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A genera treatment of the quantal harmonic oscillator with time-dependent mass and fre-
quency is presented. The treatment is based on the use of some time-dependent transfor-
matiois and in the method of invariants of Lewis and Riesenfeld. Exact coherent states for

such s system are also constructed.

|. Introduction

The study o problems involving harmonic oscil-
lators with time-tlependent frequencies or with time-
dependent masses (or both simultaneously) has at-
tracted considerable interest in the last few years!—17.
Apart from their intrinsic mathematical interest, these
problems have invioked much attention because o their
connection with many other problemas belonging to
different areas of physics like plasma physics, gravita-
tion, quantum optics etc. For example, Colegrave and
Abdalla!® studied the harmonic oscillator with a con-
stant frequency and a time-dependent massin order to
describethe electromagnetic field intensitiesin a Fabry-
Pérot cavity. Also, Lemos and Natividade!? studied a
harmonic oscillator with a time-dependent frequency
and a constant mass in an expanding universe.

In this paper we are mainly concerned with the har-
monic ascillator with both frequency and mass being
arbitrary given functions of time. Our main purpase
is to exhibit, in a. simple way, an alternative treat-
ment for such a system. The treatment is based on
the use of some time-dependent transformations and
on the method of iavariants of Lewis and Riesenfeld?°.
Furthermore, we also construct exact coherent states
for the harmonic oscillator with time-dependent mass
and frequency.

A brief outline of the present paper isasfollows. In
Sec. 11, we outline our treatment. In Sec. III, we con-
struct exact coherent states. In Sec. 1V, we discuss the
uncertainty relatiori. Finally, some concluding remarks
are added in Sec. V.

II. The Treatment
A. Time-dependent harmonic oscillator
We start with tte time-dependent harmonic oscilla-
tor Hamiltonian
2

H(@) = ﬁ‘}@ + %M(t)wz(t)qz 2.1)

where g and p are canonically conjugate and M (t) and
w(t) are, respectively, the mass and frequency associ-
ated to the oscillator which are arbitrary real functions
o time. The variables q and p satisfy the canonical
commutation relation

lo,p] =ik (2.2)

The canonical equations of motion are

i= Gl HOl= s (23)
b= HOI = -MOw (e, (@3)
which when combined yield the equation
§+7()i+v’(t)e=0, (24)
where d
¥(t) = d—t[lnM(t)] . (2.5)

Next we consider the time-dependent canonical
transformation given by the generating function?

F(q,Pt) =

-1/2
30P+ 20 (575) - L a6

where m isa constant mass. The transformation equa-
tionsare Q = 0F/0P, p = 8F/dq, from which we ob-
tain the new canonical variables

0 = (s5)

1/2
P = (HT?T)) p+(mM(t))1/2lgi)-q(2.7.b)

(2.7.a)

Here we remark that the wdl-know Kanai-Caldirola
Hamiltonian®? is recovered when M(t) = m exp(7t)
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with constant y. Also, note that [Q, P] = [g,p] which
impliesthat the commutation relations remain the same
in both coordinates. Then, under this transformation
the Hamiltonian (2.1) is transformed in a new Hamilto-
nian H,(t) = H(t)t 8F/6t which, in terms of the new
variables, is expressed as

=2 + -“—5%2 (238)

where

is the modified tlme-dependent frequency. Note that
the Hamiltonian (2.8) is o the form of that consid-
ered by Lewisand Riesenfeld?’. Here, let us recall that
Lewis and Riesenfeld have developed a general theory
of explicity time-dependent invariants for quantum sys-
tems characterized by explicitly time-dependent Hamil-
tonians. They have derived a ssimple relation between
eigenstates of such an invariant and solutionsof the cor-
responding Schrodinger equation and have aplied it to
the case of a harmonic oscillator with time-dependent
frequency. In the next subsection we briefly review the
theory of Lewis and Riesenfeld for the system charac-
terized by the transformed Hamiltonian (2.8).

B. Time-dependent invariants and Schrodinger equa-
tion
Let us now consider the Hamiltonian (2.8). It is
well-known that an exact invariant for (2.8) is given

byl
0= [(Q\ +(0 - Q) ] (2.10)
which can be rewritten as
I(t) = -2-175 [m?Q%~2 + (Pp-mpQ)?],  (2.11)
where Q(t) satisfies the equation
Q+Q*(1)Q =0 (2.12)

and p(t) isa c-number quantity satisfying the auxiliary
eguation

st =1/0°. (2.13)
The equations (2.12) and (2.13) together are know as
Ermakov pairs. The invariant (2.11) was first derived
by Ermakov?® by eliminating R?(t) between these two
equations. Itisclear that I(t) satisfies the equation?®:24

dI o1

1
E=%+E[I’H1]‘O (214)
and I't = |.In order to make I(t) Hermitian, we choose

only thereal solutions of (2.13). Further, the eigenfunc-
tions ¢,(Q,t) of I(t) are assumed to form a complete
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orthonormal set corresponding to the time-independent
eigenvaluesA, Thus

I¢n(Q; t) = /\n¢n(Q: t) k] (215)
($nr,$n) = bni . (2.16)
Now consider the time-dependent Schrodinger equa-
tions .
h—-— = Hy(1)¥, (2.17)
with
B 8% nQ%t)
Hy(t) = ~5magE —Q (2.18)

where P = —ih8/6Q has been used. The solutions
¥,(Q,t) of the Schrodinger equation (2.17) are related
t0 ¢4(@,1) by the relation?®

¥n(Q,1) = €90 (Q,1),
where the phase functions a,(t) satisfy the equation

da,(t)
L dt <¢"

(2.19)

0/}
1h-a-t' il H1(t)

Then, since each of ¥,, satisfies the Schrodinger equa-
tion, the general solution of (2.17) may be written as

\I’(Q1t) = cheia,(t)¢n(Q, t))

¢,.> . (2.20)

(2.21)

where the ¢ are time-independent coefficients.

C. Solution of the Schrodinger equation

In this subsection we are mainly interested in solv-
ing, by a particular direct method, the Schrodinger
equation (2.17). To this end we proceed as follows.
Consider the unitary transformation?%-26

U = e=imiQ/(2ho) (2.22)

Under this unitary transformation the operator |
changesinto I' according to

=UIU, (2.23)
where we find by straightforward calculation that

R? 82  mo?

, Tt —— S—— ——
I's—gmost — (2.24)
with
c=Q/p (2.25)
Then, the eigenvalue equation (2.15) is mapped into
I'¢n(0) = Andr (o), (2.26)
where
¢n = p?U 4, (2.27)
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The factor p'/2 is introduced into (2.27) so that the
normalization conditions

/ﬁmw=/ﬁ¢u=1

hold. By using (2.24) the eigenvalue problem (2.26)
becomes

[_ B _‘?_ + 3o ] 6.(0) = Andh(0)

(2.28)

(2.29)

which is an ordinary one-dimensional Schrodinger equa-
tion whose solution is given by

’ _|m
'n(Q!t) = [11/2’»‘1/2"!2"]

con (-5 (3)) 2[4,

(2.30)
Ap=Hh (n + %)

and H,(Q) is the usual Hermite polynomial of order n.
Thus, by using (2.22), (2.27) and (2.30) wefind that

]1/2

“w|@) )

(2.31)

where

m1/2

;'1/2h1/2n!2"p

o (§ (5 £)9)

Hence, the solutions ¥,(@,t) of the transformed
Schrodinger equation (2.18) is given by
1/2 ’./2
_ ian(®) m
Qﬂ(Q)t) =€ [1;1/2ﬁ1/2n!2”p]

<o (5 (45) @) < () 5]

4u(@0)=

(2.32)
where the phase functions a,(t) are given by
1 4 dtl
a,.(t) = - (Tl + 5) /o ;)2—(?,7 (233)

Hereit isinteresting to observethat thesolutions (2.32)
for the equation (2.17) have also been obtained by
Khandekav and Lawande?” by using Feynman path in-

tegral~.
Let us now introduce the time-dependent
transformation?!

m \ -2
= (5m5) =0 @3
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wherez(t) isareal function of time which is to be deter-
mined. Then using (2.7), (2.9) and (2.34) the equation
of motion (2.12) is converted into the original equation
(2.4) and the auxiliary equation (2.13) into the equation

P+ +wit)z = ( 37 (t)) /=3 (2.35)

Theexact invariant (2.11) is transformed to the form

I() = ghalmi?e~ + (px - Mag)Y].  (236)

Thus, (2.36) is an exact invariant for the Hamiltonian
(2.1) with p given by (2.3a) and ¢(¢) and =(¢) satisfy-
ing, respectively, the equations (2.4) and (2.35). For
M(t) = m = cte we recover the invariant for the time-
dependent Hamiltonian where only the frequency is d-
lowed to change with time?l. Note that in thiscase the
function (2.6) generates the identity transformation.

On the other hand, by using (2.7a) and (2.34) the
unitary operator (2.22) is converted into

U = exp (—zM(t) [ + 1)z ] 2/(2ﬁx)) (2.37)
and the invariant (2.24) into the form

pe-fp? S+ (9

m” aq z (2.38)

which has the same form of (2.24). Also, in terms of
theoriginal variables, the eigenfunctions ¢,,(g,t) of I(t)
are given by

1 m? /2
#n(g,t) = [2"n!f11/2 (WM(t)zz) ]
7(8) im

o0 (20 ).
(2.39)

()"

Note that for M(t) = me”* the above solution reduces
to that obtained by Khandekav and Lawande?®. Now,
the solutions ¥,(¢,t) o the Schrodinger equation for
the original system may be written as

‘I’n(qyt) = eia"(t)qsn(q)t))

where the phase functions o, (¢) are now given by

+3) |

Here it is interesting to note that when M(t) — m,
w(t) — wp = constant and z(t) — zo = constant =

(2.40)

a,(t) =~ (n (2.41)
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1/wl/? (which is a particular solution of the auxiliar
equation (2.35)) the solutions (2.39) become

(mwg)?

1/2
— _ mw() 2
¢nle) = {(wh)llzznn!J e"p[ ( o )"]

muwp\ /2
*Hy [( =) q]'
which is the solution of the Schrodinger equation for
the time-dependent harmonic oscillator of nass m and

frequency wy. Further, in this case the phase functions
(2.41) are given by

(2.42)

a,(t) = ~ (n + -;-) wot, (2.43)

so that by substituting (2.42) and (2.43) into (2.40) we
recover the time-dependent solutions of the Schrodinger
equation for the usual time-independent oscillator.
II1. Coherent States

Toobtain coherent statesfor the harmonic oscillator
with time-dependent mass and frequency we proceed as

follows. Consider the operators A and At given by

(571;5)1/: [m (%) + ipP] , (3.1.a)
(2_;.5)1/ [m (%) —ipP], (3.1.b)

It may be easily verified that A and Al satisfy the
commutation relation

A

u

(4,41 = a4t —ata=1. (3.2)

Theinvariant operator given by (2.24) can now be writ-
ten as

I'=h (AAT + %) . (3.3)
Now, Hartley and Ray? have shown that coherent
states for I' have the form

an
COEE

Go(o,) = e P L, ey (0),  (34)
where a,(t) is given by (2.33) and a is an arbitrary
complex number. Note that when w(t) — wy and
p(t) = po = I/wé/2 the phases a,(t) are given by
(2.43). In this cases, the coherent states ¢/, (@,t) be-
come the correct coherent states for the usual time-
independent harmonic oscillator. The states ¢ (s,t)
are eigenstates of A with eigenvalue «(t), i.e.,

Ado(0,t) = a(t)pa(a,1), (3.5)
with a(t) given by29-3t

a(t) = ae?®) (3.6)
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where

Tt odt
ao(t) - 75 A pg(t,) . (37)
Note that when w(t) — wp and p(t) — po = 1/wi/? the
eigenvalue (3.6) becomes a(t) = aexp(—iwot) Which is
the usual result.
The coherent states for the time-dependent har-
monic oscillator (2.18) are obtained by the inverse
transformation on ¢, (e,t). They are given by

$a(Q,1) = p~H/2emP M) (5 1) (3.8)

Next, following Ray2¢, we show that (3.8) are coherent
states for the time-dependent oscillator (2.18). Trans-
forming (3.5) via the inverse transformation we find
that

a¢a(Qyt) = Q(t)(ﬁa(Q,t), (39)

where
a=vtay

A straightforward calculation reveals that

o = (55) v [ (2) +itoa- miq)|.

(3.11.a)

()" [ () -100-mia)]

(3.11.b)

(3.10)

which are.exactly the operators associated with the
invariant (2.11) which was originally introduced by
Lewis?. These operators factor the invariant (2.11) as

I:h(a1a+%>.

Thisresult may also beobtained by applying theinverse
transformation on (3.3).

(3.12)

o = (mr) [n(2) +ser-stsa)]
(3.13.a)
1/2
i = (52) [m(2)~itep-Mig)].
(3.13.b)

In terms of the original variables we also may express
the coherent states (3.8) as

falg,t) = [(M%)llzx}—l/z

. . 7(t) '
X exp (—zM(t) [:c + T:c} g?/(2hr)) 4. (a,t)
(3.14)
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where we now havt:that a= ¢/ (see egs. (2.24), (2.25)
and (2.38)). The states (3.14) are coherent states for
the time-dependect system described by the Hamilto-
nian (2.1). Thesestates satisfy the eigenvalue equation

ad,(g,t) = a(t)da(q,1) (3.15)

where a and a(t) are given respectively, by (3.13a) and
(3.6). In this case, the equation (3.7) becomes

ap(t) == dt'. (3.16)

1 m
‘5/0 M(t)z2(t')

Note that when M(t) = m = cte the states reduce
to the coherent states of the time-dependent harmonic
oscillator where only the frequency is allowed to change
with time?®

IV. The uncertainty relation
By using (3.13) we may express g and p as

¢ = z(%)llz(af+a), (4.1.)
- z((l%,);i)[(a]%_z%z> N (4.1b)
Ll ). 1

From (3.15) anct (4.1a) we find that the expectation
value of qin the state ¢«(g,t) isgiven by

h 2,2
<g¢>= [2—'{'71—”] sin[p(t) + 6],  (4.2)
where 6 is the argument of the complex number a and

(p(t) = —2ao(t) = A _A—lﬁmdﬂ‘ (43)

We also get that the expectation vaue of the invariant
(3.12) in the state #4(g,t) is given by

<I>=h (la[2 + -;-) . (4.4)

On theother hand, it is known?27 that thesolution to
the equation of motion for the classical time-dependent
harmonic oscillator

o1 + (D)4t + 0 (t)ger = 0 (45)
can be expressed as
ger = Boz(t)sinfp(t) + 8], (4.6)

where Bq is a constant and z(t) satisfies the auxil-
iary equation (2.35). In this case, the invariant I(t)
is defined in the same way as (2.36) but using classi-
cal variables. Now in the Glauber limit?%:32 h — 0,
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|o] = oo, such that &la|?> — finite. Thus, the expec-
tation value of q in (4.2) is exactly the solution for the
classical time-dependent oscillator with invariant (see
(4.4) hjal? =<1 > —h/2.

In what follows we wish to obtain the uncertainty
relation. After some calculation wefind that the uncer-
taintiesin g and pisthestate ¢(q,t) are

h
2 _ 2
4.
(Ag)* = 5—2%, (4.7)
2
(Ap2 = ™R ( + M—-x"’) (4.8)
Thus, the uncertainty product is expressed as
h M2(t Yz
(Ag)(Ap) = 5 (1+ m() g 2) . (49)

and, in general, does not attain the minimum value.
However, for a time-dependent oscillator, we cannot ex-
pect to find strictly coherent states, i.e., (Aq)(Ap) =
h/2 for all time t. On the other hand, we have al-
ready shorn®%3! that the states ¢.(g,t) are equivalent
to well-known squeezed states whose characteristic fea-
ture is the sgueezing. Furthermore, the fundamental
property of sgueezing is that it is a time-dependent
phenomenon®. Now for M(t) = m = const. the un-
certainty product (4.9) reduces to that obtained in Ref.
29. Also, when M(t) = m and z(t) — zo = 1/wl/? the
uncertainty relation (4.9) attain its minimum value. In
this case, the operators a and af given in (3.13) reduce,
respectively, to the usual annihilation and creation op-
erators and thestates ¢,(q,t) become the correct coher-
ent statesfor the time-independent harmonic oscillator.

V. Concluding Remarks

In this paper we have presented an alternative treat-
ment for the problem of the quantal harmonic oscillator
with time-dependent mass and frequency. The present
treatment is based on the use of a time-dependent
canonical transformation, an unitary transformation,
an auxiliary time-dependent transformation and in the
method of invariants of Lewis and Riesenfeld. We also
have used the procedure developed in Ref. 26 to con-
struct coherent statesfor such asystem. These coherent
states have been expressed in terms of the eigenstates
of the invariant I(t) and are more general than those
obtained in Ref. 29.

Thetreatment discussed here may also be applied to
other time-dependent systems. Asan example, we con-
sider the nonharmonic system described by the Hamil-
tonian

H(t) = 2M(t)+ MO0 ) JrM(t)2 2”( ) (5.1)
which possesses an invariant given by2!

I(t) = Eln—‘][(pz — Miq)? T m2¢%s? + 2mg(q/z)]. (5.2)
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where z(t) satisfies the auxiliary equation (2.35). Then,
following the same steps as those of Sec. 2, we convert
the Hamiltonian (5.1)in theform
_ P mQi(t) ., 0 m
Hy(t) = o ¥ —2—-—Q + FQ(Q/P) (5.3)
where Q(t) isgiven by (2.9) and p(t) satisfiesthe equa-
tion (2.13). Theinvariant (5.2)is converted in theform

10) = 5-[(Pp ~ mpQ)? + m*Q7p~2 + 2mg(Q/p)].

(5.4)
On the other hand, Hartley and Ray?® have used the
procedure employed in the subsection B and C to solve
the Schrédinger equation for the transformed Hamilto-
nian (5.3). Thus, we can use the transformations (2.7)
and (2.34)in their resultsfor obtaining thesolutionsfor
the originul system. i.e., the system described by the
Hamiltonian (5.1). Also, Khandekav and Lawande®?
have used Feynman path integrals and the method of
Lewis and Riesenfeld to solve the quantum problem de-
scribed by (5.3)for the case when g = p2/Q?. Further-
more, Ray? has constructed coherent states for time-
dependent systems described by Hamiltonians of the
form (5.3).Then, it seems that would not be any prob-
lem to construct coherent statesfor the time-dependent
systems associated with (5.1) using the same technique
presented in this paper and that of Ref. 26.

We should mention that Jannussis and Bartzis33
have also constructed coherent states for the harmonic
oscillator with time-dependent mass and frequency.
However, the approach used by these authors is consid-
erably different from that presented in this paper. We
also mention that it may be interesting to compare our
treatment with those developed by Leach’, Abdalla!3,
Collegrave and Abdalla? and Dodonov and Man’ko3®.

As a concluding remark we point out that in our
treatment of the system described by the Hamiltonians
(2.1)and (2.8) the requirements for £2(t) are the same
as those in the paper by Lewis and Riesenfeld??, i.e.,
all that is necessary is that Q2(t) be real, either being
positive or negative due to the hermicity of the Hamil-
tonian. Then, from (2.5) and (2.9) we see that M(t)
must be real. For further details about these consider-
ationson Q(t) and M(t) see the discussion in Section 3
of Ref. 20.
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