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Abstract A method, recently proposed to quantize velocity-power forces 
F = -asn , n 2 1 integer, a > O, is extended to quantize the force Fd = 
-<r 1 3: In-' i (dissipative for even and odd n) and its three-dimensional 
form FdB = - a ~ " - ~ v .  The Hamilton operator thus obtained is dissipative 
for a11 positive integer n, i.e. the probability to find the particle in the 
origínal one-particle state decreases in time when friction is switched on. 
The quantization of Fds is - with analogous results - also discussed for the 
motion of a charged particle in a magnetic field, as an example where the 
canonical momentum p, of the conservative system (a = O) is different from 
the mechanical momentum mv of the particle. Possible connections to the 
optical model and dissipative nuclear reactions are considered. 

1. Introduction 

The quantization of the motion of a (point-like) particle with mass m under 

the influence of a velocity-power force 

F = -ain, a > O, n > O integer ( ia)  

and possibly other, conservative forces which - unlike F - have a scalar potential 

V ( x )  is an old problem of quantum physics. It has been studied theoretically since 

about half a century ago, in particular for a linearly damped (n = 1) harmonic 

oscillatorl. The principal method is canonical quantization, where one must find a 

Lagrange function of the classical equation of motion and then quantize the canon- 

ical momentum and the Hamilton function obtained from the Lagrangian. The 

problems are that a classical (normally not unique) Lagrange function for an equa- 

tion of motion with the force (la) can be found only by means of an integrating 
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function and is different from the difference T - V between the kinetic and poten- 

tia1 energy of the particle2. Correspondingly, the Hamilton function is, a t  least for 

a # 0, not the energy of the particle2y3 and its physical interpretation not obvious. 

E.g. the Caldirola-Kanai Hamiltonian4 appears to describe a harmonic oscillator 

with a time-dependent mass2*5 rather than a damped oscillator and (when inter- 

preted as the Hamiltonian of a damped oscillator) leads to contradictions with 

the uncertainty principle for large times t .  Difficulties with the energy and the 

uncertainty principle appear also when Bateman7s dual Hamiltonian is quantizedl. 

We mention that classical Hamilton functions exist and have been considered for 

quantization which do not correspond with the energy even in the limit o! -+ 0. 

An example is H = i: + (YZ for the equation of motion 2 + a2 = O 6. (The reason 

for considering it was that the corresponding Lagrange function does not depend 

explicitly on time.) However one cannot expect the resulting Hamilton operator 

to produce physical wave functions of the damped quanta1 (quantized classical) 

system3. 

For a force quadratic in i:, canonical quantization of one classical Hamilton 

function can lead to different Hamilton operators in consequence of ordering prob- 

lems for the operators p and z 7$8. Apparently these problems can be overcome 

if one requires that Ehrenfest's theorems be fulfilled. But still, for o! # 0, the 

Hamilton function is not the energy, and contradictions with the uncertainty prin- 

ciple occur, now for large values of x 8. Similar problems must be expected for 

velocity-power forces with higher exponents n. 

Also nonlinear Schrodinger equations have been considered among the at- 

tempts of quantization. We mention only Kostin's Schrodinger-Langevin equation 

319110, which is based on complex and generalized Hamilton-Jacobi formalisms, but 

has also been found by stochastic quantizationll. A problem is that the superpo- 

sition principle is violated. 

Recently we proposed a new quantization12 for equations of motion involving 

the force (la).  The principal idea (and difference to canonical quantization) is to 
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quantize not (one of) the mathematically correct Hamilton functions of the entire 

system, but the energy 

and to use the quantization rules of the corresponding conservative system (CCS) 

described by the Hamilton function No. Throughout the course of this paper the 

term CCS will denote the system under consideration for a r O, i.e. without the 

forces (la), (2a) or (2b), respectively. E.g. in section 3, CCS does not imply the 

existence of a scalar potential V(x) ,  but of a generalized potential as well as a 

Lagrange and Hamilton function. The momentum to be quantized according to 

is the canonical momentum of the CCS. If the Hamilton function of the CCS 

has the form (lc) the canonical momentum p, is identical with the mechanical 

momentum mk of the particle, and quantization of A E  - by x 4 plm - yields the 

non-Hermitian operator 

Apart from its simplicity, the method avoids the problems mentioned above, 

and its physical results are apparently a11 consistent. The principal one is that the 

Hamilton operator 

H, = H. + aHi (ld 

with 

is dissipative for odd n = 1 and n = 3 while for even n = 2 and n = 4 it can 

have stationary eigenstates stable in time. Thus &Hi reproduces the property 

that the force (la) is dissipative only for odd n, a ~ d  (globally) conservative for 
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even n. This result makes the quantization of F  for even n - when F is not just 
a 

physically realistic - of considerable theoretical interest. Namely, it shows that for 

non-dissipative velocity-power forces the quantization (lf) can lead to a quantum 

theory with norm-conserved stable one-particle states. 

These results motivate us to consider two extensions of the proposed quan- 

tization which both refer to important situations in classical physics. ~ ; rs t ,  a 

velocity-power force - physically more realistic than F itself - is 

Fd = -a I i In-' i , a > 0 , n > O integer . ( 2 4  

It is dissipative for a11 L, and for odd n (and real 2)  corresponds to expression 

(la). The quantization of Fd and of its three-dimensional form 

will be discussed in section 2. We will concentrate more on the general aspects 

rather than on specific solutions. The result is a quantum interaction operator 

which is dissipative for even and odd n. Secondly, in section 3 we shall consider the 

quantization of Fd3 for the motion of a charged particle in a magnetic field, as the 

standard example where the canonical momentum p, of the CCS is different from 

the mechanical momentum mv of the partide. In section 4 we show a relationship 

between the decay rate of a quantum state and its kinetic energy and discuss 

possible connections of our results to the optical model and dissipative collisions 

in nuclear physics. 

2. Quantizat ion of the classical energy loss 

2.1 The operator a H d  

The force (2a) causes the energy loss 

Differently from formula (ld), the product a 1 i In-I i d z  in the integral (3a) is 

always non-negative (a > O, dt > O). The force (2a) is dissipative and diminishes 
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the energy Xo of the particle monotonically (No + AEd is constant in time and 

AEd non-negative). The energy 10s AEd can be quantized analogously as AE. ( p  

and I p  In-' commute). The result is the non-Hermitian operator 

For odd n, the operator (3b) corresponds with Eq. ( lf) .  Since the momentum 

operator p  is self-adjoint ( p  = p*) its square p2 = pp* is a positive (and self-adjoint) 

operator, i.e. 

( 4 ,  p 2 4 )  =lI P+ / I 2 ?  0 . ( 3 4  

The operator I p  I is defined as the positive square root of pp* 13-16 

and is self-adjoint and positive. The specral decomposition theorem provides an 

explicit representation of ( p  ( and I p  I"-'. Like I p 1, the power ( p  In-' is self- 

adjoint and positive for a11 integer n > O ,  since f ( A )  = + f l - l  is, for a11 real 

arguments, a (real-valued) non-negative function. ( A  runs over the spectrum of p.) 

These properties are sufficient for the purposes of this paper. We shall not need the 

explicit representation of I p  I"-' and will not enter into details of the domains of 

these operators which are dense in the Hilbert space of square-integrable functions. 

2,2 Dissipative property of Hd 

To discuss the operator a H d  we consider the Schrodinger equation 

with the Hamilton operator 
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H. is the conservative Hamilton operator ( lh) .  From Eqs. (4a) and (4b) one can 

derive the modified continuity equation 

and 

are the (one-dimensional) one-particle and current density. Integrating Eq. ( 5 4  

along the real x-axis one finds 

The integral on the RHS of Eq. (5d) is non-negative since ( p I"-' is a positive 

operator. That this integral be zero would require that the (continuous and square- 

integrable) solution ?,h vanish identically on the real x-axis since +@ > O for 

x2 > O and the spectrum of p is continuous. Thus, for nontrivial solutions the 

integral on the RHS of Eq. (5d) is positive, and for a > O on gets 

The solutions of Eqs. (4a) and (4b) decay in time, as a consequence of the inter- 

action operator a H d  E.g., separable solutions 

cannot be stationary, and their energy eigenvalues E must have a negative imagi- 

nary part (&Hd is non-Hermitian). The quantum operator aHd is dissipative for 

a11 integer (even and odd) n, in full correspondente with the properties of the 

~rlassical force (2a). 

With regard to the operator a H ,  ( l f) ,  discussed in Ref. 12, the result (5e) 

~ ~ O W S  that a H i  is dissipative for a11 odd n 2 1 and generalizes our former results 
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for n = 1 and n = 3. The difference between aH, and aHd for even n is that 

aHi  contains the operator p, instead of I p I in &Hd, and only I p I ,  but not p, 

is a positive operator. Therefore one cannot conclude, for even n, that a& is 

dissipative. 

2.3 Interpretation of dissipation 

TO interpret Eq. (5e) the following comments are in order and refer also to the 

corresponding result ( l le)  in three spatial dimensions with (A # O) or without 

(A E 0) magnetic field. 

(i) The dissipation of the solutions to Eqs. (4a) and (4b) means that the probabil- 

ity to find the particle in the original one-particle eigenstate to Hed decreases 

in time when friction is switched on. The particle, of course, does not disap- 

pear, but due to the frictional interaction it loses energy to, or forms more 

complicated many-particle states with, the particles of the frictional medium. 

(The latter states are not eigenstates of Hed which is an effective one-partide 

Hamilton operator. It depends only on the momentum and position opera- 

tors of the particle under consideration.) The non-Hermitian part aHd (cf. 

comment (iii) below) takes into account both types of the above "inelastic 

reactions" in a summary form (note that already in the classical force Fd the 

details of the interactions between the single particle and the many particles of 

the dissipative medium have been lost) leading to a reduction of the probabil- 

ity of the original one-pa,rticle state. That quantization does not yield a strict 

one-particle theory appears aIso plausible from the qualitative argument that 

friction arises fom microscopic interactions between the single particle and the 

many particles of the dissipative medium, and that the classical energy ~OSS is 

irreversible. Therefore it is not unlikely that the quantum mechanical motion 

of the particle cannot be separated from the states of motion of the particles 

in Lhe frictional medium. 

(ii) It is evident that from the dissipative Hamilton operators one will not obtain 

the equations of motion for the expectation values of the one-particle operators 

of momentum p and position x. To calculate these expectation values and their 
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time derivatives one would need the full wave function into which the one- 

particle state decays, or the complete Hamilton operators which have these 

wave functions as eigenstates. 

[iii) The following analogy seems interesting and worth mentioning. Our quan- 

tization leads to a dissipative operator &Hd which corresponds qualitatively 

to the absorptive imaginary potential in the empirical optical model of nu- 

clear physics17118. For n = 1 the correspondence is almost complete, but the 

optical potential depends at least on the radial coordinate r and on the en- 

ergy (cf. section 4.2). The imaginary part of the optical ~otential  describes 

in a summary form the decay of the original one-nucleon state into 9nelastic 

channelsn when the projectile nucleon transfers energy to the target nucleus or 

when it forms more compliated states with the nucleons of the target, i.e., is 

"absorbedn by the target. In such a sense, our Hamilton operator aHd sum- 

marily describes the "inelastic interactionsn of the particle with the dissipative 

medium, i.e. coupling of the particle motion to the interna1 degrees of freedom 

of the frictional medium. 

2.4 Remarks on the three-dimensional quantization 

A particle, moving in three spatial dimensions against the force (2b), loses the 

energy 

Replacing, in analogy with the rule (le), the three-dimensional canonical momen- 

.tum of the CCS, p, = mv, by 

m e  could, in princi~le, try to quantize AEd3. A more direct method is to replace 

in the one-dimensional quantum operator aHd (3b) the operator 1 p I by its three- 

dimensional form 

l p l = + J P i  = +m (64 
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where p2 = -h2b is positive and self-adjoint. Then I p ] and 1 p I"-' are positive 

self-adjoint operators, and the operator 

can be discussed in an analogous way to &Hd earlier on. Rewriting Eqs. (4) and 

(5) in three spatial dimensions, one sees hat &HaJ is dissipative for a11 integer 

n > 1. (Cf. Eqs. (1la)-(lle) in the following section, setting A 0.) 

3. Quantization in a magnetic field 

3.1 The gauge invariant interaction operator 

As an example where the canonical momentum p, of the CCS is different from 

the mechanical momentum mv we shall quantize the dissipative force (2b) when 

acting on a nonrelativistic spinless particle, which carries an electrical charge q and 

moves in an electromagnetic field, E = -VAo -aA/act and B = V x A. (Ao, A) 

is the four-vector of the electromagnetic potential. Let us write the Hamilton 

operator in the form 

HeA = HOA + ciHdA ( 7 4  

where 

is the Hamiltonian of the CCS. As is well known in quantum mechanics, one can 

obtain H o ~  either from the classical Hamilton function of a charged particle in an 

electromagnetic field (plus V(x)), using the quantization rule (6b) and taking into 

account the relation (7e), or from the Hamilton operator 

through the replacement 
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and addition of the eiectric potential Ao. The rule (7d), known as minimal COU- 

piing between the canonical momentum of the particle and the electromagnetic 

potential, reflects the classical relationship 

between canonical and mechanical momentum of the particle. 

To find the operator HdA it is almost suggesting itself, in the quantized op- 

erator Hd3, valid for A E O , to replace the momentum operator p by Eq. (7d) 

(correspondingly as HOA is obtained from HO3). This yields 

The operator (7f) preserves the gauge invariance of the Schrõdinger equation 

i i i  a$(x = HeAJ>(x, t) 
a t  ( 8 4  

in the usual senselg that together with the electromagnetic potential 

the wave function $(x, t) is transformed as well: 

7~here f (x, t )  is a scalar, real gauge function. 

For the proof we distinguish between even and odd n and define the operator 

aii 
aHdA, = - ~ ( V f ) ~ - l ,  

imn c ( v f ) = + d w -  1 c (Qa) 

(?(V f )  is self-adjoint and positive, and (7f) can be written as  

aii 
aHdA = -c(o)~-' 

imn 

(i) n > 1, odd. Then 
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where m = (n - 1)/2 is integer, and similarly as for HOA l9 one finds directly 

with 

G = exp(iq f lhe). 

(ii) n 2 2, even. Define the operator C by the relation 

i.e. 

c = C(V f )  + G-' [C(V f ) ,  G]- = G-'C(V f ) ~ .  (9g) 

From Eq. (9g) and G-' = G* one sees that with C(V f )  also 5 is self-adjoint and 

positive. Applying C(V f )  once more to Eq. (gf), one gets 

Comparing Eq. (9d), for n - 1 = 2, with Eq. (gh), one concludes 

independently of C(V f )  and then. 

since the self-adjoint, positive square root of C ( O ) ~  is unique. Eqs. (9f) and (9j) 

show the gauge invariance for n = 2. For even n 2 4, one obtains from Eqs. (9d), 

(9f) and (9j) 

This completes the proof of the gauge invariance, for a11 positive integer n. 

We emphasize that the gauge invariance of the Schrõdinger equation @a) is an 

important argument in finding the interaction operator aHdA.  When quantizing 
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the classical energy loss (6a) in the presence of a magnetic field (instead of applying 

the minimal coupling rule (7d) to the operator (6d)) one could arrive at a result 

AEd3 - mn :.>' (:v - :A) dx. (10) 

This operator, as well as aHd3 instead of aHdA in the Hamilton operator (7a), 

would destroy the gauge invariance of the Schrõdinger equation (Ba). 

Like the operators aHd and aHdJ, also aHdA is dissipative for a > 0 and a11 

positive integer n. Rewriting Eqs. (5a)-(5c) in three dimensions and replacing the 

momentum operator by formula (7d), one gets 

and 

Integrating Eq. ( l ia )  over an infinite volume V of surface S, excluding x = O by 

an infinitesirnal sphere So of radius r =I x I-+ O 20 and supposing that 

(df and dfo are infinitesimal surface elements of S and So, res~ectively) one finds 

The RHS of Eq. (Iie) is negative for a > O, n = 1,2,3, ... and nontrivial states 

t,ú, since the operator C(O)~- '  is self-adjoint and positive. I.e., the probability to 

find the particle in the original one-particle state $ which solves the Schrõdinger 

equation with Hamiltonian (7a) decreases in time. The frictional part aHdA makes 

the Hamiltonian HeA dissipative. 
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3.2 Example 

AS a simple example we consider the Hamilton operatorHeA for V r Ao - O 

and n = 1,3. The Schrodinger equation for separable states 

For a = 0, suppose that y, = @(x) is a solution of Eq. (12b) with a real eigenvalue 

E = Ê. Then, for a > O, @(x) is also a solution of Eq. (12b) with a complex 

eigenvalue 

The negative imaginary part of E(') leads to a decay of the state (12a) in time. 

The eigenvalue makes the state (12a) decaying if Ê is positive. This condition 

is fulfilled since (+V - C A ) ~  is a positive operator. For a homogeneous magnetic 

field the eigenvalue problem (12b) witha = O has been solved in Refs. 20 and 21. 

In the example above the x-dependent factor @ of the solution (12a) does not 

depend on a. Only the eigenvalues E = E(') and E = depend on a, and Eqs. 

(12c) and (12d) show that the limit a: + O is smooth and yields the solution of 

the CCS: E(') 4 Ê and 4 Ê. The solution (12a)becomes stationary in this 

limit. 

3.3 Uncertainty relation 

As the canonical momentum of the CCS is quantized, no contradictions with 

the uncertainty principle for the mechanical momentum will occur, and, for a # 0, 
the mechanical momentum will satisfy the same uncertainty relation as for = 0. 

Explicitly, since A depends on the coordinates only (and perhaps on time) these 

commutation rules are 

[Ak, x j ] -  = O (134 
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and 

1 
ApkAxk > - h 

2 

and 
9 1 A(pk - -Ak)Axk = AmvkAxk 2 -h 
C 2  

for j, k = 1 ,2 ,3 .  They imply15 

for the products of the uncertainties Apk or Amvk with Azk. 

4. Discussion a n d  conclusions 

4.1 Decay ra tes  

From Eq. (12d) one observes that the ground state would not decay if its 

energy Ê = Êo were equal to zero. Now, in a homogeneous magnetic field one 

finds Ê o  = Mg ) B 1 20 where MB = qfi j2rnc and an additive positive constant 

corresponding to the kinetic energy of the particle's motion parallel to  the magnetic 

field B has been neglected. Thus the value of Êo is equal to the zero-point energy 

of a harmonic oscillator of frequency w = q / B I /me indicating that the decay 

of the ground state is a consequence of the non-vanishing zero-point energy, or of 

the uncertainty principle. 

TO generalize this result for a11 n 2 2 we rewrite Eq. ( l le)  in the form 

The expectation value 

is positive and does not contain the time-dependence related with the decay 
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Since C(0)2/2m is the positive and self-adjoint operator of the kinetic energy, 

whether Ã vanishes or not it follows from the uncertainty relation that %(t)  can 

tend to zero only when the uncertainties As,  Ay and Az of the particle's coordi- 

nates tend to infinity. Therefore states of (or close to) lowest energy decay with 

a minimum rate compatible with the uncertainty principle while states of higher 

(kinetic) energies decay faster. For n = 1 a11 states decay with the same rate 

exp(-2atlrn). Note that this is equal to the decay rate of the kinetic energy of a 

particle moving against a classical force F = -05 (without any other potential). 

4.2 Friction in nuclear physics 

In section 2.3 we mentioned a correspondence between the absorptive operator 

crHd or aHd3, in particular for n = 1, and the (imaginary part of the) optical po- 

tential in nuclear physics. The differences are, first that the constant ah/m in our 

approach corresponds to a radially symmetric function W(r) in the optical model. 

This can be explained by the geometry of the nucleus, i.e. that it has a finite spa- 

tia1 extension and approximate spherical symmetry, but is not homogeneous and 

surface effects may be important as well. With these restrictions, inelastic scatter- 

ing of a nucleon by an (energy-independent) optical potential can be considered 

as a quantum mechanical analogue to the motion of a classical particle under the 

influence of a linear frictional force (and a conservative force). Secondly, the em- 

pirical optical potential has a. marked energy dependence17s18 which is, apart from 

an intrinsic energy dependence (as nuclear matter is dispersive), the consequence 

of the non-locality of the nuclear potential. (A non-local potential can be obtained 

by projecting out the ground state of the target nuc~eus'~.) Thus one has to expect 

a very wide and general variety of coordinate- and energy- (velocity-)dependent 

functions for empirical local optical potentials. However, for an infinite homo- 

geneous nuclear "target matter" the non-locality can be simulated by potentials 

depending on the velocity only18. This indicates some connection (and its lim- 

itations) between inelastic nuclear processes and the quantization of dissipative 

velocity-power forces also for n > 1. 
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In connection with the optical model and nuclear processes the quantization 

in the presence of a magnetic field (cf. section 3) is of direct interest, even though 

of only minor quantitative importante, since nuclei in general have a magnetic 

moment. In the leading order n = 1 the absorptive part of the optical potential 

(if corresponding to quantized linear friction) should not be influenced by the 

magnetic field resulting from the nuclear magnetic moment. 

Experimental evidence for frictional effects like loss of relative kinetic energy 

and angular momentum has been observed in heavy-ion collisions, i.e. deep- 

inelastic collisions, fusion and capture above the barrier, whidi have been de- 

scribed with some success in classical models a s  in the surface friction mode12'. 

This model considers - besides the Coulomb and nuclear potential - the harmonic 

deformation (low-lying quadrupole) modes of both the projectile and the target 

nuclei in the conservative Lagrangian L. Radial and tangential friction as well as 

intrinsic damping of the deformation modes (vibrators) are described through a 

Rayleigh dissipation function R which is derived from Brownian motion theory 

and contains three universal parameters. The deformation modes are important 

because both nuclei experience strong deformations when they collide. Already 

therefore, these processes and 'the corresponding models are much more complex 

than the motion of a single particle without interna1 degrees of freedom in a h* 

mogeneous dissipative medium which we are quantizing, and we shall not attempt 

an extension of our approach to the surface friction model. (From L and R (Eqs. 

(1) and (2) in Ref. 22) one should find the Hamilton function Ui and the energy 

loss AE1 and then quantize )/A + AE1 by n\ -t 4$ were ni and a, are the mo- 

menta and deformation parameters for the vibrators. However, the non-diagonal 

frictional coupling terms between radial relative motion and the vibrators and 

between the vibrators present in R could lead to a cumbersome Schrõdinger equa- 

tion.) Anyway, dissipative heavy-ion collisions appear to be interesting examples 

that frictional interactions can mediate the formation of quantum states between 

the particle and the frictional medium, and thus support the interpretation of our 

approach. Furthermore, that these reactions can be described by models based 

on classical friction might have a connection with the result of our quantization 
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which - for simpler reactions - suggests that some relationship exists between the 

absorptive part of the optical potential and friction. 

4.3 Summarizing remarks 

Following the quantizaticrn12 of the velocity-power force (la), we have quan- 

tized the dissipative forces (2a) and (2b) in one and three space dimensions, re- 

spectively. The quantum mechanical operators &Hd and aHd3 thus obtained are, 

for cr > 0, dissipative for even and odd n, in full correspondente with the classical 

forces. Having in one's mind the optical model, one can interpret the decay of 

one-particle states as "absorption" of the particle (os the one-particle state) by 

the dissipative medium. 

Once the quantization of the three-dimensional force Fd3 is achieved, the mo- 

tion of a charged particle in a. magnetic field and under the influence of Fd itself, 

can be studied. This is another important extension of the method proposed in 

Ref. 12, since the mechanical momentum now is different from the canonical mo- 

mentum of the CCS. Gauge invariance suggests that te momentum operator p 

in Hd3 be replaced by the minimal cou~ling (7d), in analogy with the procedure 

to find the Hamilton operator HOA from H& in standard quantum mechanics. 

Generalizing, we expect that quantization of velocity-power forces (la), (2a), and 

(2b) (and any linear combination of them, with different exponents n) is possible 

in sytems which, for cr: = 0, have a known Lagrange and Hamilton function, the 

latter one being identical with the energy of the particle. The momentum to be 

quantized, p, + !V, is the canonical momentum of the CCS. 

We summarize that for a sufficiently large class of the examples considered the 

quantization of frictional velocity-power forces and the results allow a consistent 

interpretation. That the Hamilton operators obtained are not norm-conserving 

and "only" describe the decay of the original one-particle state in time indicates 

that the particle forms more complicated quantum states of motion with the par- 

ticles of the dissipative medium. This may be one reason for the difficulties one 

meets in the attempts to obtain a strict one-particle quantum theory for frictional 

velocity-power forces, e.g. in canonical quantization of F = -a5. 
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J. Geicke 

Resumo 

Um método, recentemente sugerido para quantizar forças proporcionais a 
potências da velocidade, F = -crxn, n >_ 1 inteiro, a > 0, é estendido para 
forças Fd = -a I k In-' i (dissipativas para n par e ímpar) e para sua versão 
tridimensional Fd3 = -crun-'v.' 6 hamiltoniano obtido é dissipativo para todos 
os n, inteiros e positivos, i. e., a probabilidade de encontrar a partícula no estado 
inicial de uma partícula é reduzida pelo atrito. A quantizqão de Fd3 é discu- 
tida, com resultados análogos, também para o movimento de uma partícula com 
carga elétrica num campo magnético, como um exemplo no qual o momentum 
canônico p, do sistema conservativo (a = 0) é diferente do momentum mecânico 
mv da partícula. Possíveis conexões com o modelo ótico e com rea~ões nucleares 
dissipativas são consideradas. 


