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Abstract In the context of the mean field approximation to  the Landau- 
Ginzburg-Wilson functional integral describing the equilibrium properties 
of a system with a conserved order parameter, we analyze the conditions for 
critical instabilities in the canonical ensemble. By introducing a constraint 
into the functional integral to guarantee the global conservation of the or- 
der parameter in a closed system, we conclude that the usual mean-field 
grand canonical phase diagram is modified in the supersaturared region. In 
fact, we find that the spinodal line separating the unstable and metastable 
regions becomes a line of critica1 points on which the order parameter pr* 
file changes continuously with temperature. The critica1 exponentes which 
characterize this line are the same as those of the usual critica1 point. This 
conclusion contrasts with the one-sided singular behavior of the metastable 
branches' end point of the grand canonical case. These results are derived 
by ignoring nucleation, which in this regions is expected to render the direct 
observability of this line nearly impossible. It is argued, however, that the 
critica1 point effects can be important in the metastable or even the stable 
region before the onset of strong nucleation takes place. This conciusion 
agrees qualitativel~ with some experiments on light scattering in binary 
mixtures and single-component systems near the liquid-gas transition. The 
effect of this critica1 line on the problem of spinodal decomposition is briefly 
discussed. 

1. Introduction 

The classical theory describing the phase diagram of a binary mixture in the 

vicinity of a critical point is characterized by the coexistence curve separating 

homogeneous and inhomogeneous states of the system (Eg. 1). Th' 1s curve cor- 

responds to a line of first-order phase transitions with a critica1 point Iaying a t  
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its top. If pa,b are respectively the chemical potentials of each component a, b in 

the mixture and Ca,b are the corresponding concentrations, the critica1 point is 

determined by the conditions 

a 2 p  ( )  = ( )  = o, ac, T ac: T 

where p = pa - pb and T is the temperature. Below the coexistence curve the 

true equilibrium states correspond to an inhomogeneous mixture of phases. How- 

ever, it is also possible to have in this region metastable homogeneous phases 

corresponding to supersaturation. These states are locally stable under small- 

amplitude concentration fluctuations but unstable to decay to a lower free energy 

inhomogeneous phase by nucleation, that is by localized large amplitude fluctua- 

tions. Depending on the activation energy necessary to overcome the minimal free 

energy barrier to produce a spontaneous nucleating fluctuation, the lifetime of a 

metastable state can be long on a laboratory time scale, so that experiments can 

be performed and interpreted as if the system were in a true equilibrium state. As 

the degree of supersaturation is increased, by properly varying the temperature or 

the concentrations, the metastability is reduced. According to the classical theory 

the system becomes unstable under infinitesimal concentration fluctuations at the 

spinodal line. This line is determined by the condition 

The decay of a metastable or unstable state after a temperature quench is an 

interesting problem, which has attracted the attention of numerous researchersl. 

SO far theory and experiment seem to agree only qualitatively. Among the most 

outstanding properties of these processes is the scaling behaviour observed in the 

late stages of a spinodal decomposition, as expressed by the time-dependent cor- 

relation function, even for noncritical values of the con~entrations~'~. Although 

this property is not fully understood, it seems that the conservation of the order 

parameter plays a key role in this respect4. 

In this paper we shall focus our attention on how the effect of having a con- 

served order parameter, together with the fact that experiments in binary mixtures 
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Fig. 1 - Phase diagram for a binary mixture close to the critica1 consolute point 
in the concentration-temperature plane. The continuous l h e  corresponds to the 
coexistence curve at which the system undergoes a first order phase transition. 
The critica1 point corresponds to T = To and C = C. (where C0 is the molar 
fractional concentration of one component of the mixture). The dashed curve 
represents the spinodal line at which the system is thermodynamically unstable. 
In the region enclosed between the two curves, metastable supersaturated homo- 
geneous states can exist, but they decay by nucleation into the inhomogeneous 
phase. 

are almost invariably performed in closed containers, so that the overall concentra- 

tion is a fixed nonfluctuating quantity, can afFect the instability behavior of such 

systems particularly near the spinodal line. As far as the equilibrium properties are 

concerned the proper ensemble for the thermodynamical description is clearly the 

canonical'rather that the usually employed grand canonical framework. We will 

not be concerned with the dynamics of a decay process, but rather we will study 

the (pseudo) equilibriurn behavior of the matastable supersaturated mixture. 

Anticipating some of our results, we will find that, within the context of the 

classical theory, the usual spinodal irreversible instability line, which occurs in 

the grand canonical ensemble, is converted into a line of critica1 points for which 

the average local concentration changes continuously and reversibly. It must be 

stressed from the outset that a11 the results which follow are derived in the mean 

field approximation to the Landau-Ginzburg-Wilson functional integral for the 

partition function. It is well known that a mean field theory of metastability 
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is questionable for several reasons. In first place it has been argued by Langer 

that the mean field spinodal line which results fiam the Landau-Ginzburg theory 

is somewhat arbitrary, since it is a function of the coeficients of the free energy 

functional which themselves depend on the somewhat arbitrary coarse graining5. 

An exact functional integration for the free energy can give no metastable states. 

On the other hand, several authors have argued, with a varying degree of rigour, 

that metastable states can be obtained by analytic extension of the free energy 

function of the stable homogeneous region into the metastable region6. A more 

practical limitation of the classical theory comes from the fact that there seems to 

be no sharp distinction as one crosses into the unstable region from the metastable 

one. In fact, as supersaturation is increased the rate of nucleation is greatly 

enhanced, up to the point that it is experimentally impossible to observe the 

spinodal line on any reasonable experimental time scale7. Classical theory predicts 

that the nucleating barrier approaches zero as the spinodal line is approached, so 

that no difference exists between nucleation and spinodal decay8. In spite of 

these limitations there exists experimental results that indicate that a spinodal 

line can be indirectly established, by measurements of light scattering intensity on 

binary mixtures with varying concentrations away from the instability regionQ1lO. 

The curve fitting to the empirical results can be adequately adjusted by defining 

a spinodal temperature which is a function of the concentration and which, in 

addition, possesses the behavior expected on theoretical grounds (see ref. 10 for 

details). 

Although we have chosen a binary mixture as the prototype system to be 

studied, it is obvious that our conclusion will equally apply to a lattice gas or a 

binary alloy, which normally satisfy the conditions of the canonical ensemble. On 

the other hand the Ising model in which the number of spins up and down are fixed 

permanently will also fall into this category, although this situation can hardly be 

encountered in real magnetic systems. 

This paper is arranged as follows: In Section 2 we will review the general 

conditions for criticality in the context of the Landau-Ginzburg-Wilson theory. In 

Section 3 we extend these conditions to the canonical ensemble and derive the 
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phase diagram plus other relevant thermodynamical quantities. In Section 4 we 

introduce a general scaling hypothesis and compare it with the results of Section 

3. In section 5 we analize the relevance of our theory to experimental results and 

consider the effect of gravity and walls on our conclusions. Section 6 contains a 

sumrnary and some final remarks. 

2. Criticality and the Landau-Ginzburg- Wilson Theory 

The Landau-Ginzburg-Wilson theory assumes that dose to a critica1 point the 

grand canonical partition function of a system is given by a functional integral of 

the form 

Z = Dd exp{-H[4]/kT) J 
where 

X 
H[#]/kgT = d d x { F  + f b2 + -4d4 - p 4 )  

where as usual we assume 

t = rO(T - To)/To , and X > O 

with To being the critica1 temperature, X and r0 some system dependent constant 

kg is the Boltzmann constant and +, in the binary mixture case, measures the devi- 

ations from the critica1 concentrations and /I is the change of the chemical potential 

difference from its critica1 valiie. As is well known, the mean field approximation 

(saddle point) consists of expanding the integrand about the minimum of H[+]. 

Let +mf denote such minimum. Then clearly it must satisfy 

The requirement for a minimum is that 

for any arbitrary function ~(x). This latter condition will be satisfied provided 

the operator 
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has a positive spectrum. To investigate this requirement let us assume that the 

system is enclosed in a cube of volume V and that the eigenfunctions of H satisfy 

non-wetting boundary conditions at the walls" 

where fi is the normal vector to the walls. 

Let {E%) be the spectrum of H and {qn) the corresponding eigenfunctions. 

Let us now state the necessary and sufficient conditions for criticality. 

i) The first (necessary) condition for criticality is that the lowest lying eigen- 

value of H, €0, vanishes for some values of the externa1 fields (t and p) .  It is a 

straightforward exercise to show that this condition is equivalent to a divergent 

correlation length (. In fact, it can be shown in the mean field approximation 

that tP2 is proportional to co. Equivalently the generalized susceptibility, de- 

fined as 

~ ( 2 3 ' )  =< (4(+ < 4 >)(4(2)-  < 4 >) >, (9) 

where < ... > denotes statistical average, satisfies the following equation 

whose solution can be expressed in terms of the spectrum of H as f0110ws 

Thus the vanishing of €0 guarantees the divergence of the susceptibility. 

ii) The second condition for criticality is that 

To show this let us note that EO = O implies that the second functional deriva- 

tive in the "direction" of @c,(x) in function space is zero. Therefore in order to 

have a minimum of H at 4,f(z), the third functional derivative at  4,f in the 

direction of qO(x)  must also vanish, since otherwise dmf would be an "inflec- 

tion" point of the functional H[#]. Needless to say that the fourth functional 
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derivative is X and consequently positive along a11 directions in function space. 

Although stated in a different language, conditions (i) and (ii) were stated by 

van der Waals in the last century. 

iii) There is one further condition for criticality which requires 4,, to be the 

absolute minimum of H[$], so that it corresponds to a true equilibrium state 

of the system. If $,r satisfies condition (i) and (iii) but not (iii), it will 

represent a metastable state5 which would decay eventually into the absolute 

minimum of H [4]. 
The restrictions imposed by conditions (i) and (ii) in the case of a constant 

solution of Eq.(5) such that drnf(x) = 4o are 

Since in this case qo(z)  is constant, the solution to Eqs. (13) is t = O = p. This 

is the well-known Landau solution. It is important to emphasize two known facts: 

first we note that for p # O the system cannot become critical. Moreover if t < 0 
and ,u + O the transition is first order12. 

3. T h e  Landau  theory a n d  criticality in  t h e  canonical ensemble 

Let us assume that our system is sealed inside a box with edges L,, Ly L,. 

The constraint of having a total fixed numbers of particles of each species requires 

where c is the fixed global concentration. In this section we will not require C = 0, 

but only c small to guarantee the validity of Eq. (4). Let us assume that the 

corresponding canonical partition function, Z,, is given by the Landau-Ginzburg- 

Wilson functional integral but subject to the ~onstraint '~9'~ Eq. (14) so that 

where H [ d ]  is given by Eq. (4) but contains no p term. In this case the value of 

p will be determined by c, as we will see below. We will now extend the Landau 

mean field approximation to Eq. (15). It is possible to exponentiate the 6 function 
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and absorb it into H [ 4 ]  but at  this point this is not necessary. Let us find the 

minima of H  but now subject to the constraint Eq. (14). This is readily performed 

by introducing a Lagrange multiplier h and extremizing 

which yields 
X v2q5 = tq5 + -q53 - h. 
6 

Clearly the value of h must now be adjusted so that Eq. (14) is satisfied. Let 

4,f(x) be a solution of Eqs. (17) and (14). The sufficient condition for a minimum 

of the constrained problem is that the spectrum of the operator H, as given by Eq. 

(7),  be positive. However we will show below that this condition is not necessary. 

To investigate this problem further, as well as the conditions for criticality, let us 

assume that t > O. Then we immediately conclude that a solution to Eqs. (17) 

and (14) is c, with h given by 

Moreover, that this solution is a minimum of Eq. (16) can be easily seen by noting 

that the spectrum of the corresponding operitor fi is in this case 

with n,, ny, n, being non-negative integers and, consequently, it is always positive. 

Furthermore, it is also clear that dmf  c is the absolute minimum and coincides 

with the solution of the unconstrained problem if the chemical potential is chosen 

to be h. Let us next consider the case t < O. Let us assume L, > Ly > Lz and 

define 

If t *  < t < O the solution dmf c is still a minimum of the constrained functional 

H [ 4 ]  satisfying Eq. (14). To prove this assertion let us note that any arbitrary 
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variation of 0 about &f c can be expressed in terms of the complete set of 

eigenfunctions of the corresponding self-adjoint operator H as follows: 

where the eigenfunctions 9,,,,,,,, are products of sines and cosines such as to 

satisfy the boundary conditions Eq. (8). If we impose that 64(x) must satisfy. 

Eq.(14) we conclude that Co,o,o = 0, indicating that spatially constant are pre- 

cluded by the constraint. Consequently if we insert the expression for 64 into Eq. 

(6) we find that 4,f - c ís índeed a minimum of H [ 4 ]  for O > t > t* 15. At t = t* 

we have that the next lowest lying eigenvalue vanishes and, therefore, the first 

condition for criticality is satisfied. Let us next consider the second condition, Eq. 

(12). It is obvious that the corresponding eigenfunction 

2 112 Tz  
*1,0,0 = (LÈ) sin - 

L, 

satisfies Eq. (12) since it is an antisymmetric function of x in the range 1x1 < 
Lz/2. Therefore we may conclude that t i  corresponds to a new critica1 point16. 

This result constrasts with the unconstrained case in which criticality requires 

c = O as dictated by Eq. (12). The main difference in these two case stems 

form the fact that the lowest lying eigenfunction of H is symmetric (constant) for 

the unconstrained case and antisymmetric in the constrained case, so that when 

inserted into Eq. (12) they yield c = O and c arbitrary respectively. 

It is instructive to analyse the above results from a somewhat different per- 

spective. Let is suppose that we want a solution of Eq. (17) which only depends 

on the coordinate x. It is obvious that the resulting equation admits a mechanical 

analogy. In fact it corresponds to a point particle of unit mass whose coordinate 

is 4, x being the ficticious time. It moves in a potential given by 

The initial and final point conditions are 
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Furthermore the average "position" must be equal to c, to comply with Eq. (14). 

For t > O the potential V(4)  is concave and therefore the only solution is 4 4  r c. 

For t < O the choice c is also a solution. In Fig. 2 we have schematically 

depicted the potential V(4)  assuming that t < -Xc2/2 so that r$,f E c corresponds 

to the relative minimum of V and h = tc + Xc3/6. It is interesting to search 

for possible coordinate-dependent solutions which oscillate about the equilibrium 

point, such that their mean position satisfies Eq. (14). It is evident from fig. 2 

that such a solution will exist and will be a small oscillation about c with its period 

being 2L,. In the harmonic approximation this requires 

Fig. 2  - Schematic plot of the potential V ( 4 )  as a function of 9 for t < Ac2/2 .  
The trajectory represents the mean field profile as a function of z. The value 
of h is determined by Eq. (18). The relative minimum corresponds to  a given 
value of c. The initial and final points 4(f L / 2 )  are c + a and c - a' respectively. 
In the harmonic approximation, or for small a, the period of osciiiation is given 
by Eq. ( 2 5 ) .  For larger a the oscillations are anharmonic and they wiU not be 
antisymmetric, 4(x) = -d(-z), unless c = O. Clearly the period of osciiiation 
is a monotonic function of a. 

But this is precisely the condition defined t* in Eq. (20). Moreover, we observe 

that for t > t* and h given by Eq. (18) no such solution exists, since the period 

of oscillation for the potential V has a minimum given by the last term in Eq. 
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(25) and then increases monotonically with the amplitude. It is interesting also to 

note that for t 5 t i  we expect that there are two possible solutions, which develop 

continuously from the solution C$,, r c and are given by 

with a going to O as t  -t t* from below. It is obvious that d:)(z) satisfy the 

constraint Eq. (14) and both yield the same value for H [ d ] .  It is important to 

observe that for t < t i ,  the mean field profiles are antisymmetric about their mean 

value c. Thus we conclude that parity or reflection symmetry is spontaneously 

broken17. For not so small values of t  - t i ,  it is evident that the oscillations will 

not be harmonic and, furthermore, except for the special case c = 0, they will not 

be even antisymmetric about x = O. Thus we conclude that by increasing t* -t  the 

nodal plane of drnf (x) - c, which originates at  x = O for t  = t* ,  is then displaced 

towards z ',O depending upon the sign of c. (For c = O the nodal plane always 

remains at z = O for any t  < t * ) .  More precisely the resulting solutions will have 

the following form . 

4!$(z) = t + ~ ( I x ) ,  (27) 

where 

and 

Let us examine the behavior of ~ ( z )  and c as a function of 6t = t  - t i  2 O. Let 

a and a' be the initial and final values of ~ ( 2 ) .  (see fig. 2). That is, let us assume 

where the prime denotes derivative. The integration of Eq. (17) yields 
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where 

In a similar fashion we can rewrite Eq. (28) as follows: 

These two equations determine a and L as a function of 6t  and C. Their exact 

solution is too complicated, involving combinations of elliptic functions. It is 

possible, however, to obtain the solution in the limit 6t + 0, but it turns out to be 

simpler to deal with the anharmonic terms in Eq. (17) using perturbation theory. 

The details of this calculation are given in appendix A.1. Here we quote the final 

relationship 

This result is somewhat surprising. It indicates that no real solution of Eqs. 

(31) and (33) exists unless 

> c2. (35) 

Since we are primarily interested in the limit of large L, we conclude that in spite 

of the fact that conditions (i) and (ii) are satisfied no real solution of Eqs. (17) 

and (14) exists beyond the harmonic approximation, except for small values of C. 

Consequently there is no critica1 instability at t* for c not satisfying Eq. (35). In 

spite of this result we will show below that it is possible to obtain a real solution 

for finite values of c. To see how this comes about, we must recall that the validity 

of Eq. (4) is limited to small c and that for larger values other powers of 4 (43, d6 

etc) can no longer be ignored in the expression for H[4]. We will analyze this 

point below but for the time being, let us assume c is smali so that the solution 

exists, and proceed to study some of its physical properties. The extension of these 

conclusions to the case of finite c is straighforward. 

It is interesting to calculate the corresponding value of h for t < t * .  We showed 

above that h is given by Eq. (29). For t - t i  = 6t < O we recall Eq. (28) and 
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integrate Eq. (17). 

Now expanding the cubic factor and retaining terms up to order we obtain to 

order a2 

with a2 given by Eq. (34).  The physical interpretation of h for t 2 t* is clear, as 

it corresponds to the chernical potential difference. For t < t*, where the mean 

field order parameter becomes space-dependent, the meaning of h is not obvious. 

Let us nex calculate the generalized susceptibility 

where < ... >, denotes canonical ensernble statistical average. This quantity is 

measured by light scattering experiments. Let us denote by ~ ( x ,  z') the uncon- 

strained (grand canonical) susceptibility. It is well known that  in the mean field 

approximation x satisfies Eq. (10) and that the solution can be written as in Eq. 

(11). In the case of the constrained system the corresponding canonical suscepti- 

bility can be expressed in terms of the grand canonical one as follows14 : 

and xc ( s ,  s') satisfies the following equation 

Of course, it is understood that  the function dmf (s )  is the same in both cases. 

These results are derived in ref. (14). Thus if we assume t > t* then dmf = C and 

-4 

where k = (7rnz/L,, 7rny/Ly, rn,/L,) with nz ,  ny ,  n, = 0,1, Z... We note that  xo 
-4 

is not singular a t  k = 0 as t -t O, írrespective of the value of c, indicating that  

t = O is not a critica1 point. Moreover we note that for 
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and 

the susceptibility diverges as ( t  - t*)-'. Thus we infer that the exponent 7 is unity 

as for the unconstrained case. In addition if we identify 

with ( being the correlation length, we also obtain that E diverges when t + t* 

like ( t  - t*)-" with v = 1/2. 

Let us finally calculate the specific heat at constant concentration. To this 

end we will first evaluate the Gibbs free energy above and below t* .  For t > t* we 

obtain 

and therefore the corresponding contribution to the specific heat is zero. For t < t* 

we find 

where a is given by Eq. (34). Consequently the specific heat for t < t* is given by 

As for the unconstrained case, the specific heat has a finite discontinuity and the 

exponent a = 0. 

In conclusion, we have found that the critica1 exponents for the constrained 

(canonical) system coincide with those of the critica1 unconstrained (grand canon- 

ical) system. The remarkable new feature is the fact that the nature of the transi- 

tion is changed when we use the canonical ensemble. In this case we have seen that 

a critica1 l he  is always present for some range of the values of the concentrations 

in the mixture18. This result strongly contrasts with the usual grand canonical 

case in which the transition (at the spinodal line) is discontinuous except for a 

single point at which it becomes second order. 
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We have mentioned before that the solution dmf(z)  we analyzed above cor- 

responds to a relative minimum of the free energy functional. In fact it is well 

known that at the coexistence temperature 

the system undergoes a first order phase transition. 

system becomes inhomogeneous and it is not difficult 

At this temperature the 

to derive an approximate 

expression for the corresponding concentration profile in the case t l ~ ;  >> 1. For 

a container of edges L, > Ly > L,, and if the concentration c, is not close to one 

or zero, the minimal free energy profile corresponds to two distinct homogeneous 

phases separated by a flat interfacel9 perpendicular to L, whose thickness is t-'I2. 

An approximate expression for 4, (x) is the f o l l ~ w i n ~ ~ ~  

where the value of xo is fixed by the constraint Eq.(14) and deleted terms are of 

higher order in (L,fi)-'. In this case the parameter h = O. It is obvious that the 

mirror image of $q(x) about the midplane x = LZ/2 will also be a solution. 

In conclusion, we have found that in the mean field approximation the cmon- 

ical ensemble yields the same coexistence curve as the grand canonical, but the 

spinodal line is changed into a line of (pseudo) critica1 points characterized by the 

same singular critica1 behavior as the critica1 point at T,. 

Let us recall that these conclusions are valid provided the Eq. (35) is valid. 

In order to extend these results to finite c let us first note that although it was 

implicit in the derivations of section 2, the average concentration of one com- 

ponent in the mixture must be chosen precisely a t  its critical value, Co, for the 

unconstrained system to become criticalZ1. The Landau theory will describe the 

system properly, provided that local deviations of the concentration from Co re- 

main small. As a consequence of our results we may then inquire on how could the 

Landau-Ginzburg-Wilson theory be modified, to account for the fact that in the 

constrained system there is not a unique value of C yielding a critica1 instability. 
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For C # C0 such extension can be obtained by postulating that the functional H 

in Eq. (4) should be replaced by 

where 

- , g = g(C, T) and A = A(T, C) > O . (49) 
'='(C)( To(C) 

In this expression To(C) is the new "critica1 temperature" corresponding to this 

value of C, and the parameters g and X have a mild temperature dependence which 

we ignore. In addition, the order parameter q5 measures local deviations from the 

concentrations C and satisfies (1 /V)  j" q5dx = O. Let us note that g(Co, T) = O, so 

as to guarantee thermodynamical stability for the unconstrained critica1 point22. 

For the constrained system g # O does not imply instability because of Eq. (14). 

The mean field analysis of Eq. (49) for C # C. is quite similar to that of section 

3. There are, however, some important point worth noting. In the first place it is 

easily shown that Eq. (34) is replaced by 

In addition it is also clear that because of the gq53 term, the profile interface will 

be displaced as one decreases the temperature below T*(C). Furthermore, we can 

also establish the shift in critica1 temperature in the vicinity of Cl. h effect, if 

we consider C = Ci + c then the shifted critica1 temperature T*(C) is related to 

T*(Ci) as follows 

Consequently the spinodal (this line of critica1 points in the (T, C) plane) will not 

be symmetric about C = Co. 

4. Scaling and criticality 

It has been firmly established that in the vicinity of the critica1 point the sin- 

gular part of the free energy satisfies a general scaling form. With the purpose 
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of comparing canonical and grand canonical ensembles let us focus our attention 

on the Helmholtz free energy. It is important to note that even though the Gibbs 

free energy is the "naturaln thermodynamical potential to deal with in the grand 

canonical ensemble, it is always possible to construct the corresponding Helmholtz 

potential, provided the relationship between the order parameter and its conjugate 

field is invertible. Moreover, it is easily shown that if the Gibbs function is homo- 

genenous then the corresponding Helmholtz potential will have a similar property. 

For the unconstrained system the Helmholtz free energy has the following general 

form 

F = t2-a f (ct-O, LtV), (52) 

where a,P and v are the usual exponents and f is a universal function. We have 

also assumed that the system is enclosed in a box of edge L so that, according 

to finite size scaling hypothesisZ3, the scaling variable LtY must me also present. 

In this case t involves Tc(L) which strictly speaking is not a critica1 temperature 

unless L -t oo (more appropriately a pseudocritical temperature for this case). For 

finite but large L, it is possible to identify such Tc(L) 24. We shall also assume that 

for the constrained system the Helmholtz free energy has a similar homogeneity 

form. However, the function f will be different in this case, to account for the 

fact that there is a critica1 line in the t ,  c plane rather than a single isolated point 

as in the former case (stricktly speaking this refers to the continuation of the free 

energy into the metastable regime5). The critica1 manifold should then correspond 

to a line of singularities of the function f .  If a scaling form for f is assumed, we 

then conclude that the critica1 temperature t* is a homogeneous function of c and 

L of the form 

t* = -- I g ( c d J U ) ,  
L'IV (53) 

with g(x) xl/P for x -+ oo. (The minus sign is inserted for convenience and 

there should be two scale system-dependent factors for t* and c u I Y  which we 

have arbitrarily set equal to one). It is easy to corroborate in the mean field 
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approximation that these conditions are satisfied. In fact Eq. (20) can be rewritten 

so that the resulting function g is given by 

and clearly it complies with the asymptotic behavior stated a b ~ v e ~ ~ .  This simple 

result can be compared with some experimental data in which the singular temper- 

ature for sealed binary mixtures in a range of concentrations has been determined. 

Although these points (line) could be regarded as belonging to the spinodal curve, 

according to our theory they should correspond to a line of pseudo critical points. 

In fig. (3) we reproduce the data for isobutyric acid in water taken by Chu et allO; 

the fitted curve corresponds to /3 0.3 rather that the mean field value 0.5. 

We must bear in mind that the expression for g(z) given by Eq. (57) should 

only be valid for small values of c. This restriction was implicit in the expression 

for the free energy given by E q .  (4). For c not so small, the form of g(z) as 

indicated by Eq. (51) will not necessarily be syrnrnetric about c = 0. 

5. Theory and experiment 

In the first place we must consider the problem of nucleation. As is well 

knows, its rapid increase with the degree of supersaturation implies that the critica1 

spinodal line will not be observable. In spite of this, we may argue that the effect 

of this critical point is to influence the thermodynamical behavior of the system in 

regions of metastability, where nucieation is negligible, or even absolute stability, 

by going above the coexistence line. Let us establish the conditions for which this 

extrapolation may be expected to hold. It is reasonable to assume that if, for a 

given c = C-  C. # O and temperature T ,  the associated correlation length is much 

larger that the average interatomic separation (say 3 A), then the critica1 point 

at T*(C) will have a strong effect on the thermodynamical functions. Accordingly 

for these values of c and T we must have 
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M O L E  FRACTION ISOBUTYRIC ACID 

Fig. 3 - We reproduce the experimental coexistence and cntical spinodal c w e s  
obtained by Chu et al. for Isobutyric acid in water. The solid line ia the coexb  
tence curve as determined by phase separation observations. The dashed c w e  
is indirectly determined by extrapolation of the light intensity and iinewidth 
measurements in the homogeneous eguilibrium regions. (see ref. 10). 

Let us choose for simplicity T to be the coexistence temperature Ti(C) .  Ob- 

viously at this point nucleation is unimportant. From mean field theory we know 

that T l ( C )  is given by Eq. (46). Thus we conclude that our assumption will hold 

where we assumed 

t = ' ( C ) ( T  - Tc)/Tc , 

with t-'I2 = to - 3 A and T, being the true critica1 temperature. These conditions 

are well satisfied by the experiments of B. Chu et a1I0. Below the coexistence line 

we also expect that if E q .  (56) is satisfied, critica1 behavior will be observed 

provided we stay above the cloud point. 

Another context in which the critica1 spinodal may have an important and 

nontrivial role is for spinodal decomposition. According to our results, below t * ( c )  

the system will become inhomogeneous with a concentration profile which evolves 

continuously from the homogeneous phase. These states represent metastable 
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inhomogeneous phase, and they can also nucleate to the absolute minimum free 

energy ~ o n f i ~ u r a t i o n ~ ~ .  We may then conjecture that a quenched homogeneous 

system below the spinodal line can be trapped by these metastable phases during 

its time evolution. Although this is only a speculation, it may have a relevant role 

in the scaling effect observed during the late stages of spinodal d e c ~ m ~ o s i t i o n ~ ~ .  

We will analyze this point in a future publication. 

It is important to emphasize that these results should contrast with those for 

a system with nonconserved order parameter, such as a liquid-gas transition at 

fixed chemical potential. In such a case the spinodal line is a line of discontin- 

uous instabilities whose singular nature has been studied in the grand canonical 

ensemble by other authors2'. It must be stressed, however, that for experiments 

near the liquid-gas transition, but at fixed density, the results derived should also 

applyg. 

Let us next focus our attention on another condition which will be encountered 

in most experimental setups. We have seen that sealed binary mixtures provide 

an ideal system to test the results mentioned above; however, many experiments 

with these systems are performed in the presence of a vapor phase. This fact can 

change the results expected above since, in such a case, the liquid mixture will not 

satisfy the constraint Eq. (14) by itself. Another important effect on these systems 

is produced by the gravitational field. For an unconstrained system gravity can 

be ignored by choosing mixtures of nearly the same density. In sealed systems the 

role of gravity will be twofold. In the first place it can unbalance the ordering of 

the eigenvalues of the operator H in Eq. (6). For example, let us assume that 

the container is a box of edges L, > Ly > L, and oriented so that its L, edge 

is perpendicular to the gravitational field2*. In a gravitationless enviroment and 

below t*, the fluid will separate into two regions of different concentrations with a 

separating interface perpendicular to the z axis. This was of course the conclusion 

of Eq. (26). However, in the presence of gravity, say along the y axis, the force 

exerted on the denser fluid towards the bottom of the container will force the inter- 

face to form parallel to the x axis. How the resulting concentration profile evolves 

as the temperature is lowered will depend on the relat,ive 'strengthn of these two 

475 



Miguel Calvo 

competing effects. In addition, gravity can produce another related effect. Let 

us assume that the system is oriented with L, vertical. If no gravitational force 

is present, we found in previous sections that below t* the mean field profile bi- 

furcates into two equally probable configurations. In the presence of gravity, and 

unless the fluid densities are identical, the configuration with the denser fluid at 

the bottom will be stable and strictly speaking there will be no transition. (This 

is similar to having an externa1 magnetic field in the case of an Ising spin system. 

The stable configuration corresponds to the spins oriented parallel along the field. 

In this case there is no phase transition). Of course these latter conclusions may 

be of only academic interest since nucleation will preclude the observation of the 

critical spinodal line. 

6. Summary and Final Conclusions 

We have seen that the behavior of systems with a conserved order parame- 

ter, such as binary mixtures or binary alloys, depends in their supersaturation 

metastable region, on the ensemble used to derive their spinodal instabilities. 

In the specific case of a binary mixture, we have that the spinodal line in the 

concentration-temperature plane corresponds to a line of discontinuous instabil- 

ities in the grand canonical ensemble, whereas it becomes a line of continuous 

instabilities or critica1 points in the canonical framework. This latter case cor- 

responds physically to sealed systems in which the overall concentration is not 

allowed to fluctuate. 

We have also shown that the critical exponents characterizing the singular 

thermodynamical behavior are identical to those of the standard critica1 point. 

Our analysis is based on the mean field approximation and we have ignored nu- 

cleation effects. Even though in the framework of the classical theory the droplet 

model predicts that the resulting instability, as the spinodal line is approached, is 

a continuous one, if the system satisfies the constraint of the canonical ensembleZg, 

the system will undergo a transition to the more stable inhomogeneous configura- 

tion in any reasonable laboratory time xa le  before the spinodal line is reached30. 

We argue, however, that the existence of this critica1 (or pseudocritical) spinodal 
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line has important physical effects on the metastable and truly stable homogeneous 

phases of these systems3'. The results of Chu et. al1° seem to confirm this hypoth- 

esis and further experiments, particularly in the metastable region, are certainly 

worthwhile to establish the validity of the above predictions. 
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Appendix A 1  

Let us solve Eq. (17) using perturbation t h e ~ r ~ ~ ~ .  Substituting Eq. (27) into 

Eq. (17) yields 

Let us consider a solution of the form: 

and for simplicity shift the interval to O 5 x 5 L. In this case 

ql(x) = acos wx (A-3) 

Substituting Eq. (A.2) into Eq. (A.l) we obtain 

and 

where 
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and ... stands for higher order terms in a .  Substituting Eq. (A.2) into Eq. (28) 

we derive 

Finally if we write t = t* + 6t and recall Eq. (25), we obtain from Eq. (A.4c) the 

desired relationship between a2 and 6t as 6t 4 O. 
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Resumo 

Analisamos as condições para instabilidades críticas no ensemble canônico, no 
contexto da aproximqão de campo médio para a integral funcional de Landau- 
Ginzburg-Wilson que descreve as propriedades de equilíbrio de um sistema com 
parâmetro de ordem conservado. Pela introdução de um vínculo na integral fun- 
cional para garantir a conservação global do parâmetro de ordem em um sistema 
fechado, concluímos que o diagrama de fase gran-canônico usual, obtido na apro- 
ximação de campo médio, é modificado na região super-saturada. Obtemos que a 
linha espinodal separando as regiões instável e metastável se torna uma linha de 
pontos críticos na qual o perfil do parâmetro de ordem varia continuamente com a 
temperatura. Os expoentes críticos que caracterizam esta linha são os mesmos que 
OS do ponto crítico usual. Esta conclusão está em contraste com o comportamento 
singular unilateral dos pontos finais dos ramos metastáveis do caso gran-canônico. 
Estes resultados são derivados desprezando nucleação, o qual fenômeno se espera 
tornar a observabilidade direta desta linha praticamente impossível, nesta região. 
Argumentamos no entanto que os efeitos de ponto crítico podem ser importantes 
na região metastável, ou mesmo na região estável antes que o aparecimento de 
nucleação forte se dê. Esta conclusão está em acordo qualitativo com alguns re- 
sultados experimentais de espalhamento de luz em misturas binárias e sistemas 
de um componente, próximo à transição líquido-gás. O efeito desta linha crítica 
sobre O problema de decomposição espinodal é brevemente discutido. 


