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Abstract A method, recently proposed to quantize velocity-power forces
F=—-ai", n>1integer, a> 0, isextended to quantize theforce Fy; =
—<«r | 3 |*1 i (dissipative for even and odd n) and its three-dimensional
form Fy3 = —av™ lv. The Hamilton operator thus obtained is dissipative
for all positive integer n, i.e. the probability to find the particle in the
original one-particle state decreases in time when friction is switched on.
The quantization o Fg3 is- with analogous results - also discussed for the
motion d a charged particle in a magnetic field, as an example where the
canonical momentum p. d the conservativesystem (a= O isdifferent from
the mechanical momentum mv d the particle. Possible connectionsto the
optical model and dissipative nuclear reactions are considered.

A Introduction

The quantization of the motion of a (point-like) particle with mass m under

the influence o a velocity-power force
F=-ai", a>Q n>0integer (1a)

and possibly other, conservativeforceswhich - unlike F' - have a scalar potential
V(z) isan old problem of quantum physics. It has been studied theoretically since
about haf a century ago, in particular for a linearly damped (n = 1) harmonic
oscillator!. The principal method is canonical quantization, where one must find a
Lagrangefunction o the classical equation of motion and then quantize the canon-
ica momentum and the Hamilton function obtained from the Lagrangian. The
problems are that aclassical (normally not unique) Lagrangefunction for an equa-~
tion of motion with the force (l1a) can be found only by means o an integrating
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Quantization of dissipative velocity-power forces

function and is different from the difference T — V between the kinetic and poten-
tial energy of the particle?. Correspondingly, the Hamilton function is, at least for
a # 0, not the energy of the particle®® and its physical interpretation not obvious.
E.g. the Caldirola-Kanai Hamiltonian* appears to describe a harmonic oscillator
with a time-dependent mass?5 rather than a damped oscillator and (when inter-
preted as the Hamiltonian o a damped oscillator) leads to contradictions with
the uncertainty principle for large times t. Difficultieswith the energy and the
uncertainty principle appear also when Bateman’s dual Hamiltonianis quantized®.
We mention that classical Hamilton functions exist and have been considered for
guantization which do not correspond with the energy even in the limit « — 0.
An example is H = i: + az for the equation of motion #+ a% = 0 8. (The reason
for considering it was that the corresponding Lagrange function does not depend
explicitly on time.) However one cannot expect the resulting Hamilton operator
to produce physical wave functions of the damped quantal (quantized classical)
system3.

For a force quadratic in i:, canonical quantization of one classical Hamilton
function can lead to different Hamilton operators in consequence of ordering prob-
lems for the operators p and = 78, Apparently these problems can be overcome
if one requires that Ehrenfest’s theorems be fulfilled. But still, for a # 0, the
Hamilton function is not the energy, and contradictions with the uncertainty prin-
ciple occur, now for large values of x &. Similar problems must be expected for
velocity-power forces with higher exponents n.

Also nonlinear Schrodinger equations have been considered among the at-
tempts of quantization. We mention only Kostin’s Schrédinger-Langevin equation
3910 which is based on complex and generalized Hamilton-Jacobi formalisms, but
has also been found by stochastic quantization!l. A problem isthat the superpo-
sition principle is violated.

Recently we proposed a new quantization!? for equations of motion involving
the force (1a). The principal idea (and differenceto canonical quantization) is to
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quantize not (oneof) the mathematically correct Hamilton functions of the entire
system, but the energy

E =)o+ AE (lb)
Xo :%ma’cz +V(2) (1e)
AFE :a/ z"dr (14)

and to use the quantization rules o the corresponding conservative system (CCS)
described by the Hamilton function ¥,. Throughout the course o this paper the
term CCS will denote the system under consideration for a r 0O, i.e. without the
forces (1a), (2a) or (2b), respectively. E.g. in section 3, CCS does not imply the
existence o a scalar potential V(x), but of a generalized potential as well as a
Lagrange and Hamilton function. The momentum to be quantized according to

pe — ?;% =p (1e)
is the canonicad momentum o the CCS. If the Hamilton function of the CCS
has the form (1c) the canonical momentum p. is identical with the mechanical
momentum mz o the particle, and quantization o A E - by x — p/m - yields the
non-Hermitian operator

AE — aH; = a/z (ii)n dz = a(h)n A (1f)

im 9z im /] 8zr1’

Apart from its simplicity, the method avoids the problems mentioned above,
and its physical results are apparently all consistent. The principal one is that the
Hamilton operator

H, = Hy T oH; (19)
with \
Kt 9%
0 2m dz? Vi) (k)

is dissipative for odd n = 1 and n = 3 while for even n = 2 and n = 4 it can
have stationary eigenstates stable in time. Thus aH; reproduces the property
that the force (la) is dissipative only for odd n, and (globally) conservative for
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even n. This result makes the quantization of F for even n - when F is not just
physically redlistic - o con;iderabletheoretical interest. Namely, it shows that for
non-dissipative velocity-power forces the quantization (1f) can lead to a quantum
theory with norm-conserved stable one-particle states.

These results motivate us to consider two extensions of the proposed quan-
tization which both refer to important situations in classical physics. First, a
velocity-power force - physically more realistic than F itself - is

ln—l

Fy=-ali i , a>0 , n>O0integer. (24)

It is dissipative for all n, and for odd n (and real £) corresponds to expression
(la). The quantization d F; and o its three-dimensional form

Fus = —ov™ v |, v=+(&%+§*+ %) (2b)

will be discussed in section 2. We will concentrate more on the general aspects
rather than on specific solutions. The result is a quantum interaction operator
whichisdissipativefor even and odd n. Secondly, in section 3 weshall consider the
quantization of F; for the motion of a charged particle in a magnetic field, as the
standard example where the canonical momentum p, o the CCSis different from
the mechanical momentum mv of the particle. In section 4 we show a relationship
between the decay rate of a quantum state and its kinetic energy and discuss
possible connections of our results to the optical model and dissipative collisions
in nuclear physics.

2. Quantization of the classical energy loss
2.1 Theoperator aHy

Theforce (2a) causes the energy loss
t z
AE; = a / |5 ! 2%dt = a / e (30)

Differently from formula (1d), the product a|  |*~! zdz in the integral (3a) is
always non-negative (a> 0,dt > 0). The force (2a) is dissipative and diminishes
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the energy ¥y o the particle monotonically (X, + AE  is constant in time and
AE; non-negative). The energy los AE, can be quantized analogously as AE. (p

and | p|*~! commute). The result is the non-Hermitian operator

oh (7. .2 oh |
AEd——wad:imn/ |p| Iﬁdx:i—r;;“’ln]

_ ah { (1£)"" . noad (35)

m? 22" neven

For odd n, the operator (3b) corresponds with Eq. (If). Since the momentum

operator pisself-adjoint (p= p*)itssquare p? = pp* isa positive (and self-adjoint)

operator, i.e.
(¢:0"9) =ll pg |*> 0, (3¢)
The operator | p| is defined as the positive square root of pp* 13-16
|p|=+Vpp" = +Vp? (3d)

and is self-adjoint and positive. The specral decomposition theorem provides an
explicit representation of | p | and | p |*1. Like | p |, the power | p |*~? is self-
adjoint and positive for all integer » > 0, since f(A) = +\//\—2”_1 is, for all red
arguments, a (real-valued) non-negative function. (A runsover the spectrum of p.)
These properties are sufficient for the purposes o this paper. Weshall not need the
explicit representation of | p |*~! and will not enter into details of the domains of

these operators which are dense in the Hilbert space of square-integrable functions.

2.2 Dissipative property of Hy

To discuss the operator aHy; we consider the Schrodinger equation

oYzt
1h——-—g—t——)— = Hy¥(z,t) (4a)
with the Hamilton operator
H,;, = Hp+ aH,. (4b)
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Hy is the conservative Hamilton operator (1h). From Egs. (4a) and (4b) one can

derive the modified continuity equation

1 AT AT A Tty (5a)
where
plz,t) = ¢ (2, t)p(z,t) (56)
and
i) = 5%(‘”*%‘”"&%"’) (5¢)

are the (one-dimensional) one-particle and current density. Integrating Eq. (5a)
along the real x-axisone finds

d +00 2 +00 . _

g [ ena = -2 [T et @ (69

n
oo m® J_

The integral on the RHS of Eq. (5d) is non-negative since | p |1

is a positive
operator. That thisintegral be zero would require that the (continuous and square-
integrable) solution 3 vanish identically on the real x-axis since +Vz? > 0 for
z? > 0 and the spectrum Of p is continuous. Thus, for nontrivial solutions ¢ the
integral on the RHS of Eqg. (5d) is positive, and for a > 0 on gets

d [*e
m / p(z,t)dz < 0. (5€)
—o0

The solutions of Egs. (4a) and (4b) decay in time, as a consequence of the inter-

action operator aHy. E.g., separable solutions
¥(z,t) = p(z)exp(Et/ih) (51)

cannot be stationary, and their energy eigenvalues E must have a negative imagi-
nary part (aHy is non-Hermitian). The quantum operator aHy is dissipative for
all integer (even and odd) n, in full correspondence with the properties of the
classical force (2a).

With regard to the operator aH; (1f), discussed in Ref. 12, the result (5€)

shows that aH; is dissipativefor all odd n > 1 and generalizes our former results
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for

n =1 and n = 3. The difference between oH; and aH; for even n is that

aH; contains the operator p, instead o | p | in «Hy, and only | p [, but not p,

is a positive operator. Therefore one cannot conclude, for even n, that aH; is

dissipative.

2.3 Interpretation of dissipation

To interpret Eq. (5€) the following comments are in order and refer also to the

corresponding result (11e) in three spatial dimensionswith (A # 0) or without

(A
0]

(if)
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E 0) magnetic field.

The dissipation o thesolutionsto Egs. (4a) and (4b) meansthat the probabil -
ity to find the particle in the original one-particle eigenstate to H,4 decreases
in time when friction is switched on. The particle, of course, does not disap-
pear, but due to the frictional interaction it loses energy to, or forms more
complicated many-particle states with, the particles d thefrictional medium.
(The latter states are not eigenstates of H,; which is an effective one-particle
Hamilton operator. It depends only on the momentum and position opera-
tors o the particle under consideration.) The non-Hermitian part aHy (cf.
comment (iii) below) takes into account both types of the above “inelastic
reactions” in a summary form (note that already in the classical force F; the
details o the interactions between the single particle and the many particles of
the dissipative medium have been lost) leading to a reduction o the probabil -
ity d the original one-particle state. That quantization does not yield a strict
one-particle theory appears also plausible from the qualitative argument that
friction arisesfom microscopic interactions between the single particle and the
many particles of the dissipative medium, and that the classical energy loss is
irreversible. Therefore it is not unlikely that the quantum mechanical motion
d the particle cannot be separated from the states o motion o the particles
in the frictional medium.

It is evident that from the dissipative Hamilton operators one will not obtain
the equations d motionfor the expectation vauesd the one-particleoperators

of momentum p and position X. To calculate these expectation valuesand their
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time derivatives one would need the full wave function into which the one-
particle state decays, or the complete Hamilton operators which have these
wave functions as eigenstates.

liii) The following analogy seems interesting and worth mentioning. Our quan-
tization leads to a dissipative operator aH; which corresponds qualitetively
to the absorptive imaginary potential in the empirical optica mode of nu-
clear physics!”18, For n = 1 the correspondence is amost complete, but the
optical potential depends at least on the radial coordinate r and on the en-
ergy (cf. section 4.2). The imaginary part of the optical potential describes
in asummary form the decay of the original one-nucleon state into “inelastic
channels” when the projectile nucleon transfers energy to the target nucleusor
when it forms more compliated states with the nucleons of the target, i.e., is
"absorbed” by the target. In such a sense, our Hamilton operator aHy sum-
marily describesthe "inelasticinteractions” o the particlewith the dissipative
medium, i.e. coupling d the particle motion to the internal degreesdf freedom

o thefrictional medium.

2.4 Remarks on the three-dimensional quantization

A particle, moving in three spatial dimensionsagainst the force (2b), losesthe
energy
x —
AE,;;;:a/ \/ﬁnlv-dxzo. (6a)

Replacing, in analogy with the rule (le), the three-dimensional canonical momen-
tum o the CCS, p. = mv, by

h
P~V =p (6b)

one could, in principle, try to quantize A Ey5. A more direct method is to replace
in the one-dimensional quantum operator «Hy (3b) the operator | p| by its three-

dimensional form
|p|=+Vp: = +V-#?A (6¢)
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where p? = —k?A is positive and self-adjoint. Then | p | and | p |*~! are positive
self-adjoint operators, and the operator
: -1
oHy = 2P ppois 2P TA" (64)
m”* 1 m= 1

can be discussed in an analogousway to aH, earlier on. Rewriting Egs. (4) and
(5) in three spatial dimensions, one sees hat aHys is dissipative for all integer

n =1 (Cf. Egs. (11a)-(11e) in the following section, setting A =)

3. Quantization in a magnetic fied
3.1 The gauge invariant inter action operator

As an examplewhere the canonical momentum p, o the CCSis different from
the mechanical momentum mv we shall quantize the dissipative force (2b) when
acting on anonrelativistic spinless particle, which carries an electrical charge ¢ and
movesin an electromagneticfield, E= —-VA4; —8A/3ct and B=V xA. (A0o,A)
is the four-vector of the electromagnetic potential. Let us write the Hamilton

operator in the form

Hep = Hop+ aHaa (7a)
where ‘
1 [h q 2
Hop=—|-V—-=A) +V +4q4 (7b)
2m \ i c

is the Hamiltonian of the CCS. As is well known in quantum mechanics, one can
obtain Hp4 either from the classical Hamilton function of a charged particle in an
electromagnetic fidd (plusV (x)), using the quantization rule (6b) and taking into

account the relation (7e), or from the Hamilton operator

p?
Hoy = o— + V(x) (7¢)

through the replacement
p="v_lty_ Iy (1d)
1 1 [
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and addition o the electric potential 4¢. The rule (7d), known as minimal cou-
pling between the canonical momentum o the particle and the electromagnetic
potential, reflects the classical relationship

P =mv + %A (7e)

between canonical and mechanical momentum of the particle.

To find the operator H,, it is amost suggesting itself, in the quantized op-
erator Hys, valid for A = 0, to replace the momentum operator p by Eq. (7d)
(correspondingly as Hyp4 is obtained from Hys). Thisyields

n—-1
ah h q.\?
=2 J(%v-£ 7
als ,—atlua = oo (59 - 2A) (71)
The operator (7f) preserves the gauge invariance d the Schrédinger equation
aY(x
2P0 _ B (e, (80)

in the usual sensel® that together with the electromagnetic potential

A—-A'=A+Vf (85)
19f

— Ag =Ao — —— 8

Ao o =Ao— % (8¢c)

the wave function (x, t) is transformed as well:
¥ — ¢ = Yexp(if /he) ' (8d)

where f (X,t) is ascalar, real gaugefunction.
For the proof we distinguish between even and odd n and define the operator

aii
Hyjp = — n-t [(h 2
Qligp Imnc(vf) ’ C(Vf) =4 (_}_V___ %(A+Vf)> (ga)
C(Vf) issdf-adjoint and positive, and (7f) can be written as
h
aHia = ii"m—ﬁcv(o)”-1 (9b)

(i) n>1, odd. Then

c(VH* T = [(?v - ‘cl(A + V.f))z]m ) (9¢)
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wherem = (n - 1)/2 is integer, and similarly as for Hp4 !° one finds directly

oh

aHdA”/" =imnC(Vf)"‘1G¢ = 2L o(Vhr3eC(0)ty = -
— .Lh;LGC(O)n—1¢ — GaHdA!/’ (Qd)
im
with
G = exp(igf /hc). (9¢)

(i) n > 2, even. Define the operator C by the relation

C(V)Gy = GCy , (9N

C = C(vf)t G lc(vi),Gl_ =G lc(VS)G. (99)

From Eq. (9g) and G~! = G* one sees that with C(Vf) also C is self-adjoint and
positive. Applying C(Vf) once moreto Eq. (9f), one gets

C(VF)*Gy = GC?y. (9h)
Comparing Eq. (9d), for n — 1= 2, with Eq. (9h), one concludes
C? = C(0)?, (9%)
independently o C(Vf) and then.
¢ = +C(0) (95)

since the self-adjoint, positive square root o C(0)? is unique. Eqgs. (9f) and (9j)
show the gauge invariancefor n = 2. For even n > 4, one obtainsfrom Egs. (9d),
(9f) and (9})

C(VI)* Gy = C(VS)"2GCy = GC(0)"2Cy = GC(0)* 'y (9k)

This completes the proof o the gauge invariance, for all positive integer n.
We emphasize that the gauge invariance o the Schrddinger equation (8a) is an

important argument in finding the interaction operator eH;4. When quantizing
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the classical energy loss (6@) in the presence of a magnetic field (instead of applying
the minimal coupling rule (7d) to the operator (6d)) one could arrive at a result

-1
X h 2 n
AEgz — m / v/ (TV - %A) (?v _ gA) - dx. (10)

This operator, as well as aHyz instead of aHz,4 in the Hamilton operator (7a),
would destroy the gauge invariance of the Schrddinger equation (8a).

Like the operators aH; and aHgys, also aH 4 is dissipative for a> 0 and all
positiveinteger n. Rewriting Eqgs. (5a)-(5¢) in three dimensions and replacing the
momentum operator by formula (7d}, one gets

n—1 n—1
w-i-divj(x,t):—% {w* -’iiv—gA ¢+¢‘?V—§A ¢*} (11a)
where
p(x,t) = ¥*(x,t)¥(x,1) (11d)
and
160,8) = S (v - 5vw) - Lagy. (11¢)

Integrating Eq. (11a) over an infinite volume V o surface S, excluding x = 0 by

an infinitesirnal sphere S, of radius r =| X |— 0 2 and supposing that

/j~df — 0, /j-dfo—>0 (11d)
s So 0

x| o0 r

(df and df, are infinitesimal surface elements of S and Sp, respectively) one finds

n—1
fnd = == *\/ -V -= dx. 11
dt Hel dt J_o pdx m® J_ o v (iv cA) v (11¢)

The RHS o Eq. (11e) is negative for a > 0, n = 1,2,3,... and nontrivial states
¥, since the operator C(0)*! is self-adjoint and positive. Le., the probability to
find the particle in the original one-particle state ¢ which solves the Schrddinger
equation with Hamiltonian (7a) decreasesin time. Thefrictional part aHa4 makes
the Hamiltonian H, 4 dissipative.
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3.2 Example

As a simple example we consider the Hamilton operatorH, 4 for V r Ao =0
and n = 1,3. The Schrodinger equation for separable states

¥(x,t) = p(x)exp(Et/ik) (12q)
n—1
— ("v—-‘ZA) +%§ (TV—EA)z o=Ep.  (12b)

For a= 0, suppose that ¢ = $(x) isasolution o Eq. (12b) with areal eigenvalue
E = E. Then, for a> 0, $(x) is aso a solution o Eg. (12b) with a complex

eigenvalue
E =EW E-fn? ifn=1 (12¢)
E=E® =k (1 - 3:,—?) if n=3. (12d)

The negative imaginary part o E(!) leads to a decay o the state (12a) in time.
TheeigenvalueE(3) makes the state (12a) decaying if Eis positive. Thiscondition
is fulfilled since (%V - 1A)? is a positive operator. For a homogeneous magnetic
field the eigenvalue problem (12b) witha = 0 has been solved in Refs. 20 and 21.

In the example above the x-dependent factor ¢ o the solution (12a) does not
depend on a. Only theeigenvaluesE = E(1) and E = E®) depend on a, and Egs.
(12¢) and (12d) show that the limit @ — 0 is smooth and yields the solution of
the CCS: EM — E and E®) — E. The solution (12a)becomes stationary in this

limit.
3.3 Uncertainty relation

As the canonical momentum of the CCS is quantized, no contradictions with
the uncertainty principle for the mechanical momentum will occur, and, for e # 0,
the mechanical momentum will satisfy the same uncertainty relation asfor a = 0.
Explicitly, since A depends on the coordinates only (and perhaps on time) these
commutation rules are

[Ak,zj]- =0 (13a)
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and
[Pk - gAkan]_ = p, z5]- = ?5@‘ (13b)
for 5,k = 1,2,3. They imply!'®
ApiAzy > %h (13¢)
and
Alpg - CgAk)Azk ~ AmupAzy > %h (13d)

for the products of the uncertainties Ap; or Amug with Azy.

4. Discussion and conclusions
4.1 Decay rates

From Eq. (12d) one observes that the ground state would not decay if its
energy E = Ey were equal to zero. Now, in a homogeneous magnetic field one
finds o = Mp | B | 20 where Mp = gh/2mc and an additive positive constant
corresponding to the kinetic energy o the particle's motion parallel tothe magnetic
field B has been neglected. Thus the value of £, isequal to the zero-point energy
of a harmonic oscillator of frequency w = q| B | /me indicating that the decay
of the ground state is a consequence of the non-vanishing zero-point energy, or of
the uncertainty principle.

To generalize this result for all n > 2 we rewrite Eq. (lle) in theform

nt+l
e ==(2) " e 1vi. (140
The expectation value
wt) = [ w (GL) T vaxspore (146

is positive and does not contain the time-dependence related with the decay

16 | = exp (— (%)T a [ te,.(t)dt). (140)
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Since C(0)2/2m is the positive and self-adjoint operator o the kinetic energy,
whether A vanishesor not it follows from the uncertai nty relation that €y (t) can
tend to zero only when the uncertainties Az, Ay and Az of the particle’s coordi-
nates tend to infinity. Therefore states o (or close to) lowest energy decay with
a minimum rate compatible with the uncertainty principle while states o higher
(kinetic) energies decay faster. For n = 1 all states decay with the same rate
exp(—2at/m). Note that this is equal to the decay rate o the kinetic energy of a
particle moving against a classical force F = —ai (without any other potential).

4.2 Friction in nuclear physics

In section 2.3 we mentioned a correspondence between the absorptive operator
aH, or aHys, in particular for n = 1, and the (imaginary part o the) optical po-
tential in nuclear physics. The differencesare, first that the constant e /m in our
approach corresponds to a radially symmetric function W(r) in the optical model.
This can be explained by the geometry o the nucleus, i.e. that it has a finite spa-
tial extension and approximate spherical symmetry, but is not homogeneous and
surfaceeffects may be important as well. With these restrictions, inelastic scatter-
ing o a nucleon by an (energy-independent) optical potential can be considered
as a quantum mechanical analogue to the motion o a classical particle under the
influence o a linear frictional force (and a conservativeforce). Secondly, the em-
pirical optical potential has a. marked energy dependence™!® which is, apart from
an intrinsic energy dependence (as nuclear matter is dispersive), the consequence
of the non-locality o the nuclear potential. (A non-local potential can be obtained
by projecting out the ground state of the target nucleus!®.) Thus one hasto expect
a very wide and general variety of coordinate- and energy- (velocity-)dependent
functions for empirical loca optical potentials. However, for an infinite homo-
geneous nuclear "target matter" the non-locality can be smulated by potentials
depending on the velocity only!®. This indicates some connection (and its lim-
itations) between inelastic nuclear processes and the quantization of dissipative

velocity-powerforces alsofor n > 1
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In connection with the optical model and nuclear processes the quantization
in the presence o a magneticfield (cf. section 3) is o direct interest, even though
d only minor quantitative importance, since nuclel in general have a magnetic
moment. In the leading order n = 1 the absorptive part o the optical potential
(if corresponding to quantized linear friction) should not be influenced by the
magnetic field resulting from the nuclear magnetic moment.

Experimental evidence for frictional effectslike lossd relative kinetic energy
and angular momentum has been observed in heavy-ion collisions, i.e. deegp-
inglastic collisions, fusion and capture above the barrier, which have been de-
scribed with some success in classical models as in the surface friction model?2.
This model considers - besides the Coulomb and nuclear potential — the harmonic
deformation (low-lying quadrupole) modes of both the projectile and the target
nuclei in the conservative Lagrangian L. Radial and tangential friction as well as
intrinsic damping o the deformation modes (vibrators) are described through a
Rayleigh dissipation function R which is derived from Brownian motion theory
and contains three universal parameters. The deformation modes are important
because both nucle experience strong deformations when they collide. Already
therefore, these processes and 'the corresponding models are much more complex
than the motion o a single particle without internal degrees o freedom in a ho-
mogeneous dissi pative medium which we are quantizing, and we shall not attempt
an extension d our approach to the surface friction model. (From L and R (Egs.
(1) and (2) in Ref. 22) one should find the Hamilton function ¥§ and the energy
loss AE' and then quantize ¥ + AE' by m; — %z2- were 7; and o; are the mo-
menta and deformation parameters for the vibrators. However, the non-diagonal
frictional coupling terms between radial relative motion and the vibrators and
between the vibrators present in R could lead to a cumbersome Schrédinger equa-
tion.) Anyway, dissipative heavy-ion collisons appear to be interesting examples
that frictional interactions can mediate the formation of quantum states between
the particle and the frictional medium, and thus support the interpretation of our
approach. Furthermore, that these reactions can be described by models based
on classical friction might have a connection with the result of our quantization
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which - for smpler reactions - suggests that some relationship exists between the
absorptive part o the optical potential and friction.

4.3 Summarizing remarks

Following the quantization!? of the velocity-power force (1a), we have quan-
tized the dissipative forces (2a) and (2b) in one and three space dimensions, re-
spectively. The quantum mechanical operators aH,; and aHys thus obtained are,
for a > O, dissipativefor even and odd n, in full correspondence with the classical
forces. Having in one’s mind the optical model, one can interpret the decay of
one-particle states as “absorption” of the particle {or the one-particlestate) by
the dissipative medium.

Once the quantization o the three-dimensional force Fy3 is achieved, the mo-
tion of a charged particle in a magnetic field and under the influence of F 43 itself,
can be studied. This is another important extension o the method proposed in
Ref. 12, since the mechanical momentum now is different from the canonical mo-
mentum o the CCS. Gauge invariance suggests that te momentum operator p
in Hys be replaced by the minimal coupling (7d), in analogy with the procedure
to find the Hamilton operator H,4 from Hys in standard guantum mechanics.
Generalizing, we expect that quantization o velocity-power forces (la), (2a), and
(2b) (and any linear combination of them, with different exponents n) is possible
in sytems which, for « = 0, have a known Lagrange and Hamilton function, the
latter one being identical with the energy o the particle. The momentum to be
quantized, p. — %V, is the canonical momentum o the GCS.

We summarizethat for a sufficientlylargeclass d the examples considered the
quantization d frictional velocity-power forces and the results allow a consistent
interpretation. That the Hamilton operators obtained are not norm-conserving
and "only" describe the decay o the original one-particlestate in time indicates
that the particle forms more complicated quantum states o motion with the par-
ticles of the dissipative medium. This may be one reason for the difficulties one
meets in the attempts to obtain a strict one-particle quantum theory for frictional
velocity-power forces, e.g. in canonical quantization o F = —az.
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J. Geicke

Resumo

Um método, recentemente sugerido para quantizar forgas proporcionais a
poténcias da velocidade, F = —crx", n > 1 inteiro, a > 0, é estendido para
forcas F; = —a | ¢ |*! z (dissipativas para n par e impar) e para sua versio
tridimensional Fg3 = —cru™-'v.' O hamiltoniano obtido é dissipativo para todos
0s n, inteiros e positivos, i. e., a probabilidade de encontrar a particula no estado
inicial de uma particula é reduzida pelo atrito. A quantizacdo de Fg3 é discu-
tida, com resultados analogos, também para o movimento de uma particula com
carga €létrica num campo magnético, como um exemplo no qual 0 momentum
canénico p, do sistema conservativo( a = 0) é diferente do momentum mecanico
mv da particula. Possiveis conexdes com 0 modelo 6tico e com reacdes nucleares
dissipativas sdo consideradas.

446



