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Abstract A nonlinear simulation for an untapered Compton FEL oscil-
lator with space-charge effect has been performed. The Poisson equation,
together with the pendulum equation, are solved by Fourier analysis with
m harmonics. It has been shown that a large number of Fourier harmonics
are crucial to simulate the single-particle efficiency. As the particle bunch-
ing increases the normalized efficiency also increases. In order to have a
well defined efficiency saturation, the number of Fourier modes has to be
increased as the number of plasma oscillations in the system increases.

The generation o high-power coherent radiation using a relativistic electron
beam moving in a periodic magnetostatic field has attracted considerable interest
lately. The device based on this effect, named free-electron laser (FEL), is capable
of operating in a broad band of the electromagnetic spectrum even at wavelengths
not accessible to conventional lasers. This tunable feature of the FEL is due to
the fact the wavelength of the coherent radiation A, is mainly determined by the
relativistic electron beam energy and the wavelength of the wiggler or undulator

magnetic field £, which satisfy the approximate resonant condition

A =8y, /27%

where vg is the normalized resonant electron beam energy!™*
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The goa o this paper is to determine by numerical simulation the single-
particle efficiency saturation for low gain Compton FEL oscillators when space-
charge effects caused by the particle bunching are present. To consider the space-
charge effects, it is necessary to add the Poisson equation, which gives us the elec-
trostatic potential, to the particle’s dynamics equations. Antonsen and Latham®
have recently solved this set of equations in a linear approximation for low and
high gain regimes o operation for a sheet-electron beam FEL, where a single
electrostatic mode is present. In our one-dimensional model this set d nonlinear
equations is solved for a single-pass electromagnetic mode in a thick beam FEL.
In order to describe the FEL interaction we assume that the wiggler strength is
small enough that one can consider the unperturbed beam velocity as uniform.

To calculate the nonlinear efficiency we assume that a large number of Fourier
(electrostatic) modes due to the phase particle bunching are present.

In an untapered FEL oscillator the motion of an axialy streaming electron is
affected by the combined action of two vector potentials. The first is he wiggler
potential

Ap =% Ayo cos(kyz), (1)

which guides the electron through N,, periodic oscillations as it travels the length
L of the magnet, and the second is the coherent radiation vector potential

A, = 2Aro(z,t) expli(krz — wet)] + c.c., (2)

with the given fieldswhich propagate along the z-direction; the forcesin this direc-
tion acting on a particle are the ponderomotive force, resulting from the beating
between the wiggler and radiation fields, and a collective force due to the axial
space-charge field created by the particle bunching, which begin to influence the
interaction between the individual electron and the radiation field. By averaging
the forces over a wiggler period, the particle's dynamics can be described by the

well-known pendulum equations®

dyp/dé = P = dH/AP, (3.0)
dP/d¢ = —3H 3, (3.b)
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which govern the electron dynamics in the phase space, where
H(,P) = P?/2 + V() — Aocos 9, (4)

is the interaction Hamiltonian, with

P = 6w, L/[c(vrBR)®] (5)

being the normalized canonical momentum, which replaces the resonant energy
deviation 67, Bg isthe normalized resonant electron beam velocity and wy is the
coherent frequency. In this case, the axial distance is normalized to the length of
the interaction region ¢ = z/L and the ponderomotive wave amplitude is normal-
ized according to

Ao = (wrL/¢)*(awoaro)/(1rBR)*, (6)

where a0 = gAwo/mc? is the wiggler parameter and ayo = gAro/me? is the
normalized radiation field amplitude. The normalized electrostatic potential is
defined as

V($) = qurkL? /[me’ (vrBR)"]9(¥), (7)

where &(¢) is the collective potential given by the Poisson equation
0*®/dy* = —4mq/k*n(¥), (8
where the particle's phase ¢ which replaces the axial position is defined by
¥ = kL6¢
and
k=k *ky

is the space-charge wave number. The normalized electron position deviation is
given by

6¢ = kL(¢ — vrt/L),
with vg = w/k being the resonant velocity of the charge particle perturbation,

which is assumed constant for a wesk wiggler strength (ays << 1). Then, in order
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to derive the contribution of the space-charge potential to the pendulum equation,

we can represent the phase bunched particle density as

N
n(y) = 2rno/N Y 6(v — ¥5),

7=1

(9)

where N is the number o particles in the beam. Introducing this expression into

eg. (8) and expanding in Fourier series in v, we havefor the collective potential

m=0cQ
&(¢) = dmgno/k® Z (e7'M) G e,

m=—00

where nq is the average beam density and

N
<e—im¢> — l/N Z e—im'/;j,
j=1
is the electron bunching parameter.

Substituting eq.(10) into eq.(7), one gets for the normalized potential

V(1/1)=w§ Z (e-im'b)Gmeim'p,

m=—00o

where m represents the number of Fourier modes in the beam,
wp = (ws/vR)L,
is the normalized relativistic plasmafrequency with
wi = 4mg’no/(mony)

and

Gm =1/m,

(10)

(11)

(14)

is the Fourier coefficient for thick electrom beam. Introducting eq. (12) and eqg.

(14) into eg. (3), and working out the space-charge term, the basic nonlinear

system of equations for the particle phase dynamics becomes

oy /8¢ = P
AP/t = Agsintp + 2w;2,§{ Z ((e—imd;)e—im'/))/m}
m=1

(15.a)

(15.5)
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where & refersto "the imaginary of".

Equations (15) are integrated numerically for an ensemble of electrons whose
initial canonical momenta P(¢ = 0} have been set equal to the injected momenta
P,;. The normalized efficiency is determined from the averaged canonical momen-
tum for the exiting electrons and is given by

AP= Py— < P(¢ =1) >, (16)
where the angular brackets represent an average over theinitial phases. The actual
efficiency is determined from egs. (5) and (16):

n = {[7r(0)Br(0))*/kr L} AP/[7£(0) — 1]. (17)
The nonlinear energy gain can be defined as
G(P,wp) = AP/ Ao. (18)

As we can see, when the bunching particle force is considered, the energy ex-
tracted from the beam is distributed between the radiation and the space-charge
waves, otherwise in the case where the space-charge force is neglected, the en-
ergy loss by the electron is cormpletely transferred to the coherent radiation field.
Similarly, following the usual procedure to obtain the small radiation energy gain
without space-charge’™°, we find that the small-gain with a single electrostatic
mode (Fourier mode) isgiven by

G(Pinj,wp) = — 1/4wp{[cos(Pi; + wp) — 1}/(Punj + wp)i—
~ [cos(Paj — wp) — 11/ (Pinj — wp)}- (19)
In the limit as w, — 0 (NO space-charge) this equation reduces to the well-known
line width expression for a free-electron laser:
1
G(P) = 38/0Puy(cos Py — 1)/ Pyl (20)

Figure 1 gives the simulation of the gain function for a single electrostatic mode
as a functions o the injected canonical momenta. This result agrees with the
analytical result in eq. (19) which issimilar to that presented by Shih and Yariv®.
One seesthat as the bunches particle density increases, the maximum gain reduces
in comparison with the value for w, = 0 and moves toward large Pi;.
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Fig. 1 - Gain curve G(P.,;,w,) asfunction of P for different values of nor-
malized plasma frequency w,.

Figure 2 shows the behaviour of the normalized efficiency A P for normalized
plasma frequency w, = 3 and for optimum injected canonical momentum Piy; =
5.14 1%, One can see that, in order to have a well-defined efficiency saturation one
needs three Fourier harmonics (m = 3) to simulate the correct energy extraction
from the beam. Actually the efficiency is a function of three parameters, i.e.,
AP = AP(Pq;, Ao, m).Theincreaseof the efficiencyin comparison with the case
without space-charge is due to the increase o the magnitude of the electrostatic
electric field caused by the particle bunching. This field removes some of the
particles from the ponderomotive bucket in a competitive way such that part of
the energy transferred to the radiation comes from the space-chargewave, i.e., the
maximum efficiency is reached when a large number o the electrostatic modes and
particle transfer their energy to the coherent electromagnetic wave.

Figure 3 shows the results d the efficiency simulation for w, =5 and injected
canonical momentum P,;; = 5.14. The efficiency saturates for the Fourier harmon-

ics m = 5in comparison with m = 1; we can note that the maximum efficiency for
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m = 5 is large than the maximum efficiencyfor m = 1. Otherwise, the simulation
is well defined for m = 3 with a error of 2% in comparison with m = 5, since
the maximum efficiency reaches almost the same value for m = 5. The advan-
tage d calculating the electronic efficiency in this case for m = 3 isto reduce the
simulation time for a free-electron lasers in a Compton regime of operation when

space-charge effect is present.
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Fig. 2 - Efficiency A P versus beat wave amplitude 4o for normalized plasma
frequency w, = 3, and injected energy P,; = 5.14 with different values of the
Fourier harmonics m.

]

The results presented here show us that simulation of a Compton FEL with
self-electrostatic field when a Fourier solution d the Poisson equation is per-
formed should be carefully described, since the pendulum equations which de-
scribe thefree-electron lasers’ interaction with space-chargeeffect derived by many
authors!!™1* has made use o the space-charge term in this equation assuming
that there is a convergency o the numerical calculation for a single Fourier mode
(m = 1) in the sdf-fiddd term. In contrast with those authors we can say that
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Fig. 3 - Efficieiicy AP versus beat wave amplitude A, for normalized plasma

frequency w, = 5, and injected energy Pi,; = 5.14 with different values of the
Fourier harmonics m.

a large number of Fourier modes are required to calculate the nonlinear single-
particle efficiency, because the motion of the electron is not synchronous at satu-
ration, particularly in the case where the space-charge waves are important. Ef-
ficiency simulation for w, large than 5 has also been performed and the results
have shown the necessity of further increase of Fourier harmonics in the Poisson
solution of the self-field, i.e., the number of harmonics increases as the number of
plasma oscillations in the system increases.
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Resumo

E feita a simulagéo ndo linear para um laser de elétrons do tipo oscilador com
parémetros constantes levando-se em conta o efeito das ondas de cargas espaciais.
A equagdo de Poisson, juntamente com a equacdo do pendulo, é resolvida através
da andlise de Fourier com m liarménicos. Mostra-se que um grande ndmero de
harmdnicos é crucial para se simular a eficiéncia de extragdo de energia de uma
particula. Vése que quando o agrupamento de particulas aumenta a eficiéncia
também aumenta. Para se ter uma 6tima eficiéncia na saturagao, o nimero de
modos eletrostéticos (modos de Fourier) do feixe deve ser aumentado de acordo
com o nimero de oscilagtes de plasma do sistema.
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