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Abs t rac t  A nonlinear simulation for an untapered Compton FEL oscil- 
lator with space-charge effect has been performed. The Poisson equation, 
together with the pendulum equation, are solved by Fourier analysis with 
m harmonics. It has been shown that a large number of Fourier harmonics 
are crucial to simulate the single-particle efficiency. As the particle bunch- 
ing increases the normalized efficiency also increases. In order to have a 
weli defined efficiency saturation, the number of Fourier modes has to be 
increased as the number of plasma oscillations in the system increases. 

The generation of high-power coherent radiation using a relativistic electron 

beam moving in a periodic magnetostatic field has attracted considerable interest 

lately. The device based on this effect, named free-electron laser (FEL), is capable 

of operating in a broad band of the electromagnetic spectrum even at wavelengths 

not accessible to conventional lasers. This tunable feature of the FEL is due to 

the fact the wavelength of the coherent radiation A, is mainly determined by the 

relativistic electron beam energy and the wavelength of the wiggler or undulator 

magnetic field e,, which satisfy the approximate resonant condition 

where y~ is the normalized resonant electron beam e n e r g ~ l - ~  
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The goal of this paper is to determine by numerical simulation the single- 

particle efficiency saturation for low gain Compton FEL oscillators when space- 

charge effects caused by the particle bunching are present. To consider the space- 

charge effects, it is necessary to add the Poisson equation, which gives us the elec- 

trostatic potential, to the particle's dynamics equations. Antonsen and ~ a t h a r n ~  

have recently solved this set of equations in a linear approximation for low and 

high gain regimes of operation for a sheet-electron beam FEL, where a single 

electrostatic mode is present. In our one-dimensional model this set of nonlinear 

equations is solved for a single-pass electromagnetic mode in a thick beam FEL. 

In order to describe the FEL interaction we assume that the wiggler strength is 

small enough that one can consider the unperturbed beam velocity as uniform. 

To calculate the nonlinear efficiency we assume that a large number of Fourier 

(electrostatic) modes due to the phase particle bunching are present. 

In an untapered FEL oscillator the motion of an axially streaming electron is 

affected by the combined action of two vector potentials. The first is he wiggler 

potential 

Áw = 2 AwO cos(kWz), (I) 

which guides the electron through N ,  periodic oscillations as it travels the length 

L of the magnet, and the second is the coherent radiation vector potential 

with the given fields which propagate along the z-direction; the forces in this direc- 

tion acting on a particle are the ponderomotive force, resulting from the beating 

between the wiggler and radiation fields, and a collective force due to the axial 

space-charge field created by the particle bunching, which begin to influente the 

interaction between the individual electron and the radiation field. By averaging 

the forces over a wiggler period, the particle's dynamics can be described by the 

well-known pendulum equations6 
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which govern the electron dynamics in the phase space, where 

is the interaction Hamiltonian, with 

being the normalized canonical momentum, which replaces the resonant energy 

deviation 67, BR is the normalized resonant electron beam velocity and wr is the 

coherent frequency. In this case, the axial distance is normalized to the length of 

the interaction region E = t / E  and the ponderomotive wave amplitude is normal- 

ized according to 

AO = ( W ~ L / C ) ~ ( ~ W O ~ ~ O ) / ( ~ R B R ) ~ ,  @ I  
where awo = qAwo/mc2 is the wiggler parameter and a* = q ~ r o / m ~ 2  is the 

normalized radiation field amplitude. The normalized electrostatic potential is 

defined as 

V ( $ )  = q~rk~~/[mc~(?R~~)~)<f>($), (7) 

where a($) is the collective potential given by the Poisson equation 

where the particle's phase $ which replaces the axial position is defined by 

and 

k = k, + k, 
is the space-charge wave number. The normalized electron position deviation is 

given by 

b( = kL(E - vRt/L), 

with VR = w l k  being the resonant velocity of the charge particle perturbation, 

which is assumed constant for a weak wiggler strength (awo << 1). Then, in order 

512 



Efficiency simulation for untapered free-electron laser ... 
to derive the contribution of the space-charge potential to the pendulum equation, 

we can represent the phase bunched particle density as 

where N is the number of particles in the beam. Introducing this expression into 

eq. (8) and expanding in Fourier series in $, we have for the collective potential 

where no is the average beam density and 

is the electron bunching parameter. 

Substituting e q . ( i ~ )  into eq.(7), one gets for the normalized ~otent ia l  

where rn represents the number of Fourier modes in the beam, 

is the normalized relativistic plasma frequency with 

and 

Gm = l l m ,  

is the Fourier coefficient for thick electrom beam. Introducting eq. (12) and eq. 

(14) into eq. (3), and working out the space-charge term, the basic nonlinear 

system of equations for the particle phase dynamics becomes 
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where S refers to "the imaginary of". 

Equations (15) are integrated numerically for an ensemble of electrons whose 

initial canonical momenta P(E = 0) have been set equal to the injected momenta 

Pjnj. The normalized efficiency is determined from the averaged canonical momen- 

tum for the exiting electrons and is given by 

A P =  Pinj- < P ( t =  1) >, (16) 

where the angular brackets represent an average over the initial phases. The actual 

efficiency is determined from eqs. (5) and (16): 

= {[YR(o)PR(~)]~/~~L)AP/[~R(o) - (I7) 

The nonlinear energy gain can be defined as 

As we can see, when the bunching particle force is considered, the energy ex- 

tracted from the beam is distributed between the radiation and the space-charge 

waves; otherwise in the case where the space-charge force is neglected, the en- 

ergy loss by the electron is cornpletely transferred to the coherent radiation field. 

Similarly, following the usual procedure to obtain the small radiation energy gain 

without ~ ~ a c e - c h a r ~ e ' - ~ ,  we find that the small-gain with a single electrostatic 

mode (Fourier mode) is given by 

In the limit as wp --+ O (no space-charge) this equation reduces to the well-known 

line width expression for a free-electron laser: 

Figure 1 gives the simulation of the gain function for a single electrostatic mode 

as a functions of the injected canonical momenta. This result agrees with the 

analytical result in eq. (19) which is similar to that presented by Shih and yariv8. 

One sees that as the bunches particle density increases, the maximum gain reduces 

in comparison with the value for wp = O and moves toward large Pinj. 
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Fig. 1 - Gain curve G(Pinj ,wp) as function of &j for different valnea of nor- 
mal'ued plasma frequency w,. 

Figure 2 shows the behaviour of the normalized efficiency A P  for normalized 

plasma frequency wp = 3 and for optimum injected canonical momentum Pinj = 

5.14 1°. One can see that, in order to have a well-defined efficiency saturation one 

needs three Fourier harmonia (m = 3) to simulate the correct energy extraction 

from the beam. Actually the efficiency is a function of three parameters, i.e., 

AP = AP(Pinj, Ao, m) .  The increase of the efficiency in comparison with the case 

without space-charge is due to the increase of the magnitude of the electrostatic 

electric field caused by the particle bunching. This field removes some of the 

particles from the ponderomotive bucket in a competitive way such that part of 

the energy transferred to the radiation comes from the space-charge wave, i.e., the 

maximum efficiency is reached when a large number of the electrostatic modes and 

particle transfer their energy to the coherent electromagnetic wave. 

Figure 3 shows the results of the efficiency simulation for wp = 5 and injected 

canonica! momentum Pjnj = 5.14. The efficiency saturates for the Fourier harmon- 

ics m = 5 in comparison with m = 1; we can note that the maximum efficíency for 
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m = 5 is large than the maximum efficiency for m = 1. Otherwise, the simulation 

is well defined for m = 3 with a error of 2% in comparison with m = 5, since 

the maximum efficiency reaches almost the same value for rn = 5. The advan- 

tage of calculating the electronic efficiency in this case for m = 3 is to reduce the 

simulation time for a free-electron lasers in a Compton regime of operation when 

space-charge effect is present. 

Ao 

Fig. 2 - Efficiency A P  venus beat wave amplitude Ao for normalized plasma 

frequenc~ w,, = 3, and injected energy Pi,, = 5.14 with different values of the 

Fourier harmonics m. 

The results presented here show us that simulation of a Compton FEL with 

self-electrostatic field when a Fourier solution of the Poisson equation is per- 

formed should be carefully described, since the pendulum equations which de- 

scribe the free-electron lasers' interaction with space-charge effect derived by many 

a~thors"- '~  has made use of the space-charge term in this equation assurning 

that there is a convergency of the numerical calculation for a single Fourier mode 

(m = 1) in the self-field term. In contrast with those authors we can say that 
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Fig. 3 - Efficieiicy A P  versus beat wave amplitude Ao for normalized plasma 

frequency w,, = 5 ,  and injected energy = 5.14 with different values of the 
Fourier harmonics m. 

a large number of Fourier modes are required to calculate the nonlinear single- 

particle efficiency, because the motion of the electron is not synchronous at  satu- 

ration, particularly in the case where the space-charge waves are important. Ef- 

ficiency simulation for wp large than 5 has also been performed and the results 

have shown the necessity of further increase of Fourier harmonics in the Poisson 

solution of the self-field, i.e., the number of harmonics increases as the number of 

plasma oscillations in the system increases. 
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Resumo 

E feita a simulação não linear para um laser de elétrons do tipo oscilador com 
parâmetros constantes levando-se em conta o efeito das ondas de cargas espaciais. 
A equação de Poisson, juntamente com a equação do pendulo, é resolvida através 
da análise de Fourier com m liarmônicos. Mostra-se que um grande número de 
harmônicos é crucial para se simular a eficiência de extração de energia de uma 
partícula. Vê-se que quando o agrupamento de partículas aumenta a eficiência 
também aumenta. Para se ter uma ótima eficiência na saturaqão, o número de 
modos eletrostáticos (modos de Fourier) do feixe deve ser aumentado de acordo 
com o número de oscilações de plasma do sistema. 


