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Abstract The third approximation of the distribution function for a mod- 
erately dense monatomic gas of hard spherical particles is determined from 
Enskog's dense gas theory through the methods of Chapman-Enskog and 
Grad. The linearized Burnett equations, obtained from the third approxi- 
mation of the distribution function, indicate that the stress tensor has two 
terms which do not appear in the case of a rarefied gas. They represent 
a thermal (or temperature) pressure and a density pressure and are asso- 
ciated with the Laplacians of temperature and density, respectively. The 
phase speed and the attenuation coefficient of plane harmonic waves of small 
amplitudes are also determined in the low frequency limit. 

1. Introduction 

In a previous work,' henceforth denoted by I, a 13-field and a five-field theory 

were developed for monatomic dense gases of hard spherical particles, based on 

Enskog's dense gas theory2 and on Grad's method of rnoment~.~ The constitutive 

relations for the pressure tensor and for the heat flux, corresponding to the second 

approximation of the distribution function (laws of Navier-Stokes and Fourier), 

were obtained from the transition of the 13-field theory to the five-field theory 

through an iteration method akin to the Maxwellian procedure.4 Moreover, the 

problem concerning the propagation of plane harmonic waves of small amplitudes 

was analyzed for both cases. 

In 1879 Maxwe115 obtained an expression for the stress tensor from the kinetic 

theory of gases going beyond the Navier-Stokes equations. He showed the existence 

of a thermal (or temperature) stress by relating the stress tensor to second gradients 
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of temperature. In the kinetic theory of gases this relationship is attained from 

the third approximation of the distribution function. The complete expression for 

the stress tensor which follows from the third approximation of the distribution 

'Tunction was given later by Burnett6, and that corresponding to the heat flux 

by Chapman and C ~ w l i n ~ . ~  These equations are known nowadays as the Burnett 

equations. 

The aim of this paper is the determination of the linearized Burnett equations 

for a moderately dense gas of hard spherical particles. Based on the theory of 

YEnskog for a dense gas we determine the third approximation of the distribution 

lunction through the method of Grad, following the methodology given in I. The 

same distribution function is obtained through the use of a different method, 

namely, the method of ~ h a ~ m a n - ~ n s k o ~ . ~  In this method the distribution function 

is determined as a solution of the integro-differential equation of the modified 

13oltzmann equation.8 

With the knowledge of the distribution function we obtain the'linearized Bur- 

iiett equations. The expression for the pressure (or stress) tensor of a moderately 

dense gas has three terms which vanish in the rarefied gas limit. One is the well 

Irnown term proportional to the divergence of the velocity and whose coefficient is 

the volume viscosity. The two others are respectively proportional to the Lapla- 

cian of the temperature and to the Laplacian of the density. The first refers to a 

thermal (or temperature) pressure, and the second to a density pressure. 

Like in the previous work, we analyze the problem concerning the propagation 

of plane harmonic waves of small amplitude and determine explicitly the phase 

speed and the attenuation coefficient of the wave in the low frequency limit. For 

the notation and the definition of the terms not given here, we refer the reader to 

1. 

2;. T h e  equation of t ransfer  

The theory of Enskog for a moderately dense gas of hard spherical particles 

i:: based on the so-called Enskog equation, which is a generalization of the Boltz- 

rnann equation for the single-particle distribution function f (x, C, t). This theory 
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considers only two-body collisions but takes into account the difference in position 

of the colliding particles and the increase in frequency of collisions by a factor X, 

which is identified with the local equilibrium radial distribution function. 

Here we shall use the following approximation 

which is obtained from the Enskog equation by expanding the functions X, fi and 

f i  in Taylor series near x and neglecting the fourth- and higher-order terms (for 

more details one is refered to 'l2y7). In Eq. (1 )  externa1 body forces were neglected, 

J o ( f f )  , J 1 ( f  f )  and J"(f f )  are defined in I. by Eqs. (2.5) and JIrl ( f  f )  stands 

for 

In Eq. (2 )  a is the diameter of a spherical particle and the prime and the index 1 

in f refer to the velocities (c, c i )  and (cl,c{) of two particles' before and after the 

collision, respectively. These velocities are connected by the relations 

where g = c1 -c is the relative linear velocity and k the unit vector in the direction 

of the line which joins the two particles centers at collision, pointing from the 

particle labeled by 1 to the other. Further, dk = sin B de de is an element of solid 

angle with O < B 5 representing the angle between k and g and O 5 c 5 21r the 

angle containing k and g and a reference plane through g. 

For the approximation given by Eq. (1) we are interested only in the balance 

equations for m a s ,  linear momentum and energy. Hence the multiplication of Eq. 

(1) by a summational invariant li(c), and integration over a11 values of C, lead to 

an equation of transfer which can be written as 
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where Q, @, C#( and +fl are defined in I. by Eqs. (2.7) and 

where dI' = a 2( g  - k)dk dcI dc. 

3. The five-field theory 

We recall that a macroscopic state of the gas in the five-field theory is charac- 

terized by the fields of 

- mass density, { , - velocity, and 
T = " J  

(6) 
m c 2  f dc - temperature. 

m is the mass of a fluid particle, Ci = c$ - vi the peculiar velocity and k the 

Bol tzmann constant. 

By choosing respectively S, equal to m, me, and m c 2 / 2  in the transfer equation 

(4), we get the balance equations for the five scalar fields, which read 

in the above equations p*j and q; are the total pressure tensor and the total heat 

llux, respectively. Here they are defined by 

p*, = pij + pfj + p!! t j  + pF z j  > 9. = qi + 9; + 9;' + QY- (10) 

Pij, pfj, P;, qi q,! and q,!' are given in I through Eqs. (3.1), (3.6) and (4.4) and 
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The aim of this paper is the knowledge of the total pressure tensor and of the 

total heat Aux as a functions of the fields of density, velocity and temperature 

and their gradients. In order to determine them we need to know the distribution 

f (x,c,t)  as function of the above mentioned fields. In the next section we shall 

determine the distribution function through two methods, i. e., the method of 

moments of Grad and the method of Chapman-Enskog. 

4. T h e  determination of t h e  distr ibut ion function 

A. The method of moments of Grad 

Here we shall characterize a macroscopic state of the gas by the 13 scalar fields 

o f 
e = J m f d c  - mass density, 
V ,  = i mei f dc - velocity, 

pjj = mCiCi f dc - kinetic pressure tensor, and (13) 

qi = i m ~ ~ ~ ~  f dc - kinetic heat flux. 

The balance equations for these fields are obtained from the equation of trans- 

fer (2.6) given in I, by choosing S, equal to m ,  mci, mCiCj and rnC2C,/2, respec- 

tively. 

where Pijk, P f ; k ,  qij, q;, Pij, P;, Qi and Q; are defined in I by Eqs. (3.6) and 
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avj t 

+-(C; - C ; )  f f ikkkldr  - Xm(~$'i - f flkkkifl, 
ax1 I (18) 

The fluxes pijk, pijk, P{/k, q,j, qij, qf;, p{j, p:/, q{ and qir and the production 

terrns Pij ,  P$, P f ,  Q,, ~f and Qir are evaluated by insertion of Grad's distribution 

function 

into their definitions and integration. By neglecting the gradients of p(,,) and 9; 

in the fluxes and a11 non-linear terms we get the results (3.10), (3.11) and (4.5) of 

I and 

where 

,xid is the coefficient of shear viscosity for an ideal gas of hard spherical particles. 

407 
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Now we insert the above results into the balance equations (14)-(17) and get 

the following system of linearized field equations for e, V;, Pi j  and qi, viz., 

Equations (29) and (30) are the trace and the traceless part of Eq. (16), respec- 

tively. 

Following the same scheme as in I, we shall use Eqs. (30) and (31) and an 

iterative method akin to the Maxwellían procedure in order to express p(i3) and 

qi as functions of the five scalar fields e , vi and T. For the first iteration step we 

insert the equilibrium values $:.) = O and q<) = 0 into the left-hand side of E ~ s .  

(30) and (31) and obtain the first iterated values pl:j, and on the right-hand 

side, i. e., 

NOW by inserting the first iterated values pi::., and gil) into the left-hand side of 

Eqs. (30) and (31), the second iterated values follow on the right-hand side 
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In order to get Eqs. (34) and (35) we have eliminated the time derivatives of vi 

and T by the use of Eqs. (28) and (29). Moreover, in the former equations we 

have not considered gradients of order higher than two. 

With the above results we can express Grad's distribution function in terms 

of the five scalar fields e, v, and T. Indeed, insertion of Eqs. (34) and (35) into 

Eq. (22), leads to 

B. The method of Chapman-Enskog 

In this section we shall look for the solution of the approximate Enskog equa- 

t ion 

Df = JO(ff)  + J1(f f )  + JYff) '  (37) 

which corresponds to the third approximation of the single-particle distribution 

funct ion 

f (x,c,t) = f (O) + f(') + f (2). (38) 

409 
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f (O) is the Maxwellian distribution function 

f ('1 is the second approximation of f (x, c, t )  which is the solution of the following 

integral equation 

where s(")(c2) denote Sonine polynomials. f ('1 was first determined by Enskog2 

and its first approximation in the infinite series of Sonine polynomials reads 

The determination of f ('1 proceeds by insertion of Eq. (38) into Eq. (37) and 

keeping only the highest terms on each side of the latter equation. Hence it follows 

In Eq. (42) we have neglected a11 non-linear terms and a11 terms that lead to 

gradients of order higher than two. 

The third approximation f@) is constrained by the relation 

Moreover, in order that f ( 2 )  be a solution of Eq. (42) it is necessary that 

In Eqs. (43) and (44) S, represents a sumrnational invariant. 

4 10 
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By choosing Si equal to m, me, and mc2/2 in Eq. (44) it follows, after rear- 

rangement and linearization 

Equations (45)-(47) represent the linearized field equations of a Navier- Stokes and 

Fourier fluid. In these equations p*, p, q and X denote, respectively, the pressure 

and the coefficients of shear viscosity, volume viscosity and thermal conductivity 

of a moderately dense gas of hard spherical particles. They are given by 

In the above equations c, = 3k/2m is the specific heat at  constant volume and 

e* = be the reduced density. 

Equations (40) and (45)-(47) are used to eliminate the ~O(f(')f(')) term and 

the time derivatives of e, v; and T from Eq. (42) resulting in a linearized integral 

equation, which reads 
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The solution of the linearized integral equation (52) which satisfies the con- 

straints (43) and corresponds to the first approximation in the infinite series of 

Sonine polynomials, can be written as 

The scalar coefficients ai through as do not depend on C and are determined from 

the integral equation (52). Since the two underlined terms contribute neither to the 

total pressure temor p*j nor to the total heat flux qt, we shall delete them from the 

expression given by Eq. (53). The coefficients a2 and a3 can be found by insertion 

of Eq. (53) into Eq. (52), muitipíication by s~')(c~)c~c, and integration over a11 - 
2 

values of c. Hence it follows 

Following the same procedure but multiplying the Eq. (52) by s ~ ) ( c ~ ) c [  one can 
5 

get the coefficients a4 and as, viz. 
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Now the insertion of Eqs. (54)-(57) into Eq. (53) and the substituition of 

f('), f(') and f ( 2 )  into Eq. (38) leads, after some rearrangement, to  the same 

distribution function given by Eq. (36). 

5. The determination of p:, and qt  

Once the distribution function is known, one can determine the total pressure 

tensor p:, and the total heat flux q,^. If we insert Eq. (36) into the definitions of 

p, through Piy and qi through qy', integrate and leave out a11 non-linear terms 

and a11 gradients of order higher than two, we get 

where 

64 1 pid 2 1 e* dx 
& I = - -  (-1 [ I +  ---I 

2 5 ~  e2 x 8 x de* 

6 1 pid 5 
a 2  = -- (-)2 [I + 5xe*] (xe*l2, 

5xeT x 
1 p i d 2  14 44 8 192 

03 = - (--) (1 + gxe* + -(xe*)l+ (- - - ) ( ~ e * ) ~  e2 25 25 1 2 5 ~  
4 4 24 a~ 

+[i + gxe* + (z - 5)(~e*)2]-e*2}, de* (62) 

1 j . ~ ' ~  2 6 
a4 = - 14 492 (-) [ l + s x e * + ( % + ~ ) ( x e * ) 2 + ( 1 2 5 + 5 ) ( x e * ) 3 ] ,  (63) 

eT x 
3 pid 8 21 44 18 124 

@i = [l+:xe*+ (% + -) 25n (xe*12 + (= + %) ( ~ e * ) ~ ] ,  (64) 

151 pid 2 11 8 9 8 
B2 = - - (-) [I + 5 ~ e *  + (E - -) (xe*)' + (% - 25) ( ~ e * ) ~ ] .  (65) 

4 e  x 25 25ã II 

By inspecting Eqs. (48)-(51) and (60)-(65), we note that the linearized Burnett 

equations for a rarefied gas6 are recovered, if we put e* equal to zero in these 

equations. In this limit, the volume viscosity vanishes as well as the coefficients 

413 



W. Marques Jr. and G. M. Kremer 

a1 and C Y ~ .  The two latter coefficients lead to effects that do not appear in the 

case of a rarefied gas. Indeed, by taking the trace of Eq. (58), one obtains for the 

total pressure pt = p&/3 the following expression 

On the other hand, Eqs. (60) and (61) show that the coefficients cri and as are 

positive. Hence the pressure increases for a gas at rest (v, = 0 )  and with a uniform 

density providing the Laplacian of the temperature is positive. The same occurs 

if the temperature is uniform and the Laplacian of the density ie positive. The 

term corresponding to the second gradient of temperature will be called thermal 

(or temperature) pressure, and the other density pressure. 

6. The  propagation of plane harmonic waves 

In this section we shall analyze the problem concerning the propagation of 

longitudinal plane harmonic waves of small amplitudes. We begin with the substi- 

tution of Eqs. (58) and (59) into the balance equations 

of linearized field equations for e, v ,  and T ,  which reads 

(7)-(9) and get a system 

The index zero corresponds to a reference state of constant and T and vanishing 

v,. 

We look for plane wave solutions of the system of partia1 differential equations 

(67)-(69) which have the form 
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Without loss of generality we treat only the one-dimensional case and take the 

x-axis as the direction of propagation. In Eq. (70) w > O is the circular frequency 

of the forced wave, kc = kr + iki(k' > O) is the complex wave number and 2, T 
and 2, are complex amplitudes. The amplitudes are considered to be small such 

that their products can be neglected. 

The dispersion relation is a relationship between the circular frequency u and 

the complex wave number kC of a plane harmonic wave. It is obtained by insertion 

of Eqs. (70) into the linearized field equations (67)-(69) and taking the determinant 

of the system of linear homogeneous equations for the amplitudes of the wave equal 

to zero. 

where 

In the above equations v: is the adiabatic speed of sound, 7 the specific heat ratio, 

Dv the longitudinal kinematic viscosity, DT the thermal diffusivity and Re the 

Reynolds number. The coefficients DA, DB and Dc do not have proper names. 

From the dispersion relation (71) one can get the phase speed v = w / k r  and 

the attenuation coefficient a: = -ki of the wave. Here we shall give the solution 

of the dispersion relation which corresponds to the low frequency limit. Hence by 

expanding k C/ w  in powers of 1/Re and retaining terms up to order two, it follows 
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If we put DA = DB = DC = O in the above equations, we recover the results of 

the Navier-Stokes and Fourier theory. 

As was remarked in Ref. 9 the speed of forced waves given by Eq. (76) 

together with the speed of free sound waves and with the speed that follows from 

light scattering experiments (Eqs. (36) and (55) of Ref. 9) lead to three different 

ways of measuring the dispersion of sound waves in fluids. 

7. Final remarks 

We have determined the linearized Burnett equations for a gas of hard spherical 

particles from Enskog's dense gas theory. 

The expressions for the pressure tensor p& and for the heat flux q: given by 

Eqs. (58) and (59) have the same form as those of a phenomenological theory 

based on an extended thermodynamic theory of dense gases.10 On the other hand, 

the transport coefficients given by Eqs. (60)-(65) could differ from those of the 

so-called modified Enskog theory.ll This was pointed out in Ref. 11, and it was 

confirmed in Ref. 12 that the two theories lead to different expressions for the 

transport coefficients of mixtures. 

The determination of the linearized Burnett equations from the modified En- 

skog equation and the comparison of the transport coefficients of the two theories 

will the subject of a forthcoming paper. 
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Note added in proof 

Recently it was proved13 that the transport coefficients for the linearized Burnett 

equations that follow from the Enskog equation are the same as those that follow 

from the so-called modified Enskog theory. 
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Resumo 

A partir da teoria de Enskog para gases densos e dos métodos de Chapman- 
Enskog e Grad, determina-se a terceira aproximqão para a função de distribuição 
de um gás monoatômico moderadamente denso constituído de partículas esféricas 
rígidas. As equações linearizadas de Burnett, obtidas através da terceira apro- 
ximação para a função de distribuição, indicam que o tensor tensão contém dois 
termos que não aparecem no caso de um gás rarefeito. Estes estão relacionados 
aos Laplacianos de temperatura e densidade e são denominados de pressão térmica 
e pressão de densidade. A velocidade de fase e o coeficiente de atenuwão para 
ondas harmônicas pla.ias com pequenas amplitudes são determinadas no limite de 
baixas freqüências. 


