
Revista Brasileira de Física, Vol. 21, no 4, 1991 

Monte Carls Determination of the Convergence Time of 
Two Cluster-Flfp Algorithms in the Psing Model 

Ale jandro  C .  Fre ry  
INPE - DPI, Av. dos Astronautas, 1758, São José dos Campos, l2201, 
SP - Brasil 

Received June 20, 1991; in final form September 9, 1991 

Abs t rac t  We use the maximum pseudolikehood estimator as a stopping 
rule for two cluster-flip algorithms in the Ising modei. Swendsen-Wang and 
Wolff dynamics are compared by means of the number of iterations and CPU 
time required to achieve convergence for different values of the atractivity 
parameter B. 

Monte Carlo techniques are a powerful method for investigating problems in 

Statistical physics1~2. The advent of fast and relatively inexpensive computing 

machines, with enormous memory capabilities, has helped the study of thermody- 

namic systems at  phase transitions and lattice gauge theory calculations, to name 

a few applications3. 

One of the problems that arise when Monte Carlo techniques are used is known 

as critical slowing down. It is related to the fact that, for some models, there is a 

discontinuity of the thermodynamic properties in different parameter regions pro- 

ducing high correlations between observations. This reduces, in a known fashion, 

the effective size of the considered4 sample. A model where this occurs is the SYS- 

tem of interacting particles known as the Potts model (also as the Potts-Stra~ss 

model or as the Multilevel Logistic model), which has the well known Ising model 

as the simplest non-trivial case. 

Aiming at  the solution of the critica1 slowing down problem, Swendsen and 

Wang proposed in 1987, c. f. Ref. 5 ,  a nove1 technique for the simulatioa of 

this model. Their idea is based upon a mapping between the Potts model and 

a percolation model, due to Kasteleyn and Fortuin, and allows the updating of 
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more than one spin per iteration. That dynamic differs from the more classical 

dynamics (Metropolis, Gibbs sampler6) in that these allow the change of only one 

site per iteration. It is successfully used for the understanding of the metastable 

b e h a ~ i o u r ~ ~ ~ ~  and of the geometrical features of systems of interacting particleslO. 

This cluster technique was then modified by Wolff in 1989" and generalized 

to other cases: the x - y and O (n) nonlinear- a two-dimensional models12. Wolff's 

technique has also inspired experiments with similar dynamics13, in dimensions 

greater than 2 14, and other problems such as Z2 lattice gauge and d4 theories15. 

Most of the literatre related to these algorithms deals with the Monte Carlo 

evaluation of certain characteristic quantities for different models (integrated au- 

tocorrelation times in the two-dimensional two- and three- states Potts model, for 

instance13). In this work, we are interested in previous quantities for both dynam- 

ics: the required number of iterations and CPU times to achieve convergence in the 

two- dimensional Ising model, when the initial measure is a collection of indepen- 

dent identically distributed Bernoulli(l/2) random variables. To our knowledge, 

there are no published works determining these values. 

The results presented here are part of a series of experiences to be carried out 

on systems of interacting particles, bearing in mind their application to digital 

image segmentation, restoration and classification. A precise knowledge of the 

convergence properties of the used algorithms is paramount for these applications. 

In previous w o r k ~ ' ~ ~ ' ~  we checked that, for the 128 x 128 free boundary Ising 

model the Swendsen-Wang dynamic is up to 100 times faster, in terms of con- 

vergence time, than the Gibbs sampler. This improvement is quite evident for 

supercritical values of the parameter, i. e. P > ,O, = ln(i  + h) and mainly due 

to the capability of the Swendsen-Wang algorithm to escape quite rapidly from 

metastable configurations that trap the evolution of the Gibbs sampler (a spin-flip 

dynamic). 

The Wolff algorithm is supposed to decorrelate successive iterations faster than 

the Swendsen-Wang, and this assertion makes sense only when these iterations 

are obtained after the convergence has been achieved. In this work, our aim 

is to compare the convergence properties of both dynamics via a Monte Carlo 
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experiment. We show numerical evidence that the Swendsen-Wang dynamic is 

much faster than the Wolff dynamic for the studied 128 x 128 free boundary Ising 

model, in the considered range of the parameter /3 E [0.7; 1.21 and under the 

afore-mentioned initial measure. 

Consider the usual finite size free boundary ferromagnetic Lsing model char- 

acterized by the state space B = E, = (-1, with S = (1,. . . , N) x 

{I, . . . , N) and local characteristics 

P = l /T  > O is the reciproca1 of the temperature. Negative values of p could also 

be considered, yielding the antiferromagnetic Ising model. We shall refer to the 

p = O model as the infinite temperature model. Notice that, in this last case, the 

variables [X8IsES are a collection of independent identically distributed Bernoullis 

with Pr(X, = +1) = Pr(X, = -1) = 1/2. 

It can be seen in Ref. 18 that given x E E, a good estimator of P is the 
A 

mazimum pseudo-likehood estirnator defined as P(x) = supjl nscwcs Pr(X, = 

~,lXa, = xa,), where the neighbourhood sets, 3, C S \ {s), satisfy the Markov 

condition Pr(X, = z,lXs\{,) = xs\Is)) = Pr(X, = x,JXa, = x ~ , ) .  In this case, it 

is given by the zero of the following expression: 

where we have written C; = #{xw: w E Wlx, = e ,  C, = k) ,  C, = Cllw-tll=l xt 

and W = (2,. . . , N - 1) x (2 , .  . . , N - 1). For details on the behaviour of this 

estimator see Ref. 19. 
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The considered dynamics are known to converge in distribution to Pr (X = x), 

the unique joint distribution of the random vector X = [X8IeEs induced by the 

local charxteristics (1) given by 

where Zp = exp{2P Clls-tll=l xSxt) is the partition function. A rigorous 

proof of the Swendsen-Wang algorithm convergence can be seen in Refs. 20, 21. 

Both algorithms act iteratively on successive vectors z(k) = [ X , ( ~ ) ] , ~ S  in such a 

way that Pr(X(k) = x) --+ Pr(X = s )  as k -t oo for every z(0) E E. They can 

be described, for P 2 O, by the iteration: let k = 0 and change x(k) to x(k + 1) as 

follows: 

1. Place a bond between a11 equal-valued nearest neighbours of x(k) with proba- 

bility 1 - exp{-@). 

2. Construct C, the set of a11 connected components of the graph obtained in Step 

1. 

3. Form C' c C, the set of connected components that will change their state. 

4. Change s,(k + 1) = ( - l ) l{~~~ ' )x , (k)  for every s E S. 

5. Go to Step 1 if some condition is not satisfied. 

The algorithms differ in Step 3.: how to form C', the set of connected compo- 

nents that will change of state. The specifications are as follows: 

Suppose that in the kth iteration there are L(k) connected components in 

the graph induced by Step 1 above, i. e. C = {Ai,. . . , AL(k)); now, observe 

Ul, . . . , UL(k), a sequence of L(k) independent identically distributed [O; 11 uniform 

random variables. Swendsen-Wang constructs C' as 

For the other algorithm, observe Ui, . . . , U#s, a sequence of #S independent 

identically distributed [o; 1) uniform random variables and form C' as 

C&oif = {Aj  E C: xm E A, such that Um = sup {V;)). 
l<i<#S 



Alejandro C. Frery 

In words, the Swendsen-Wang dynamics allows the flipping of (a11 the states 

of) every connected component per iteration with probability 1/2, while the Wolff 

dynamic always switches (a1 the states of) only one connected component every 

iteration. Another interpretation for the Wolff construction consists in saying 

that the connected component Ai E Ckltr is chosen among the elements of C with 

probabilities proportional to their sizes. 

As previously stated, Pr(X(k) = x) + Pr(X = x) as k -r oo for every 

x(0) E E and, among the available measures of this convergence, we chose to work 

with P(z(k)). The initial distribution from which x(O) is sampled was the infinite 

temperature model, i. e. the uniform measure over 2, where 

Starting from one such x(o), we say that the convergence has been achieved 

in the kth iteration if P(s(k)) > P, and define 

our previous experiences strongly suggest that this is a good stopping rule 

for the iterative procedure when X ( 0 )  is as defined above, yielding quite 

stable measurements of p[x(k)), 1 CsES xa(k) 1, KI Clls-ili=l x8(k)xt(k) and 

K2 &-tli=lo X8(k)xt(k); these last three quantities are the estimates of, respec- 

tively, the absolute mean magnetization Mp,  and the short and long range corre- 

lations. 
A 

In other words, we propose the use of P(x(k)) as a measure of I Pr  X-Pr(X(k)) I 
when X(0) is the infinite temperature model and when x(k) is transformed into 

x(k + 1) using either Swendsen-Wang or Wolff dynamics. This measure fails to 

detect lack of convergence for the same initial measure when the used dynamic is 

the Gibbs Sampler algorithm; see results in Refs. 16, 17. 

Figure 1 (Figure 2 respectively) shows the Monte Carlo means and standard 

deviation of k* for 101 (11) values of p in the range [0.7; 1.21, as obtained with 100 

independent runnings of the Swendsen-Wang (Wolff) algorithm for every value of 

p. The Table below summarizes 11 of the values shown in the Figures for direct 



Monte Carlo Determination of the Convergence Time ... 
comparison. t* is the required CPU seconds to achieve k* in a SUN SPACK 2 

station. 

Fig. 1 - Monte Carlo results for k' and the Swendsen-Wang algorithm. 

Table 

p 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 

&-)(sTD) -SW- 
6.79(2.49) 
7.99(3.36) 
9.52(3.58) 

11.82(4.86) 
116.12(6.19) 

17.76(5.94) 
1.00 

1.10 '.O5 
1.15 
1.20 

(F)(sTD) -SW- 
0.49(0.21) 
0.54(0.20) 
0.67(0.25) 
O.gl(0.45) 
1.14(0.44) 
1.26(0.43) , 16.89(5.43) 

17.32(6.79) 
, i 17.44(6.69) 

17.16(5.22) 

(F)(sTD) -w- 
11447.21(4874.93) 
7960.50(1933.68) 
4921.27(1061.16) 

3015.43(435.82) 
1163.37(109.90) 

644.27(62.68) 

-. 
17.84(6.99) 1.49(0.61) 228.06(35.85) 

1.41(0.63) 459.74(58.39) 
1.38(0.53) 365.13(44.88) 
1.54(0.58) i/  306.78(46.57) 
1.38(0.55) ' 262.10(40.64) 
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Fig. 2 - Monte Carlo results for k* and the Wolff algonthm. 

In order to make a fair comparison between dynamics, we chose to work with 

a recursive algorithmZ2 that returns the connected components of a graph in such 

a way that it is possible to construct either a11 the components or only one 

component. The first option was used for the Swendsen-Wang dynamic while the 

second was used for the Wolff dynamic. 

Conclusions 

Most of the papers cited in the References report a superior behaviour of 

Wolff's algorithm and use the integrated autocorrelation times as the companson 

scale. Also, in the cited literature, one iteration is considered, for both dynamics, 

when at least #S particles have been flipped. 

We were concerned witb the associated times of the proposed measure of 

I Pr(X) - Pr(X(k))( and one iteration, for us, was defined in a sligthly differ- 

ent manner: we find this definition more natural for the applications we bear in 

mind. Within this context, Swendsen-Wang's algorithm suipasses Wolff's. 
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Our results are different, mainly because the expected number of spins flipped 

by our definition of iteration is, for Wolff dynamic given approximately by 

m ( M j )  and for Swendsen-Wang, by #S/2, c. f. Ref. 14. The analytic ex- 

pression for (Mp) given in ref. 23 

implies that most of Wolff dynamic's iterations will be spent in the flipping of a few 

sites, for the subcritical case, increasing the required time to achieve convergence; 

as /? increases the Wolff dynamic becomes more efficient. Since the number of sites 

flipped per iteration by the Swendsen-Wang dynamic is approximately constant, 

the different number of iterations required to achieve convergence does not change 

so dramatically when ,B changes. 

Admitting the claim that the Wolff dynamic decorrelates successive samples 

of the Potts model faster than the Swendsen-Wang dynamic, c. f. Ref. 12, 14 

along with the results presented in this paper, a convenient set up for a Monte 

Carlo evaluation of some quantity ( $ ( X ) ) ,  X being the Potts model, would be: i) 

achieve convergence using the Swendsen-Wang dynamic, and ii) estimate ($(X)) 

using ($*)) given by 

where k* is the quantity studied in this paper, K > 1 is a safety integer factor, 

e a convenient fixed lag, x(0) an initial sample, x( i ) ,  . . . , x(Kk*) iterations with 

the Swendsen-Wang dynarnic and x(Kk* + i), . . . , x(Kk* + tN) iterations with 

the Wolff dynamic. In other words: iterate Kk* times with the Swendsen-Wang 

algorithm to achieve convergence and then use N samples taken by skipping - 1 

iterations of the Wolff algorithm. 

This procedure should ensure a good approximation of a sample of N inde- 

pendent identically distributed observations of $(X), X being the Potts model. 
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Resumo 

Utilizamos o estimador de máxima pseudo-verossimilhança como regra de 
parada para dois algoritmos de simulação do modelo de Ising. Comparamos as 
dinâmicas de Swendsen-Wang e de Wolff, utilizando o número de iterações e O 

tempo de CPU necessários para atingir a convergência para diferentes valores do 
parâmetro de atratividade B. 


