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A general treatment of the quanta1 harmonic oscillator with time-dependent mass and fre- 
quency is presented. The treatment is based on the use of some time-dependent transfor- 
matiois and in the method of invariants of Lewis and Riesenfeld. Exact coherent states for 
such a.  system are also constructed. 

I. Introduction 

The study of problems involving harmonic oscil- 
lators with time-tlependent frequencies or with time- 
dependent massesi (or both simultaneously) has at- 
tracted consideratlle interest in the last few years1-17. 
Apart from their intrinsic mathematical interest, these 
problems have inwked much attention because of their 
connection with xnany other problemas belonging to 
different areas of physics like plasma physics, gravita- 
tion, quantum optics etc. For example, Colegrave and 
Abdallala studied the harmonic oscillator with a con- 
stant frequency and a time-dependent mass in order to 
describe the electromagnetic field intensities in a Fabry- 
Pérot cavity. Also, Lemos and Natividadelg studied a 
harmonic oscillator with a time-dependent frequency 
and a constant mass in an expanding universe. 

In this paper WI: are mainly concerned with the har- 
monic ascillator with both frequency and mass being 
arbitrary given furictions of time. Our main purpase 
is to exhibit, in a. simple way, an alternative treat- 
ment for such a s:ystem. The treatment is based on 
the use of some time-dependent transformations and 
on the method of iwariants of Lewis and Riesenfe1d2O. 
Furthermore, we also construct exact coherent states 
for the harmonic oscillator with time-dependent mass 
and frequency. 

A brief outline of the present paper is as follows. In 
Sec. 11, we outline our treatment. In Sec. 111, we con- 
struct exact coherent states. In Sec. IV, we discuss the 
uncertainty relatiori. Finally, some concluding remarks 
are added in Sec. I'. 

A. Time-dependent harmonic oscillator 

We start with t1.e time-dependent harmonic oscilla- 
tor Hamiltonian 

where q and p are canonically conjugate and M(t) and 
w(t) are, respectively, the mass and frequency associ- 
ated to the oscillator which are arbitrary real functions 
of time. The variables q and p satisfy the canonical 
cornmutation relation 

The canonical equations of motion are 

which when combined yield the equation 

Next we consider the time-dependent canonical 
transformation given by the generating function2' 

where m is a constant mass. The transformation equa- 
tions are Q = 8F/8PI p = 8F/8ql from which we ob- 
tain the new canonical variables 

Here we remark that the well-know Kanai-Caldirola 
~ a r n i l t o n i a n ~ ~  is recovered when M(t) = m exp(7t) 
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with constant y. Also, note that [Q, P]  = [q ,p ]  which 
implies that the commutation relations remain the same 
in both coordinates. Then, under this transformation 
the Hamiltonian (2.1) is transformed in a new Hamilto- 
nian Hl(t) = H(t) + bF/& which, in terms of the new 
variables, is expressed as 

P2 mn2(t)Q2 
Hl (t) = - + --- , 2m 2 (2.8) 

where 
(r?) + 33.) (2.9) n2(t) = ~ ~ ( t )  - - 

2 ,  

is the modified time-dependent frequency. Note that 
the Hamiltonian (2.8) is of the form of t,hat consid- 
ered by Lewis and ~iesenfeld". Here, let us recall that 
Lewis and Riesenfeld have developed a general theory 
of explicity time-dependent invariants for quantum sys- 
tems characterized by explicitly time-dependent Harnil- 
tonians. They have derived a simple relation between 
eigenstates of such an invariant and solutions of the cor- 
responding Schrodinger equation and have aplied it to  
the case of a harmonic oscillator with time-dependent 
frequency. In the next subsection we briefly review the 
theory of Lewis and Riesenfeld for the system charac- 
terized by the transformed Hamiltonian (2.8). 

B. Time-dependent invariants and Schrodinger equa- 
t ion 

. 
Let us now consider the Hamiltonian (2.8). It  ís 

well-known that an exact invariant for (2.8) is given 
by1>21 

which can be rewritten as 

where Q(t) satisfies the equation 

and p(t) is a c-number quantity satisfying the auxiliary 
equation 

p + n2(t)p = 1lp3 . (2.13) 

The equations (2.12) and (2.13) together are know as 
Ermakov pairs. The invariant (2.11) was first derived 
by ~ r r n a k o v ~ ~  by eliminating R2(t) between these two 
equations. It  is clear that I( t )  satisfies the equation20*24 

and I+ = I. In order to make I(t) Hermitian, we choose 
only the real solutions of (2.13). Further, the eigenfunc- 
tions +,(Q,t) of I(t) are assumed to form a complete 

orthonormal set corresponding to the time-independent 
eigenvalues A,. Thus 

(4nlj4n) = 6n),n. (2.16) 

Now consider the timedependent Schrodinger equa- 
tions 

â Q  
itr- = Hl(t)!P, 

â t  
with 

where P = - iM/âQ has been used. The solutions 
Qn(Q,t) of the Schrodinger equation (2.17) are related 
to dn(Q, t) by the relation20 

where the phase functions a,(t) satisfy the equation 

Then, since each of \In satisfies the Schrodinger equa- 
tion, the general solution of (2.17) may be written as 

where the c, are time-independent coefficients. 

C. Solution of the Schrodinger equation 

In this subsection we are mainly interested in solv- 
ing, by a particular direct method, the Schrodinger 
equation (2.17). To this end we proceed as follows. 
Consider the unitary t r a n ~ f o r m a t i o n ~ ~ > ~ ~  

Under this unitary transformation the operator I 
changes into I' according to 

where we find by straightforward calculation that 

with 
'7 = & / P  (2.25) 

Then, the eigenvalue equation (2.15) is mapped into 

where 
4; = p'12~4n (2.27) 
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The factor p1I2 iii introduced into (2.27) so that the 
normalization con 3itions 

hold. By using (2.24) the eigenvalue problem (2.26) 
becomes 

which is an ordinary one-dimensional Schrodinger equ* 
tion whose solutioii is given by 

where 

and Hn(Q) is the usual Hermite polynomial of order n. 
Thus, by using (2.22), (2.27) and (2.30) we find that 

112 Q 
x exp (e 2i1 (!i ,I, + p2 i) ~ 2 )  H. [(a . 

Hence, the solutions Qn(Q, t) of the transformed 
Schrodinger equation (2.18) is given by 

where the phase functions an(t)  are given by20126 

Here it is interesting to observe that the solutions (2.32) 
for the equation (2.17) have also been obtained by 
Khandekav and Lawande2' by using Feynman path in- 
tegral~. 

Let us now introduce the time-dependent 
transformation2' 

where x(t) is a real function of time which is to  be deter- 
mined. Then using (2.7), (2.9) and (2.34) the equation 
of motion (2.12) is converted into the original equation 
(2.4) and the auxiliary equation (2.13) into the equation 

The exact invariant (2.11) is transformed to the form 

1 
I ( t )  = -[m2q2x-2 2m + (px - ~ k q ) ~ ] .  (2.36) 

Thus, (2.36) is an exact invariant for the Hamiltonian 
(2.1) with p given by (2.3a) and q(t) and x(t) satisfy- 
ing, respectively, the equations (2.4) and (2.35). For 
M(t) = m = cte we recover the invariant for the time- 
dependent Hamiltonian where only the frequency is al- 
lowed to change with timez1. Note that in this case the 
function (2.6) generates the identity transformation. 

On the other hand, by using (2.7a) and (2.34) the 
unitary operator (2.22) is converted into 

17 = exp (-iM(t) [i + 91 q2/(2hx)) (2.37) 

and the invariant (2.24) into the form 

which has the same form of (2.24). Alço, in terms of 
the original variables, the eigenfunctions &(q, t) of I(t) 
are given by 

Note that for M(t) = mert the above solution reduces 
to that obtained by Khandekav and Lawande2% Now, 
the solutions Qn(q,t) of the Schrodinger equation for 
the original system may be written as 

where the phase functions an( t )  are now given by 

Here it is interesting to note that when M(t) -, m, 
w(t) -, wo = constant and x(t) -+ +o = constant = 
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l/w:I2 (which is a particular solution of the auxiliar 
equation (2.35)) the solutions (2.39) become 

which is the solution of the Schrodinger equation for 
the time-dependent harmonic oscillator of mass m and 
frequency wo. Further, in this case the phase functions 
(2.41) are given by 

so that by substituting (2.42) and (2.43) into (2.40) we 
recover the time-dependent solutions of the Schrodinger 
equation for the usual time-independent oscillator. 

111. Coherent States 

To obtain coherent states for the harmonic oscillator 
with time-dependent mass and frequency we proceed as 
follows. Consider the operators A  and At given by 

It may be easily verified that A  and At satisfy the 
commutation relation 

The invariant operator given by (2.24) can now be writ- 
ten as 

Now, Hartley and Ray2' have shown that coherent 
states for I' have the form 

where an( t )  is given by (2.33) and a is an arbitrary 
complex number. Note that when w ( t )  4 wo and 
p(t) -t po = l / ~ : / ~  the phases an( t )  are given by 
(2.43). In this cases, the coherent states &(Q,t) be- 
come the correct coherent states for the usual time- 
independent harmonic oscillator. The states &(o,t) 
are eigenstates of A with eigenvalue a( t) ,  i.e., 

with a ( t )  given by29-31 

where 
1 ' dt' 

a 0 ( t ) = - ~ 1  

Note that when w(t) -, wo and p(t) -+ po = 1/w0l2 the 
eigenvalue (3.6) becomes a( t )  = a exp(-iwot) which is 
the usual result. 

The coherent states for the time-dependent har- 
monic oscillator (2.18) are obtained by the inverse 
transformation on &(a, t). They are given by 

Next, following Ray26, we show that (3.8) are coherent 
states for the time-dependent oscillator (2.18). Trans- 
forming (3.5) via the inverse transformation we find 
that 

a&(Q,t) = u(t)dcl(Q,t), (3.9) 

where 
a = U ~ A U  (3.10) 

A straightforward calculation reveals that 

which are. exactly the operators associated with the 
invariant (2.11) which was originally introduced by 
~ e w i s ~ ~ .  These operators factor the invariant (2.11) as 

This result may also be obtained by applying the inverse 
transformation on (3.3). 

In terms of the original variables we also may express 
the coherent states (3.8) as 

x exp ( - i ~ ( t )  [i + ?r] q2/(2hr)) &(u,t) 



Brazilian Journal 3f Physics, vol. 22, no. 1, March, 1992 

where we now havt: that a = q/x (see eqs. (2.24), (2.25) 
and (2.38)). The states (3.14) are coherent states for 
the time-dependect system described by the Harnilte 
nian (2.1). These z.tates satisfy the eigenvalue equation 

where a and a( t )  a.re given respectively, by (3.13a) and 
(3.6). In this case, the equation (3.7) becomes 

Note that when M(t) = m = cte the states reduce 
to the coherent sta.tes of the time-dependent harmonic 
oscillator where only the frequency is allowed to change 
with timez9. 

IV. The uncertainty relation 

By using (3.13) we may express q and p as 

From (3.15) ancl (4.la) we find that the expectation 
value of q in the st&e &(q,t) is given by 

where 6 is the argument of the complex number a and 

We also get that the expectation value of the invariant 
(3.12) in the state cb,(q,t) is given by 

On the other hand, it is k n o ~ n ' ~ ~ ~ ~  that the solution to 
the equation of motion for the classical time-dependent 
harmonic oscillator 

can be expressed as 

where Bo is a constant and x(t) satisfies the auxil- 
iary equation (2.35). In this case, the invariant I(t) 
is defined in the same way as (2.36) but using classi- 
cal variables. Now in the Glauber limit29~32 h -+ O, 

Ia1 -+ co, such that h(a(2  + finite. Thus, the expec- 
tation value of q in (4.2) is exactly the solution for the 
classical time-dependent oscillator with invariant (see 
(4.4) h)aI2 =< I > -h/2. 

In what follows we wish to obtain the uncertainty 
relation. After some calculation we find that the uncer- 
tainties in q and p is the state d,(q, t)  are 

Thus, the uncertainty product is expressed as 

and, in general, does not attain the rninimum value. 
However, for a time-dependent oscillator, we cannot ex- 
pect to find strictly coherent states, i.e., (Aq)(Ap) = 
h/2 for a11 time t .  On the other hand, we have al- 
ready that the states q5,(q,t) are equivalent 
to well-known squeezed states whose characteristic fea- 
ture is the squeezing. Furthermore, the fundamental 
property of squeezing is that it is a time-dependent 
phenomenon34. Now for M(t) = m = const. the un- 
certainty product (4.9) reduces to that obtained in Ref. 
29. Also, when M(t) = rn and z(t) + xo = l / u ~ ; / ~  the 
uncertainty relation (4.9) attain its minimum value. In 
this case, the operators a and at given in (3.13) reduce, 
respectively, to the usual annihilation and creation op- 
erators and the states 4,(q,t) become the correct coher- 
ent states for the time-independent harmonic oscillator. 

V. Concluding Remarks  

In this paper we have presented an alternative treat- 
ment for the problem of the quanta1 harmonic oscillator 
with time-dependent mass and frequency. The present 
treatment is based on the use of a time-dependent 
canonical transformation, an unitary transformation, 
an auxiliary time-dependent transformation and in the 
method of invariants of Lewis and Riesenfeld. We also 
have used the procedure developed in Fkf. 26 to con- 
struct coherent states for such a system. These coherent 
states have been expressed in terms of the eigenstates 
of the invariant I(t) and are more general than those 
obtained in Fkf. 29. 

The treatment discussed here may also be applied to 
other time-dependent systerns. As an example, we con- 
sider the nonharmonic system described by the Hamil- 
tonian 

which possesses an invariant given by21 

1 2 2 . 2  I(t) = -[(px - ~ x q ) ~  + m q z + 2rng(q/x)]. 
2m 
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where z ( t )  satisfies the auxiliary equation (2.35). Then, 
following the same steps as those of Sec. 2, we convert 
the Hamiltonian (5 .1)  in the form 

where R ( t )  is given by (2.9) and p(t) satisfies the equa- 
tion (2.13).  The invariant (5 .2)  is converted in the form 

On the other hand, Hartley and RayZ5 have used thé 
procedure employed in the subsection B and C to solve 
the Schrodinger equation for the transformed Hamilto- 
nian (5.3).  Thus, we can use the transformations (2.7) 
and (2.34) in their results for obtaining the solutions for 
the originul system. i.e., the system described by the 
Hamiltonian (5 .1) .  Also, Khandekav and ~ a w a n d e ~ ~  
have used Feynman path integrals and the method of 
Lewis and Riesenfeld to solve the quantum problem de- 
scribed by (5.3) for the case when g = p2/Q2.  Further- 
more, RayZ6 has constructed coherent states for time- 
dependent systems described by Hamiltonians of the 
form (5 .3) .  Then, it seems that would not be any prob- 
lem to  construct coherent states for the time-dependent 
systems associated with (5.1) using the same technique 
presented in this paper and that of Ref. 26. 

We should mention that Jannussis and ~ a r t z i s ~ ~  
have also constructed coherent states for the harmonic 
oscillator with time-dependent mass and frequency. 
However, the approach used by these authors is consid- 
erably different from that presented in this paper. We 
also mention that it may be interesting to compare our 
treatment with those developed by Leach

g
, ~ b d a l l a ' ~ ,  

Collegrave and Abdallaa and Dodonov and Man'ko3'. 
As a concluding remark we point out that in our 

treatment of the system described by the Hamiltonians 
(2 .1)  and (2 .8)  the requirements for R ( t )  are the same 
as those in the paper by Lewis and Riesenfeld20, i.e., 
a11 that is necessary is that R 2 ( t )  be real, either being 
positive or negative due to the hermicity of the Hamil- 
tonian. Then, from (2.5) and (2.9) we see that M ( t )  
must be real. For further details about these consider- 
ations on R ( t )  and M ( t )  see the discussion in Section 3 
of Ref. 20. 
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