to the relevant phase shifts
(even magnon-magnon scattering) has obtained the cor-
rect factor 1 — (V'/8)(T/E4y). Thelast term in (10.1),
e~2E2,/T s due to two-soliton interaction®t.

For the contribution of non-linear excitationsto the
specific heat of TMMC see [92, 95-99]. However, as
pointed out by Steiner and Bishop’, thermodynamic
measurements have the drawback that they are not se-
lective but pick up the contributions from all excita-
tions and therefore the unambiguous identification of
one contribution s difficult.

We close this section mentioning some others rel-
evant works in cne-dimensional classical AF chains.
Buys et al.1% measured the magnetic field dependence
of the thermal cor ductivity of TMMC and DMMC be-
tween 1.5 and 7 K and in fields up to 90 kOe. They
found that, in the paramagnetic phase, the data could
be very well interpreted by soliton-phonon scattering.

De Jongh and de Groot®! have argued that the field
induced transitions in a weakly anisotropic quasi-one-
dimensional Heisenberg antiferromagnet were examples
of soliton-mediated phase transitions. Agreement with
data on TMMC and KyFeF4 was found. Those au-
thorsextended their analysis to below the 3D transition
temperature in order to interpret experimental results
of Mosshauer effect in the compound K.FeFs. They
showed that to explain the field dependence of the av-
erage angle < ¢ > (in the ideal soliton gas approxima-
tion, < ¢ >= 2n, | ¢,(2)dz) between the hyperfine
field and the AF axis in the spin-flopping configuration
it is necessary to assume that the static = — SG soli-
tons should be excted in pairs with an energy equal
to 2Esg. Thiel et al.}%! studied the contribution to
the Mossbauer lineividth in quasi-one-dimensional an-
tiferromagnets with easy axis anisotropy due to ther-
mal excitations of inoving kinks. Experimental data
on Fe(NgHs)z(SO‘;);g, RbFeCl32H20 and CSF60132H20
confirm the predicted exponential temperature depen-
dente of the linewid:h.

Gaullin and Col ins %2 reported evidence for the
presence of solitons in CsMnBr; at 15K by neutron
scattering experimer ts.

Sasaki !9 calculated soliton contributions to the
dynamical structure factors of the easy-plane antifer-
romagnetic chain in t he sine-Gordon approximation for
q ~ 7(Q =~ O). He obtained soliton modessimilar to Eq.
(6.8) but with a much smaller intensity.

Riseborough and Reiter!®* calculated multi spin-
wave contributions to the central peak in TMMC. They
found, however, that the theoretical results were not in
agreement with the experimental data, which required
the additional solitons contribution to describe them.

Holyst 1% hasstutlied the dynamical properties of a
guasi-one-dimensiona antiferromagnet in the presence
of the magnetic field >elow the Néd temperature, Tx,
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o such a model. By the use of an interchain mean field
approach the equations of motion were reduced to the
double-sine-Gordon equation which has as special so-
[utions moving 2r—solitons having a form of pairs of
weakly coupled n-solitons. He found that, on the con-
trary of what happens above Ty , the transverse cor-
relation function 5, (¢,w) had a Gaussian form instead
of a Lorentz-like distribution, and that the intensity
of this peak increased with temperature but decreased
with the strength of the magnetic field. Such behavior
reflects the fact that above Ty, S1(¢,w) is determined
by the regions between the n-solitons while below Tiy it
depends on the spin distribution inside the solitons. A
gualitative agreement with datafor TMM C was found.
Before that however Rettori!® had performed a more
consistent analysis of the soliton excitation taking into
account explicitly, via mean field approximation, the
interchain interaction.

X1 - Easy Axis Model

In this section we will consider the easy-axis anti-
ferromagnetic model described by the Hamiltonian

H =27 (8- Sapr — 6(S2)) (11.1)

Classically we have a doubly degenerate ground state
with aigned Néd order along the z axis. The study of
this model has become important in connection with
the so called Haldane’s conjecture?!, as we will see in
this and in the next section.

Using the results given in section {II) we can readly
write the equations of motion, in the continuum limit,
for Hamiltonian (11.1)

8% 10% o9\ 2
822  ¢28t? sin0Ocos0 Bz)

1 (94 _
- (3r) +] =0

c?;% (mﬁo%g) - gt- (sin2 0%%) =0. (11.3)
We also have
2 2
const + J32/dz { (gg) +sin%g (—gg)
2 2
: (%?) +sin?§ (%%) } + 25sin2e}

tz
(11.4)

Egs.(11.2) and (11.3) have small-amplitude spin-
wave solutions,

(11.2)

H =

0=0<<1 ¢=wkt—kz (11.5)
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where

wik) = w2 T k22, with w} =28 (116)

The stationary soliton solution can be sought in the

form1,107

6=0(z) , ¢=out. (11.70)

Lorentz invariance alows the moving solution to be

obtained by a boost of the static soliton. Taking (11.7)
into (11.2) and (11.3) wefind

2
322 (ﬁ;—-— sin 8 cosf.

As boundary condition for the function 6(z) we
choose the condition

aé

which corresponds to localization of magnetization in
the soliton. For w? < w Eq.(11.7) has, as we saw in
section 11, the soliton solution

(11.8)

g —-Q s, jz] — o0, (11.9)

cos @ = tanh[(z — z5)/r], (11.10)

where r? = ¢?(wg — w?)~!. This solution describes a
180° domain wall of the antiferromagnet with 8{—co) =
7, 8(+00) = 0, and 6 = =/2 at the center of the soliton.
Since the anisotropy term does not depend on ¢,
there exists one integral of motion - the z component
of the total magnetization M=25,+ S,,+1 We shall
represent thisintegral in theform, using Egs.{2.6b) and
(2.8),

M, [° (SitSi), _ 1/ 06
= /;oo dz._—4JS i sin? 8 ==dz

28 28 ot
0 0
:._‘f./ Sinzﬂdz:—g/ (l—cosza)dz.
¢ Jow ¢ Joo
(11.11)

The total azimuthal spin carried by the soliton can
be interpreted as given by

S* w [T 4w

5= —C-/_oo cos®fdz = oh (11.12)

where we have used (11.10) to integrate (11.12). Thus,
5% = Sw(w? —w?)~12, (11.13)

The field momentum of-the magnetization field

P= /d (Paag + P¢g¢>

isaso a conserved quantity. Using Eq.(2.15) weobtain,

P_/gi 000, . 5,0008
=) & \Ea: T e as

(11.14)

(11.15)
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or

'UJ52 wz .2
P _v2)1,2/d [(5;) +;2—sm 6]

(11.16)

From (11.4) and (11.16) we obtain the soliton
energy- momentum relation,

En(P) = [[(57)2 + $%w? +2P2)Y? . (1117)
Now we introduce the semiclassical quantization of the
allowed values of the internal precession frequency of
the soliton 4!, Thissimply means that S* is quantized
in integer steps S* = m (taking li = 1). Eq.(11.17)
becomes then

En(P) = [(m? + S%w?2 + 2P}/, (11.18)
and the parameter w is given by w = wom(m?+52)~1/2,
We have now an extra degree of freedom, as compared
to the xy (or yz) soliton studied in Section I, since
there we kept, let us say, ¢ = constant, where here we
have ¢ = wt. Thisextradegree of freedom leads to the
term m2wi, representing internal modes, in the soliton
energy (11.18).

Comparing (11.18) with (11.6) we see that in the
semi-classical limit {(i.e. Slarge) the soliton energy
gap is aways much larger than that of the elemen-
tary magnon. For |jm] << S we have E,.(0) =~
Swo T MAWg/2S. For [m| >> S,w — wo, Em(0) 2 muwp
and the rest energy can be interpreted in terms of |m|
magnons weakly bounded. In (11.18) the alowed dis-
crete values of m were not specified, only their integer
spacing. However, as Haldane has pointed out®!, we
know that the spin wave functions are eigenstates of
T (where T is the time-reversal operator) with 72 =
(-1)>™ = (-1)®* = £1. The soliton extended struc-
ture involves an odd number of spins of the underlying
magnetic chain: thus its wave function must also have
the eigenvalue 72 = (—~1)?. The alowed values of the
soliton spin m are then integers if the underlying spin
chain has integer spin, and half integers if Sis half inte-
ger. However, as we will see below, the two cases have
distinct behavior.

In Fig.(7) we show the result for half integer spins.
In the classical case the energy of the soliton is larger
than the energy of the magnon. Due to the internal
precession it is also decomposed in several states. The
lowest energy state is characterized by the magnetic
guantum number m = +1/2. The application of an
external field will split these soliton states alowing, in
principle, the observation of the internal precessions®®.
We remark here that for the quantum AF Ising-like
chain with S= 1/2 the lowest excited states are states
with one wall centered at a site n. A spin-wave state
with just one spin Aipped has a higher energy value (see
Fig. 8). Then the magnon has a higher energy than
the soliton. Note however that a propagating domain
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wall in this case can only be called a soliton in the
sense that it moves with a constant velocity and shape
and connects two degenerate ground states. It is not a
sine Gordon soliton asthe one in the classical model*®®,
However for the classical or quantum model the gap
vanishes in the isotropic limit.

E

|sc] En\:tllz
E | Magnon

|m Ma non

ol 11111}

Figure 7: Energy of the excited states in AF-lsing-like
chain for the half integer spins.

T e aa

bt —

Figure 8: Excited states in AF-Ising-chains for s=1/2.
a) Néd ground state. b) soliton, and c) one spin flipped

(magnon).

In the case of integer spin, Figure 9, the semiclassi-
cal picture of the soliton and magnon described above
will only be valid for weak but finite anisotropy. What
happens is that the magnon excitation for the isotropic
Hamiltonian in the harmonic approximation is gapless.
However, as we will seein the next section, the nonlin-
ear vacuum fluctuations dynamically break this sym-
metry and the collrctive mode develops a finite rest
energy Ey for integer spins. This nonlinear mechanism
will only be suppressed by the anisotropy if wg >> Ejy.
Asthe isotropic lim't wg — 0 is approached, these non-
linear effects mean that the renormalized soliton rest
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energy will eventually become lower than the renormal-
ized magnon rest energy. The lowest-energy excitation
is then the principal m = 0 soliton (see Fig.(9)). As
pointed out by Haldane*' the eventual disappearance
o Néd order in the ground state as the isotropic limit
is approached will be signaled by an instability against
pairs of the order- destroying topological soliton exci-
tation; i.e. if Ey iscomparableto the energy associated
with non-linear quantum fluctuation we have the cre-
ation of pairs of soliton - antisoliton and the ordering
will be destroyed (similarly to the Kosterlitz - Thouless
transition in the 2D-XY model*®®.) Also, it is the ther-
mal excitation of solitons, not the thermal excitations
of magnons, that disorders the system at any finite tem-
perature.

E E
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Sol \
E
\ o)
£ | Magnon '\
m s E | Magnon
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Figure 9 Energy of the excited states in AF-Ising-
like chains for classical integer spins. For a decreasing
anisotropy (a)— (b) (Ising — Heisenberg) the energy
for the non magnetic soliton (m = 0) is renormalized
and becomes smaller than the magnon energy. Finally,
in the isotropic limit (c), a non magnetic ground state
is reached with afirst excited state at the energy Eo.

Al - The Haldane Gap

In this section we will present some arguments for
the origin of the gap for an AF with integer spin. First
we will discuss afield theoretical argument in theline of
Haldane*! and Affleck!1%111  |n order to do so we will
rederive the continuum limit for Hamiltonian (11.1),
taking only the exchange term since the anisotropic
term will not be affected by the following procedure.
Here we will define variables ¢ and h?, combining each
spin on an even site, 2i, with the spin to its right, at
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(2¢ + 1) asin refs. [110, 111],
B(2i+1/2) = (Sner - Su)/28
M2it1/2) = (Saiy1+ S52)/2
(12.1)
¢ and M obey the constraints ¢ - M = 0 and
t=1t1/5-M?$? =1,
Assuming that ¢ and M are sowly varying on
the Iattlce scale we can write the Hamiltonian Hy =
2J§:Sn . Sp+1 USING A gradlent expansmn Keeping

terrns up to O(4?) and O(M?) only, since M effectively
contains a time derivative, and using

Sai .+ Saiv1 = 2M(2i T 1/2)2 + constant
Soi . Saima = =S?9(2i T 1/2) . 4(2i - 3/2)
+S[M (2i — 3/2) - $(2i + 1/2)

— (2 — 3/2) - M(2i + 1/2)]

+M(2i +1/2) - M(2i - 3/2)

257 (@) 5(1\71 oy 8% 1\71>+22\7I2,

0z 8z = Oz
(12.2)
Wwe can write
-\ 2
Ho = J/dz{4ﬁ2+252 (‘2¢)
. 8 Y

-8 ( "3, + Bs M) } .

(12.3)

In terms of the angle parametrization given by Eq.(2.4)
the last term on the right hand side of Eq.(12.3) can
be written as dF/dz, a total derivative of a function F,
and it has no effect on the classical equationsof motion.
Therefore this term has been neglected in the study we

have done before.
Classically we can take the mtegral of this term as

a constant, and since M? = S?(v? T a?sinf) we ob-
tain the exchange part of Eq.(2.13). However, following
Affleck!10:111 we rewrite (12.3)

2
cS -~ 0 0y
'4"/{92 [M‘m;:]
+£i]2 <Z¢) }dz

where g = 2/S and 6§ = 2xS. Writting Hy =
(¢S/4) [ hdz, we observe that h follows from the La-
grangian density

L =

Ho =

(12.4)

(1/2g)au'¢7 : aud;

+(6/87)€ P - (B X Oputp)  (12.5)
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with constraint ;/72 =1 and where ¢*¥ is the Levi-Civita
antisymmetric symbol. To understand the meaning of
O we note that on the compactified Euclidean space (ie
(*) —» constant at |#] — oo) both ¥ and 7 can be
represented by points on a sphere S? and the integral
= (1/87) / d25e* ) - (8¢ x 8,9) (12.6)
measures the winding number of the sphere onto the
sphere®?. It is the Jacobian for the change of variables
from polar coordinatesin # - space (with & the spatial
coordinate on a sphere) to polar coordinate in - space.
Q is an integer for any smooth (finite - action) field
configuration. Since the action is given by

s= [ca
J

we obtain!!? from.Eq.(12.5)

S= 5, TiQ. (12.7)

Since Q in an integer-valued topological charge, e=%
is a periodic function of 6 for any smooth field con-
figuration. Thus we expect all physical properties of
the model, which in Feynman’s formulation of quan-
tum mechanics can be derived from the path inte-
gral [dge*5/% to be periodic in 8. Thus we see
that for integer-S chains we effectivelly have 0 = O.
The action is then real and corresponds to a classical
two-dimensional ferromagnet at finite temperature!!?,
T = g. On the other hand, for half-integer S we have
6 = =. The action is now complex and there is no
correspondence to astandard classical two-dimensional
problem.

The generation of a mass, for 0 = 0, can be seen
using the large n-limit of the 0(n) non linear a model
as follows!'%. Thismodel is defined by the Lagrangian,
Pr=1

no, e
L= 2% W - 0%9, (12.8)

-

with ¢ a n-component vector. It is convenient to in-
clude the constraint in the Lagrangian writing

L= [(6 ¢) +a@? - )]. (12.9)

Hence 4 is then no longer constrained. The path inte-
gral becomes then

Z7= /deAexp (-;;s)
where here S = f d2ZL. Thus

/dwd)\exp[ /d"’ {( g)[(a )2

+A@( - 1} (12.11)

(12.10)

Z

i
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Integrating over the ¥ field, using,
/m e—bﬁdz = g~ 1/2Int InyT
)

we obtain

Z= ]dA exp [—— {-—1;— +trin(=6% + i/\)}]
(12.12)

up 10 an irrelevant constant factor. We have thus an
effective action

Sers(A) = g ( —/dzP[%+trln(—62+M)‘ )
' (12.13)
Because there is a factor of n in Ses we may ignore the
fluctuations of A and evaluate Z using the method of
steepest descent st the lowest action saddle point. This
method!!3 is applicable, in general, to integrals of the

form A
I(a) = / e dy,

The saddle point is given by % |20 =0 Theintegral is
then approximated by

I{o) ~ \/ B’ Z ¢S Go)gio,

where 8 and ¢ are defined in Ref. [113]. In our case
(1) = /d?i{fgﬁ+tr1n(-a2+u)}.

Let us write the saddle point Ag as ido = m?, then
% L\O =0 gives

(12.14)

(12.15)

(12.16)

d’z
- 23 12.17
/d +i o) =0 ( )
Fourier transforming Eq.(12.17) we find,
1 %k 1 1
e = . 121
T In(A/m) (12.18)

where we have iotroduced an ultraviolet cut-off A
(A~ = a, the lattice spacing). The mass parameter
m is then given by,

m = e~ ?/9, (12.19)
leading to the gap energy for the collective modes

€0 := me = (¢/a)e” ™5, (12.20)
and to the correlation length (in unitsof a) at T =0
(12.21)

The mapping pe:formed above, between the 1D an-
tiferromagnetic system and the non linear sigma model,
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shows that all integer-spin models will be massive, at
least for large enough spin where the mapping works.
The mapping may not be very accurate at S = 1,
but should be at least qualitatively correct, providing
a useful phenomenological model. However the study
of exactly solvable models!*4, quantum Monte Carlo
calculation!!®, finite size calculation!® and finite size
scaling!!? supports the existence of a finite gap for
S = 1isotropic-Heisenberg AF system. Recently this
gap have been calculated by Sakai and Takahashi!!® us-
ing the Lanczos algorithm and by Rezende!!® using a
modified spin-wave theory. In Rezende’s calculation it
is easy tosee that the antiferromagnetic ground stateis
guantum disordered and therefore the gap in the spin-
wave spectrum has a simpleinterpretation: it costs en-
ergy to create an infinite- wavelength magnon in the
disordered ground state. The spin-wave theory is how-
ever unable to predict the absence of a gap in half-odd-
integer spin systems.

Experimental evidence for the Haldane gap has
been sought-intensively by inelastic neutron scatter-
ing, because this is the only method of investigating
the magnetic excitations over the whole Brillouin zone.
So far three systems have been studied: NENP!2¢
AgVP285 121 and CSNiCla 122-125

The first evidence came from experiments on the
S = 1 system CsNiClz, which is highly isotropic in
its couplings!?2. In the organic, S = 1 AF chain sys-
tem Ni(C,HgN2),NO2(ClO4) (NENP), Ni ions are the
magnetic ions and the system does not order three di-
mensionally down to 1.2K. The magnetic properties of
this compound are wel described by the Hamiltonian

H=27Y Sn-Sap1+2D) (Si)%.  (12.22)

n n

with J = 24K, D >~ 6K and § = 1. Magnetic excita-
tions have been observed by neutron inelastic scatter-
ing measurements showing two energy gaps eﬂ ~ 30K
and e =~ 14K (]| and I , with respect to the chain
axis). The average value (b + el /2 ~ 0.4(2J) is in
agreement with the value for the isotropic chain!?°. A
time d flight inelastic neutron scattering experiment on
the powder sample of AgVP,Ss *?! has aso indicated
an energy gap. But because of the powder averaging
the available information is rather limited. Apart from
zero-fidd neutron scattering, a number of other mea-
surements have been made in nonzero applied magnetic
fields. These include susceptibility!?®, NMR3°, high-
field magnetization!22~12% and neutron scattering in a
finite field'?®. In all these measurement the Haldane
gap is quite evident.

To conclude this section let us consider the half-
integer spin models. Haldane*' has conjectured that
the isotropic model is massless. One reason is that the
spin-1/2 chain, solvable by the Bethe ansatz is mass-
less as is the spin - 3/2 chain studied numerically by
Schulz and Ziman'®, Recently Shankar and Read!3°
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have shown that the nonlinear O(3) sigma model in
1+1 dimensions with topological parameter 6 = a is
indeed massless for all values of the coupling g. A
search for a physica understanding of the difference
between the half-integer and integer case has also been
initiated*1%=131 invoking the 'zero-spin-defect' picture.
Gomez Santos!3! has presented asimple model to study
the behavior of the spin-1 chain in the antiferromag-
netic regime, identifying domain walls as the relevant
excitations, and constructing a variational Hamiltonian
asfollows: keeping in mind the interest in the antifer-
romagnetically dorninated regime, he has discarded all
the states with nearest-neighbor parallel spins. Thus,
the only sources of AF disorder are sites with S; = 0
(spin-O defects, SZD). The two spins at the left and
right of asingle SZD should be antiparallel. A typical
example of a state within this restricted set could have
the following form

wltlo010011 .

where arrows mean S, = +1 and circlesmean S, = 0.
The Hamiltonian has been then approximately solved,
and itscritical propertiesfully analyzed, obtaining com-
plete agreement with Haldane’s proposal.

XIIl - Conclusion

In the present review we have shown that antifer-
romagnetic chains offer good examples of soliton exci-
tations, and that the soliton picture is consistent with
experimental observations. Some points however de-
serve a further study. The ballistic-diffusive crossover
observed in TMMC for broad solitonsis not completely
understood and a clear understanding of the impurity-
induced diffusion process is needed. Also the questions
of the soliton mode damping (if it is due to collisionsor
not) must be considered. The theory for these collision
effectsis pratically phenomenological and more work is
necessary for a proper understanding.

Concerning the Haldane gap problem, recent polar-
ized neutron inelastic scattering in CsNiClz with ap-
plied magnetic field*?> showed that neither the classi-
cal spin wave theory nor more elaborated theory!32:133
fully accounts for the experimentally observed disper-
sion relation in the 3D ordered phase. The experimen-
tal information available about the ground state of the
quasi-1D AF CsNiClz cannot be explained without .a
thorough theoretical treatment of the influence of a
magnetic field on the ground state and the excitations
of a Haldane system!34,

It seems to us that low-dimensional magnetic ma-
terials will continue to develop as accessible modelsin
which to investigate fundamental nonlinear processes.
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