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Abstract We present a formal proof that the QCD ( ( U ( N c ) )  Migdal- 
Makeenko Loop Wave Equation has a self-avoiding fermionic string solution. 

Introduction 

We aim, in this note, to present a formal interacting string solution for the 

Migdal-Makeenko Loop Wave Equation for the colour group (U(Nc) (Ref. 1 and 

references therein) . 
Our main to01 to solve the Migdal-Makeenko Loop Wave Equation is based on 

the remark made in the section 1 of this note, where we address the problem of 

solving critica1 string wave equations by string functional integrals without making 

use of our general covariant procedure exposed in Refs. 1, 2. We thus apply the 

results of section 1 to present a string functional integral solution for the Migdal- 

Makeenko Loop Wave Equation for the colour group U(N,). 

1. The critical area-diffusion string wave equations 

Let us start this section by briefly reviewing our general procedure to write 
diffusion string wave. equations for bosonic non-critica1 strings2. The first step 

is by considering the following fixed area string propagator in Polyakov's string 
quantization framework. 

Here the string surface parameter domain is taken to be the rectangle D = 

{ ( a , ? )  ; -r 5 u 5 r ,  O 5 7 5 T ) .  The action Io(gab,  X p ,  p2 = O )  is the 
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Brink-Di Vecchia-Howe covariant action with a zero cosmological term and the 
covariant functional measures DC[gab]DC [ X F ]  are defined over all cylindrical string 

world sheets without holes and handles with the initial and final string configura- 
tions as unique non-trivial boundaries: i.e. Xp(o, O) = C'"; Xp(o, T) = CoUt. 

In order to write an area diffusion wave equation for Eq. (I), we exploited 

an identity which relates its area variation (the Mandelstam area derivative for 

strings) to functional variations on the conformal factor measure when one fixes 
the string diffeomorphism group in Eq. (1) by imposing the conformal gauge 

go6(u,?) = P ( ~ i 7 ) 6 a b  (see Refs. 1, 2). This procedure yields, thus, the following 
area diffusion string wave equation 

At this point a subtle difficulty appears when the theory described by Eq. (1) 
is at  its critica1 dimension D =: 26 since the conformal field p(a, r )  decouples from 

the theory, making it subtle to implement the fixed area constraint in Eq. (I) .  It is 

instructive to point out that for a cylinder surface without holes and handles with 
non trivial boundaries, the argument that the fixed area constraínt is simply fixing 
the modulus X of the (torus) conformal gauge gab(o, 7) = p(a, r )  ((da)a + X2 ( d ~ ) ' )  

is insufficient to cover the case of "string creationn from the vacuum as we will 

need in section 2. This is because in this case X = O and the string world sheet 

still has a non-zero area. Note that the topology of this string world sheet creation 

process is now a hemis~here which again makes impossible the use of the modulus 

as an area parameter. 

However, it makes sense to consider the limit of the parameter D = 26 directly 

in our string diffusion Eq. (2) which reproduces the usual critica1 string wave 

equations (Eq. (2) with D = 26 and p ( a , ~ )  = 1). 

In this short section we intend to show that the following critica1 string prop- 
agator: 

XP(a,  O )  = CF(c); , XP(a, A) = (o) 
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where the intrinsic string time parameter T is identified with the area difusion 
variable, satisfies the string critical diffusion wave equation. 

To show this simple result we evaluate the A - derivative of Eq. (3) by means 
of Leibnitz's rule 

where the surface average <>, is defines by the bosonic path-integral in Eq. (3). 
In order to translate the path integral relation Eq. (4) into an operator state- 

ment, we use the usual Heisenberg Commutation Relations for two-dimensional 
(20 )  free fields on D 

[llp(u, T), Xy(ul,  r ) ]  = i6(u - 0 ' ) 6 ~ ~  

and its associated Schrodinger representation for T = A 

a . 6 
n&, A) = lim ( - X ~ ( U ,  i ) )  = i- 

T+A a~ 8 c F t ( 0 )  

After substituting Eqs. (6)-(7) into Eq. (4) we obtain the desired result 

Let us point out that general string wave functionals (the Schrodinger repre- 

sentation for the theory's quantum states) may be formally expanded in terms of 
the eigenfunctions of the quantum string Hamiltonian (the string wave operator 
in Eq. (8)) 
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The functionals endowed with the (formal) inner product given by 

constitute a Hilbert space where the string La~lacian -A, is formally a Hermitean 
operator. 

It is worth remarking that an explicit expression for the Green's Function 

of the string Laplacean in terms of the cylindrical string propagator Eq. (3) may 

be easily obtained. 

In order to deduce this expression we integrate both sides of Eq. (8) with 

respect to the A-variable. Considering now the Asymptotic Behaviors 

lim $[coUt,  C'", A] = bF(coUt - C'") 
A+O 

(13) 

we obtain the relationship 

leading thus to the following identity 

2. A four  coupling Fermion o n  a self-interacting Bosonic R a n d o m  sur-  

face a s  solution of QCD(U(Nc))  Migdal-Makeeko Loop Equa t ion  

Let us start this section by considering the (non-renormalized) Migdal- 

Makeenko Loop Equation satisfied by the Quantum Wilson Loop in the form 

of Ref. 3 for the colour group U(Nc) 
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The Quantum Wilson Loop is given by 

As usual, A,(s) denotes the usual U(N)  colour Yang-Milss field which pos- 
sesses an additional, not yet specified intrinsic global "Flavor" group O ( M )  rep- 

resented by matrix indices ( k , l ) .  The average <> is given by the U(N) - colour 

Yang - Milss field theory. 

A useful remark concerning Eq. (16) is that  trivial loop self-intersect points 
(X,(õ) = Xp(al) with a # a') still contribute to the right - hand side (see Ref. 1 
- Appendix A). 

Let us consider the following critica1 non-linear interacting Fermionic String 
theory first considered in Ref. 4 

The notation is as follows: the string vector position is described by the 2D- 
fields Xp(a, c) with the Dirichlet boundary condition X,(a, A) = Cx(-,),x(,); i.e., 

the surface S = { X P ( a , ~ ) ,  -a 5 a 5 a, 0 5 c _< A )  has as unique boundary 

the fized Loop Cx(-n)x(n) of Eq. (16). The surface orientation tensor where it is 
defined is given by 

with h = det{hab) 

intersecting lines of 
and hab(a , r )  = aaXpabXp. Note that  S possesses self- 

the form X , ( ~ , T )  = Xp(a',rl) with a # a' and T = TI 

(see ref.1 ) and around these lines Xp(a , r )  (and consequently T P Y ( s ( a , ~ ) )  is a 

a-multivalued function. Additionally we have introduced a set of single-valued 

intrinsic Majorana 2D-spinors on the surface domain parameter D = { ( a , ~ ) ,  O I 
5 A; -r 5 o 5 r ) .  They are choosen to belong to a real representation of 

451 
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the flavor group SU(2) 8 SU(3) F;: O(22) since for this group we have cancelled 

exactly the theory's conformal anomaly (26=4+22), which in turn leads to the 

vanishing of the kinetic term associated to the conformal factor p(a, c) (see Ref. 

1). We further impose as a boundary condition on these Fermions the vanishing 

of the Fermion energy - tensor projected on the Loop Cx(-,),x(,). Let us point 
out that a bilinear term of the form ($(k)$(k)) in the interaction action as con- 

sidered earlier in Ref. 1 should be ruled out in Eq. (26), by our requirement of 

the theory's Weil symmetry a t  the classical .levei. Let us point out that the Weil 

symmetry makes sense to speak in conformal anomaly in our theory Eq. (16) 
which preservation a t  quantum leve1 by its turn will determine the string flavor 

group to be Weinberg-Salam group SU(2) 8 SU(3) N O(22) (see ref.1). 

Associated to the non-linear string's theory Eq.(18) we consider the following 

Fermionic propagator for a fized surface 

The basic idea of our string solution for QCD (U(N, ) )  is a technical improve- 

ment of Ref. 1 and consists in showing that the surface averaged propagator Eq. 

(19) 

< W k L [ C ~ ( - r ) ~ ( r ) ,  Xp(u,r), A] > s =  Dkt(Cx(-n)x(n)> A) ,  

when integrated with respect to the A-parameter as in Eq. (15), now satisfies the 

full U ( N , )  non-linear Migdal-Makeenko Loop Equation (16) instead of the more 

restrictive Loop equations associated to the T'Hooft limit Nc -+ 00. 

The surface average <>, is defined by the free bosonic action piece of Eq. (18) 

as in section 1. In this context we consider $ke(Cx(-,)x(,), A) as the non-linear 

string propagator describing the "creation" of the Loop Cx(-,)x(,) = CoUt from 

the string vacuum, which is represented here by a "collapsed" point - like string 

initial configuration cin {x) (x denotes an arbitrary point of the surface which 

may be considered as such initial string configuration). 
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Let us thus, evaluate the A-derivative of g(Cx(-,)x(,),A) 

The free Bosonic term in the right-hand ised of Eq. (20) leads to the string 

Laplacean as in Eq. (4) of section 1. The free Fermion term 

vanishes as a consequence of our imposed vanished energy - momentum tensor 

boundary conditions on the intrinsic Fermion field. The evaluation of the more 
subtle boundary limit on 0-term requires explicitly that the surface { X p ( a , r ) }  

does not possesses self-intersections of the type XP(a,  r )  = XP(al ,  r') with T # r' 
as we showed in Ref. 1 - Appendix B. This condition means that the surface 

{X,(a, r ) )  does not have holes and handles but only boundaries with non-trivial 

topology. The result of this boundary limit evaluation is given explicitly by the 

expression below (Ref. 1 - Appendix B) . 

dXf i (a )  dXP(af)  x-.- 
da da' 

p = l  

dX,(a) dX'l(ãl)  
= P [L do 1; do'dD) (X,(a) - XP (o ' )  - . -- 

d5' 
X 

da 
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It is worth pointing out that we have used only the factorization of the 

Fermionic propagator Eq. (19) and not of the bosonic functional measure as 
in our earlier studyl 

= 5 [/ ( n d $ ( ~ ,  r)) exp {i IA d7 J u  dt(h(7aan)>l*)(C>r)}  
p=1 -*<c<a O -7r 

0<7<A 

WPP [Cx('T)x(u) XP(0i 8 7 AI = 1 (23) 

By imposing the identification g 2 ~ L  = P between the QCD ( U ( N , ) )  gauge 

coupling constant and our non linear string theory described by Eq. (3) we obtain 
the identification between the QCD ( U ( N , ) )  Wilson Loop Eq. (17) and the surface 

averaged Fermion Propagator Eq. (19) 
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The above equation is the main result of this note and generalizes to the case 

of U(N,) colour group our previous studies made for the t'Hooft limit of Ref. 1. 

Finally we remark that by considering an ultra-violet cut-off on the space- 
time, IAXP(a,r)/ 2 l / A ,  our proposed self-avoiding string theory Eq. (18) in 

the case of non dynamical 2D-Fermions (< ($k*k >= p = constant) produces 

the extrinsic string with the topological invariant of string world - sheet self - 
intersection number as an effective string theory for the proposed QCD string as 

conjectured in the first Ref. 5 (see ref. 6 for this study). 
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Resumo 

Apresentamos uma solução do tipo de cordas auto-repulsoras com uma estru- 
tura Fermiônica como solução formal da  Equação Migdal-Makeenko associada a 
Cromodinâmica Quântica com grupo de simetria U(Nc). 


