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Abst rac t  Field copies associated with the Weyl curvature tensor are con- 
sidered in the context of both Riemann and Weyl manifolds. Geometrical 
aspects and physical implications of the examples presented here are dis- 
cussed. 

1. Introduction 

Gravitational Lagrangian models with the property of scale invariance have at- 

tracted renewed attention in the current literature'-'. One of the arguments that 

justify the ressurection of Weyl's original idea of conformal invariance
g 

is that this 

property, imposed on gravitational Lagrangians, leads to dimensionless coupling 

constants such as those appearing in strong and eletroweak interactions, which are 

renormalizable. On the other hand, Einstein's Lagrangian involves a dimensional 

constant (length-2) and General Relativity is not renormalizable. Accordingly, 

it would be desirable to modify Einstein's Lagrangian to make it scale invariant. 

Considerable effort has been dedicated, for instance, to an understanding of the 

role of the Weyl tensor in the construction of conformally covariant Lagrangians. 

Indeed, this tensor has remarkable algebraic properties, such as the decomposition 

introduced by L a n c z ~ s ' ~  and developed by other a~ tho r s "~ '~ .  

Another interesting point concerning the conformal tensor Capp, is, in my 

opinion, the investigation of conformal copies in metric and semi-metric manifolds. 

One can show that under specific conditions, different afine connections of a given 

space-time generate the same Capp,. Connections with this property will be called 
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be called here conformal copies ( C C ) .  This is in some respects similar to the study 

of field strength copies in non-abelian gauge theories13, where different potentials 

A: and A i ,  not related by any gauge transformation, can give rise to the same 

field strength F:~. 

The question of field copies of the curvature tensor in Riemann-Cartan space 

was treated in Ref. 14. Since the conformal tensor of a Riemannian manifold 

Vn can be written in terms of the curvature tensor, it is obvious that curvature 

copies in Vn are also conformal copies in this space. But the converse in not 

always true, as will be seen in Sec. 2. Furthermore, ín semi-metric manifolds W, 

the conditions for the existence of CC may involve the Weyl 1-form Q,, which 

expresses the change of length of vectors ("dilations") in parallel displzements, 

and which Weyl expected to be the representation of the electromagnetic potential. 

In the subsequent sections of this paper some examples of CC will be presented 

and discussed. The influence of these copies on couplings of matter and gravitation 

will be emphasized. 

2. The condition for conformal copies 

The conventions used here are those of Schouten (Ref. 15). L, an n- 

dimensional manifold in which a rotation curvature and a curvature of segmenta- 

tion exist. 

The invariance of the Weyl conformal tensor is expressed by 

c,,;. (r,) = C,p:. (F) , 

where I',; belongs to L, and r,$ belongs to E,, with 

AP,~ '  being a third-rank tensor which will be named P-field. A set of connections 

of the type (2) satisfying (1) will be called a set of field copies of the conformal 

tensor, or - for short - a set of conformal copies (CC). 
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where V, is the covariant derivative associated with r,p!, the square brackets 

around indices denote antisymmetrization, and n > 2. Note that in L, one has 

V, gp7 = -QaP7 (non-metricity condition). In a semi-metric space Wn the non- 

metricity tensor becomes QaP7 = -QagPr.  

Condition (3) leads to the existence of CC that are not curvature copies in the 

manifold, even though a11 tensor fields related to curvature copies must satisfy (3). 

Copies for which the P-field is generated by the mathematical structure of 

the initial (base) manifold itself are of particular interest. They will be referred 

to as intrinsic conformal copies (ICC), and the corresponding transformations for 

the connection, as intrinsic copy transformations (ICT). Examples of ICC will be 

presented below . 

3. Conforma1 copies in W,  

The most evident I C T in a semi-metric space W, is the usual conforma1 

transformation. In this case the transformed Weyl vector Q, differs from the 

original Q, by a vector d ,  log A, where A is an arbitrary scalar and = Ag,p. 

As a consequence, FaP7 = r and Cap76 = c,~.,!. Accordingly one can state: 

Theorem 1 - The usual conformal transformation is an I C T with vanishing P- 

field, i.e., the identity copy mapping, if one takes the Weyl 1-form k e d  only to 

within an arbitrary scalar factor. 

An example of a non-vanishing P-field which generates an ICC in Wn is 
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By sybstituting ( 5 )  into (3) one gets 

which imposes the propagation of the Weyl vector. 

Theorem 2 - The P-field expressed by ( 5 )  is a P-field of an ICC if (6) is taken 

into account. 

Corollarv 1 - If V, QP = O then eq. ( 5 )  guarantees the existence of an ICC in 

wn . 
Corollary 1 follows irnmediately from the irnposition of the restriction V, QP = 

O on (6). This particular ICC is also a curvature copy (see Ref. 14). 

Another copy is provided by 

where round brackets mean symnietrization. And from (3) one arrives at 

Theorem 3 - The P-field introduced by ( 7 )  is associated with an ICC if (8) is 

satisfied. 

Corollarv 1 - The P-field of (7) together with the assumption V, QP = O generates 

an ICC in W,. 

These results follow by accomplishing the same type of substitutions referred 

to above. 

One also has: 

Theorem 4 - The conditions V, QA = O and Q, Qu -O applied to the tensor field 

[gagQ7 - 26 7Qpl] define a set of ICT in W,. 
(a 

I notice that the two restrictions mentioned in Theor. 4 are independent and 

compatible, as one easily verifies. 
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In semi-metric manifolds without torsion the symmetry PpAp = P(pA)p holds 

for the P-field. Thus assumptions on the trace of the third-rank tensor can also 

lead to copies. For instance, 

with 
n 

ppu = Q - -- P.", . 
' - 2 - n  (10) 

Theorem 5 - The tensor defined by relations (9) and (10) expresses an intrinsic 

conformal mapping in W,. 

NOW examples of ICC in a metric n-dimensional space V, will be considered. 

4. Conforma1 copies in V, 

The identity transformation for copies associated with the invariance of the 

Weyl tensor in a Riemannian manifold is represented by the conformal mapping 

for the affine connection, namely 

Sp E5 a, log A. (12) 

From (11) and (12) it follows that e,",,' = C,,,, ' in V,. Another result is: 

Theorem 6 - The P-field given by (13) and (14) furnishes a conformal copy in Vn. 

where is a real number. 

Corollary 3 - The form of the copy transformation (13) is preserved under a 

conformal mapping of the type ( l l ) ,  applied to the copy connection, if the 

supplementary assumption (15) is made. 
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with S,, defined by (12). Note that if one intends to impose a projective 

transformation15 together with a conformal one, then the scalar factor A must 

be constant. Projective mappings can be associated with Yang-Mills fields16, and 

in this case a torsion field must be taken into account, since the connection becomes 

nonsymmetric. 

The P-field of (13) acquires an intrinsic geometrical character if P,, is related 

to quantities of V,, for instance if P,, = a,, R or P,, = Rpv aV R, 

Conforma1 copies that also deserve consideration are those entirely determined 

by vielbein fields. An example is 

where j is an internal index. 
- 

The first term on the right hand side of (16) is the affine connection of 

Weitzenbock space A,, obtained from the metricity condition imposed on the 

vielbein e;, namely 

Vxed = O. (17) 

In A, the fields ej ,  constitute a set of parallel vectors which fix the 

nonsymmetric connection of the manifold15. The existence of a copy like (16) 

poses the question of an additional ambiguity in the Hamiltonian dynamics of a 

theory based on vielbein vectors as canonical variables. In the vielbein formalism 

the internal connection (;.e., the affinity corresponding to an internal space) is 

related to a canonical variable called hypermomentum17. Thus the existence of a 

copy of the connection implies extra degrees of freedom in the propagation of the 

canonical variables. This fact also indicates a new motivation for the study of 

copies in gravitational theories. 

5. Interaction with matter 

The preceding sections dealt with conformal copies in space-time, without any 

consideration about coupling with matter. Although in W, or V, theories geometry 

and matter remain segregated, gravitational fields are expected, of course, to 
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interact with other fields and particles. Hence it is reasonable to investigate the 

influence of ICC of a given ,manifold on Lagrangians describing these interactions. 

A matter field belongs to an internal space described by the internal indices 

of the vielbein ejp. In a W ,  manifold the full covariant derivative is given as 

being the space-time affinity of W,, and 8' k, representing the internal connection. 

The semi-metricity conditions yields 

where VA is the covariant derivative associated with (19). The internal connection 

(20) is asymmetric and contains the affinity (19) through the derivative VA. One 

concludes that copies I';, of I?:, imply copies KAku of dAko, and consequently a11 

the cases of ICT presented in Sec. 3 and Sec. 4 affect the gravitational interaction 

with matter. This will be cla.rified by the following examples. 

The minimal coupling of a spin - 112 particle with gravitation in a 4- 

dimensional space, is expressed by the ~ a ~ r a n ~ i a n l *  

. ~ k )  = . ? e , X ( ~ ~ ~ t j , +  - +7ktjA$) - m+j, 
2 

with 6,4 = dx + ~ ~ ~ ~ ~ [ ~ j , ~ ~ ]  in W4. The copy r:, originates 

that the modified Lagrangian L ,  yields additional terms in 

a h j k ~  # A j k ~ ,  so 

the resulting field 

equations. In a non-minimal coupling instance fermions are influenced by ICT as 

well, as can be seen from 

a a constant, and g = det(ej/,ei .). The P-field defined by (16) with n = 4 produces - 
~1k' # C:). It is interesting to mention that in the context of xa le  transformations 

it can be proven that Weyl i-form does not couple to any spin -1/2 particle, while 
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in the case of ICT treated here the Q-vectors cannot be disregarded. This can also 

be illustrated by a model of interaction of the Weyl vector with a complex scalar 

fieldig. The corresponding Lagrangian can be rewritten as 

with 

4 and q are scalar and matter fields, respectively. The action functions becomes 

independent of 4, and this makes the conformal invariance that supports the model 

devoid of physical content, as pointed out in Ref. 4. However, if instead of the 

scale mapping one takes a copy transformation for the eletromagnetic potencial 

Ar Qr - 2ôplog 4, i.e. a copy of the type Ãr = A, + M,(Qu), where Mp 

satisfies VIrMvl = 0, then a contribution related to the Weyl vector will appear 

in the equations of motion, ensuring a meaningful role for Ap. In this case Mp is 

considered as a function of the Weyl i-form, for instance Mp = QpQuQu, so that 

it is not a gauge field in the usual sense. 

It should be observed that if Q, is interpreted as a Dirac current7 then 

conformal copies may provide a natural way to introduce interactions. A similar 

jpeculation can be made concerning the proposal of Ref. 8. where a vector 

rneson related to Weyl i-form absorbs the magnitude of the Higgs field in the 

Weinberg-Salam theory, leading to a model for the interaction of gravitational 

itnd electroweak fields. 

(3. Final remarks 

The examples of ICC considered here show the existence of new symmetries 

in pure gravitational Lagrangians. When these copy symmetries involve the Weyl 

vector the interaction of gravitation with matter can be viewed as a copy effect, 

íind Q, may be conveniently chosen to represent matter fields. This aspects of 

(=C seems to deserve further investigation, since recent works give promissing 
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indications about the possibility that the Weyl vector could shed some light on 

the search for quantum models of the gravitational f i e1d~7~~ '~ .  

Another point i; that these new "intrinsic" symrnetries introduce an additional 

ambiguity in the Hamiltonian analysis of gravitational models. Cauchy data at 

an initial hypersurface to= constant may carry the propagation of geometrical 

objects associated with copies, even after a gauge fixing procedure. The 

hypermomentum17, for instance, is a canonical variable which incorporates a copy 

effect via the P-field of the interna1 connection. This dynamical ambiguity has to 

be taken into account in the construction of observables. 

I also wish to point out that certain quadratic combinations of the curvature 

tensor and/or its contractíons appearing in gravitational Lagrangians can arise 

from invariance under ICT. Indeed, the well-known Gauss-Bonnet theorem in an 

L, manifold shows the existence of a class of quadratic Lagrangians equivalent 

to Lagrangians depending on the Weyl tensor, which are as a consequence copy- 

invariant Lagrangians. 

Finally I mention the effect of ICC on trajectories in L,. Autoparallel ccrves20, 

along which a vector is transported parallel to itself according to the connection 

of the manifold, will differ in a copy space from similar curves considered in the 

original one. For P-fields related to the Weyl vector this difference will mean copy 

trajectories emerging from the dilation property of vectors in the manifold. 
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Resumo 

Cópias de campo associadas ao tensor de curvatura de Weyl são consideradas 
no contexto de variedades de Riemann e de Weyl. Discutem-se aspectos 
geométricos bem como implicqões físicas dos exemplos aqui apresentados. 


