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Abstract Thethird approximation of the distribution function for a mod-
erately dense monatomic gas d hard spherical particles is determined from
Enskog's dense gas theory through the methods d Chapman-Enskog and
Grad. The linearized Burnett equations, obtained from the third approxi-
mation d the distribution function, indicate that the stress tensor has two
terms which do not appear in the case of a rarefied gas. They represent
athermal (or temperature) pressure and a density pressure and are asso-
ciated with the Laplacians o temperature and density, respectively. The
phase speed and the attenuation coefficient of plane harmonic waves of small
amplitudes are also determined in the low frequency limit.

1. Introduction

In a previouswork,! henceforth denoted by 1, a 13-field and a five-field theory
were developed for monatomic dense gases d hard spherical particles, based on
Enskog's densegas theory? and on Grad’s method of moments.® The constitutive
relations for the pressure tensor and for the heat flux, corresponding to the second
approximation of the distribution function (laws of Navier-Stokes and Fourier),
were obtained from the transition d the 13-field theory to the five-field theory
through an iteration method akin to the Maxwellian procedure.* Moreover, the
problem concerning the propagation of plane harmonic waves of small amplitudes
was analyzed for both cases.

In 1879 Maxwel1® obtained an expression for the stress tensor from the kinetic
theory of gasesgoing beyond the Navier-Stokesequations. He showed the existence

of athermal (or temperature) stress by relating the stress tensor to second gradients
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of temperature. In the kinetic theory of gases this relationship is attained from
the third approximation o the distribution function. The complete expression for
the stress tensor which follows from the third approximation of the distribution
function was given later by Burnett®, and that corresponding to the heat flux
by Chapman and Cowling.” These equations are known nowadays as the Burnett
equations.

The aim o this paper is the determination of the linearized Burnett equations
for a moderately dense gas of hard spherical particles. Based on the theory of
Enskog for a dense gas we determine the third approximation of the distribution
lunction through the method of Grad, following the methodology given in I. The
same distribution function is obtained through the use o a different method,
namely, the method of Chapman-Enskog.” In thismethod the distribution function
is determined as a solution o the integro-differential equation of the modified
Boltzmann equation.?

With the knowledge of the distribution function we obtain the'linearized Bur-
nett equations. The expression for the pressure (or stress) tensor of a moderately
dense gas has three terms which vanish in the rarefied gas limit. Oneis the well
known term proportional to the divergence of the velocity and whose coefficient is
the volume viscosity. The two others are respectively proportional to the Lapla-
cian of the temperature and to the Laplacian of the density. The first refersto a
thermal (or temperature) pressure, and the second to a density pressure.

Likein the previouswork, we analyze the problem concerning the propagation
of plane harmonic waves of small amplitude and determine explicitly the phase
speed and the attenuation coefficient of the wave in the low frequency limit. For
the notation and the definition of the terms not given here, we refer the reader to
1

#. Theequation of transfer

The theory of Enskog for a moderately dense gas of hard spherical particles
is based on the so-called Enskog equation, which is a generalization of the Boltz-
rnann equation for the single-particle distribution function f (x,c, t). This theory
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considersonly two-body collisions but takes into account the difference in position
of the calliding particles and the increase in frequency o collisons by a factor x,
which is identified with the local equilibrium radial distribution function.

Here we shall use the following approximation

of of

Df = 5 +eigy = I°UN + 3101 + I (15) + TN ), (1)

which is obtained from the Enskog equation by expanding the functions x, fi and
fi in Taylor series near x and neglecting the fourth- and higher-order terms (for
more details oneisrefered to 1'%7). In Eq. (1) external body forces were neglected,
JO(ff) , JI(ff)and JU(ff) are defined in |. by Egs. (2.5)and J¥(ff) stands
for

ad 3 p! 3 2 £1 2
J"I(ff) = */{X[flaxigzj;lazk +f8:):gzi16zk} 25}‘ [f'ai,-gi,- +fai,-g;,-]

2 f_‘?ﬁ] 1
61;;, Oz 86:1:18:5 Ok

$2 0% [f’

4 9z,0z; (ff1+ ffl]}k kikia®(g - k)dkdes.

- (2)

In Eg. (2)aisthe diameter o a spherical particle and the prime and the index 1
in f refer to the velocities (c, ¢;) and (c’,¢}) o two particles' before and after the
collision, respectively. These velocities are connected by the relations

d=c+k(k-g), ci=c;—-k(k-g), (3)

whereg = ¢; —cistherelative linear velocity and k the unit vector in the direction
of the line which joins the two particles centers at collision, pointing from the
particle labeled by 1 to the other. Further, dk = sind dé de is an element of solid
anglewith 0 < 8 < Z representing the angle between k and g and 0 < € < 27 the
angle containing k and g and a reference plane through g.

For the approximation given by Eq. (1) we are interested only in the balance
eguationsfor mass, linear momentum and energy. Hence the multiplication of Eq.
(1) by a summational invariant ¥(c), and integration over all values of c, lead to
an equation o transfer which can be written as

B+ el a4 e =0, (4
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where ¥, 47, ¢! and ¢! are defined in |. by Egs. (2.7) and

3 2 2
or__ @ " 9 fi o%f of 8f;
& 16/ X -9)s dz,005 ' oz0m, oz, 0m ]k hskidl

a®  9*

ﬁaz]-azk /X(d)’ =) fi kik;kydl', (5)

where dT' = a?(g- k)dk dc; dc.

3 Thefivefield theory

We recall that a macroscopic state of the gas in the five-field theory is charac-

terized by the fields of
- mass density,
, - velocity, and (8)
T =2 [ mC%*fdc - temperature.

m is the mass of a fluid particle, C; = ¢; — v; the peculiar velocity and k the
Boltzmann constant.

By choosing respectively ¢ equal to m, me, and mc?/2 in the transfer equation
(4), we get the balance equations for the five scalar fields, which read

dg | Bov;

o om0 (M
Bgv,- 7] * '
Y + -a—j(gvl-vj +pj;) =0, (8)

d /3 k 1, d /3 k 1 . .
5107 +50°) + o [(GomT + vt +piws +at] =0 (@)
In the above equations p;.‘j and ¢r are the total pressure tensor and the total heat

flux, respectively. Here they are defined by

Ir I!I
ph =pi T pl; + plf + olf’s ‘=g +q taltd (10)

Lij» DLy Pff, g: ¢/ and ¢/7 are given in | through Egs. (3.1), (3.6) and (4.4) and

82 2
i o= ~ e[ Sh 8*f . 38f 8h
plj 16 Xm(C 61)[ axkaxl + f] axkaxl 28:1:'c 01 ]k kkkldr
@ 8?2
+4—§3$kaxl /Xm(c;' — ¢;)f fikjkikidl, (11)
3 2 2 2 .
m_ & ¢t 9 fi 8 f af af;
q; 16 Xm( 2 ) {faz].axk + 18:5].8@c 23$] £ ]k ik ik dl

3

a® 9 2 el
+Z§m/"m<7 - E)fflkikjkkdr. (12)
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The aim of this paper is the knowledge of the total pressure tensor and of the
total heat flux as a functions of the fields of density, velocity and temperature
and their gradients. In order to determine them we need to know the distribution
f(x,¢,t) as function of the above mentioned fields. In the next section we shall
determine the distribution function through two methods, i. e., the method of
moments of Grad and the method of Chapman-Enskog.

4. The determination of the distribution function

A. The method of moments of Grad
Here we shall characterize a macroscopic state of the gas by the 13 scalar fields
Of .
o= [mfdc - mass density,
=3 [ meifdc - velocity,
pi; = [ mC,C;fdc - kinetic pressure tensor, and
= [ 1mC?*Cfdc - kinetic heat flux.
The balance equations for these fields are obtained from the equation of trans-

(13)

fer (2.6) given in 1, by choosing ¢ equal to m, me;, mC;C; and mC?*C;/2, respec-

tively.
613 dovi _
dz; (14)

891}, 9 I 17

EY; + E(eij + pij + Py + pij) =0, (15)
Opi; a

ETR 5}“(”‘1”" + Puje + Pigk + ) + (pik + Py + P:k)az

v,

* =P+ P+ PJ

+(p7k+p]k+p]k) i7 (16)

8qt 7] 1 11 vy II av]
at + o5 a (qtv” + q‘J + qu + qt]) (qj + qj + Qj )5—15 + (szk + ps_;k + puk) az

dzy

pt] 0 Prr a

s 97, (o + Pix + Pix) — 70 3z, Pk PP =@+ Qi+ Q' (17

where p;jx, p{jk, @55 q{j, P, P, ”, Q: and Q] are defined in | by Egs. (3.6) and

2
= [omtcics - coprin (L) kekar - & [ xm[§ 5. (6 = <)
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+Z—g(02 = ¢;)| T fukgkidl - ‘—zi—a- / xm(C{C} — CiC;)f fikikdT, (18)
g = i—z/x ( C' ¢ )fflaxk( ffl)k,-kkdr

—%2/xm[%(gf— %%) g"' (clc! - C,Ci)]fflkjkkdl‘

-%% / xm(Sci- e kg, (19)
Py ~g83/ [ai:ax( —¢) + a:gxz(c —C')}fflkkkzdf

2 [t -0y [ 1k -+ B,

[
~

N

a? 8%,- c” CZ a?vr t vt
& X — T (c'c!' -c.C k;kpdl’
/Xm[azjaxk( >+ 0z Oz (GG -G r)]ffl 7
Cc"? C? *f a*fi af dh
il ’.__ — 92— " k:kdT. (21

xm C i ) [8:5]6:% fit fax]-ax,, 28:1:j azk] 7k (21)

The fluxes pijk, Plg, Pijys iss 94> 44 » Pijs Py » 4; @nd g}7 and the production
terms P;;, P,], P{]’, Qi, Q] and Q' areevaluated by insertion of Grad's distribution
function

m \3 2 3
fz}%(%k:f) exp(—r:/g‘){1+(kT)zzlg{ (i) CiCs +2q‘(5kc:'r 1) ]} (22)

into their definitions and integration. By neglecting the gradients of p(;y and ¢;

in the fluxes and all non-linear terms we get the results (3.10), (3.11) and (4.5) of

| and
48 k u oT oT aT
I _ 22,2 ( 2 5. 4 ¢, —&; 23
vk o5t m x b (81: bis + dz; ik + oz Jk) )
264 k _u vy 50v,
L L Y ] 24
%= emml x X0 (3 ;) 60z ”) 9
I _ o _
P; =0, QI =o, (25)
where .
. 5 /kTm\2 27 a®
id _ (2 - 26
16a2( v ) , b= 3m’ (26)

4 is the coefficient of shear viscosity for an ideal gas of hard spherical particles.
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Now we insert the above results into the balance equations (14)-(17) and get
the following system o linearized field equations for g, v;, p;; and g, viz.,

Je o, ' :
5t ¢ a P @
Av; aT 9x, 2\ 9e
93;'*’ —2(1+Xl’9)2«)_‘ +_“T(1+2Xbe+ 302 )3:1:,
(U) 96 p, 9,2 2 82 Y(g 5 azv, _
O o) B 2 7 = =0, 28
kT 2 dui 20, 3 0y 16 ke 4.9 4 9°T
kOT 2 k ; 3 16k p =0, (29
e m 3t +32 T(l‘\‘“XbQ)a (1+ xbe )61',, 5t m X be dz,;0z; O,( )
F) k 3 Aqy
’g”) + 20 T(l + xb )—% + (1 + gxbe)gx—(;
i
96 k' 55, 0T X k
b2t 9t s 30
257‘!’771 X —X oz (ax]) W‘lgm p(tJ) ( )
dgi 5 (k\? aT 3. \9P)
hiatl —xbo |
% Q(M) T(1+ ng) Oz, + T( * X 2) oz
24 kg g, 50 O 5 &%\ _ 2 x kT 31
257[_ mT X b 0 <ax]a$1) Gaziaxr) - 3 gde q . ( )

Equations (29) and (30) are the trace and the traceless part o Eq. (16), respec-
tively.

Following the same scheme as in |, we shall use Egs. (30) and (31) and an
iterative method akin to the Maxwellian procedure in order to express p(;;y and
g; asfunctions o the five scalar fieldsg , v; and T. For the first iteration step we
insert the equilibrium values p Py )) =0 and q( ) |nt0 the left-hand side of Eqgs.
(30) and (31) and obtain the first iterated values p{}), and ¢{") on the right-hand
side, i. €.,

v 96 (N2 1 o*T
(1) ok ('. 2b2 2 32
pipy = 2% (1+ xbg) 5z, +257r( ) X z0a,” (32)

2 2
(1)—ﬁl5__k_“_'d 3 or L 381 9,2 2f TV 5 8%, (33
- 4mx (1+5ng)azi+257fe(x) x't'e (axjazj)+63z,-3z,)( )

Now by inserting the first iterated values p{}), and g{") into the left-hand side of

Egs. (30) and (31), the second iterated values follow on the right-hand side

A -5 (o) s ) o e (2

4 Oz;) 5 25 257 a:z:(ia:tj)
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2 (wy? 212 2 ax, 2] 9% 34
—?(—X—) [1+——xbg+ ~x*b%0 +(1+ xbg) bg]az“h) (34)
id id 2 12 %
@_ _B5kp 3 )3T 3 (pt 6 _-) 22 2] s
“ T T m X ( t3 Xb 63:,+ ( X ) [1+ng+(25+257r xoe 0z;0zj

151 (p'd 8 3 8 “2}31;, .
_0(E ° SN B F Do) Bidid S 35
4 g( X ) {1 + 5xbg+ (5 257r)x e dz0z, (35)

In order to get Egs. (34) and (35) we have eliminated the time derivatives of v;

and T by the use of Egs. (28) and (29). Moreover, in the former equations we
have not considered gradients of order higher than two.

With the above results we can express Grad's distribution function in terms
o the five scalar fields g, v, and T. Indeed, insertion of Egs. (34) and (35) into
Eqg. (22), leads to

3 2 pid v
1= 2 (mr) oo () 1+ () o2 (4 5re) 5

id ' 2
+91T (ﬁx_)z [1 + éxb + (275 + 59;7) Xzbzgz] 6:1:?52: )

2

) 5
2 id ’

() (e ) (1 i) 5 - () T e

i A%y,

(g_ ?:}) i aij;;, +Z(E{;)2 [ xbet (25 21527r)xzb222] 81:,-;:]-) b

(36)

R R (O P

B. The method of Chapman-Enskog
In this section we shall look for the solution of the approximate Enskog equa-
tion

Df=J°ff)+J(7 )+ IT(f ), (37)

which corresponds to the third approximation of the single-particle distribution
function
f(x,c,t) =fFO+ (1) 4 £, (38)
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f ) is the Maxwellian distribution function

_ 82/ m 3 mC?
19 = 2 (omr) = (~ 57 )- (39)

f (1) is the second approximation of f (X,c,t) which is the solution of the following
integral equation

or

1 3
7O{= (1 + 5xte) s
1

1 2 m vy
214 %4p O o o.c. o] — go( 50 £(1) , 40
+ 1+ 5x0e) msP(c )CiCig, o} = IUOS),  (10)

where S,(,{')(C'Z) denote Sonine polynomials. () was first determined by Enskog?

and its first approximation in the infinite series of Sonine polynomials reads

3 m 3 aT
0 = f(o){__ﬂ (1 + gxbe) Sél)(cz)cig
1

2 x okT?
id 2
_p mt o2 Octyo.c, 2V 41
” gk2T2(1+ 5xbg)S% (c )C’C’azj)}‘ (41)

The determination o f (2) proceeds by insertion of Eq. (38) into Eq. (37) and
keeping only the highest terms on each side of the latter equation. Hence it follows

D(fO 4 f0) = JO(FO £ 4 Jo(FO f 4 JI( £ £(O)
+ I (fOF0) 4 T (£OFO). | (42)

In Eq. (42) we have neglected all non-linear terms and all terms that lead to
gradients o order higher than two.
The third approximation () is constrained by the relation

[ 1%e ~o. (43)
Moreover, in order that £(2) be a solution of Eq. (42) it is necessary that
/ YD(fO + fM)de = 0. (44)

In Egs. (43) and (44) ¢ represents a summational invariant.
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By choosing ¢ equal to m, me; and mc?/2 in Eq. (44) it follows, after rear-

rangement and linearization

dg | Oov;
at " dz; 0 (15)
dv; dv; op* 8%v; ”(1
= 46
(at o ’ax ) + oz; 8:1:,81:J — 2 61:,81:) =0 (46)
oT oT L, OU; 9T
z = 47
“-’c"( at " Yiag, ) LA PR v v (47)

Equations (45)-(47) represent the linearized field equations of a Navier- Stokes and
Fourier fluid. In these equations p*, u, n and A denote, respectively, the pressure
and the coefficients of shear viscosity, volume viscosity and thermal conductivity
of a moderately dense gas of hard spherical particles. They are given by

= eﬁT(l + xe*), (48)
p= ”: [1 + sxa + (24—5 + %)(xe*)z], (49)
n = égg;(xe )% (50)
A= gc"#: [” ?"9 * (295 257r)( 7) ] 6D

In the above equations ¢, = 3k/2m is the specific heat at constant volume and
¢* = bp the reduced density.

Equations (40) and (45)-(47) are used to eliminate the JO(f(© (1)) term and
the time derivativesof g, v; and T from Eq. (42) resulting in a linearized integral
equation, which reads
f(o){

d

(e ) spien+ v i) T _1m iy,

eT dz;0z; 20kT? x
Exbg + 2b2 2) S(O)(Cz) (1 + —xbe 1t 175 xe 2) S(l)(c2)] &) ?2 Z5)

'*'Ef’Z—TuX [ + 12 Xb.t_H- gxzbzg2 + (1 + szg) %be ] (0)(02)0‘ 155%;_)

+§ac’%‘—”:[(l +xbg+ X2b2 2)5(1)(02) 2b2 2S(°’(CZ)J ‘3_8'%)%;
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—Q,%‘i;[(l + gxbg+ §x2b2g2>sg)(02) = 6 2s(°)((12)] ai,;;,
_E%_Zu; [ ;ng L 12 2b2 2] S(O)(CZ)C<iC,-Ck)5%;}
_ﬁfxf(o)f£0){%[(cll)2 _ (01)216‘:;;] n 70_1_‘ cv

—cY 61:,; }k kia?(g - k)dkdey = JO(f©F@), (52)

The solution of the linearized integral equation (52) which satisfies the con-
straints (43) and corresponds to the first approximation in the infinite series of

Sonine polynomials, can be written as

2T 9?
@ = f 5 (c2) 2T )00 2L 44550 (C?)CiCy
fB=f {aS (o) ooy 92:97, +as )(c?) Fowr )+a3 (e !9z 40
OI; Wy 2V ©) (o2 v
C*)C; cHe; chcucie 53
tasSy (C)Cig—— a,“s (C*)Cimz 61:>+ a5y (CCWCiCh 55~ Bk}( )

The scalar coefficients a; through ae¢ do not depend on C and are determined from
theintegral equation (52). Since the two underlined terms contribute neither to the
total pressuretensor p:fj nor to thetotal heat flux g}, we shall delete them fromthe
expression given by Eq. (53). The coefficients az and a3 can be found by insertion
of Eq. (53) into Eq. {52), multiplication by S %)(C?)CiCp, and integration over all

values o c. Hence it follows

ax = %2—22—?1,—3(%“)2[1 + -xbo + (275 + 2—956;))(217292], (54)
ag = —?Z;Z—Ti(%)z[l + ——xbg i x262gz + (1 + xbg) 3’9‘@2], (55)

Following the same procedure but multiplying the Eq. (52) by Sél)(C’Z)C: one can
get the coefficients a4 and as, viz.

3 m? pid\2 8 3 81\ 4
S ° S B 2] 56
o 2gzk2T2( x) [1+5be+ (5 257r)x 2 (56)
6 m? pidy2 6 12\ 4., 2]
= e . 7
% = TE kiTE ( X ) [1 + xbe + (25 * 257r)x e (57)
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Now the insertion of Egs. (54)-(57) into Eq. (53) and the substituition of
O, f0) and f® into Eq. (38) leads, after some rearrangement, to the same
distribution function given by Eq. (36).

5. The determination of p;; and ¢f

Once the distribution function is known, one can determine the total pressure
tensor p;*]- and the total heat flux ¢f. If we insert Eq. (36) into the definitions of
pij through pf} and ¢; through ¢/, integrate and leave out all non-linear terms

and all gradients of order higher than two, we get

L = LI
203 a::,zag z; tos a_;jggf’)
@t = =Ag—+h az,a;,) @g‘%z_;’;—,

where
alzg,_r;@)%g%a—ﬂ(xe), )
= g (5 [+ BxeJve )
aszé%“f{w%xe+§(xe>2+(§—%><xe*w

Hie S (- ) )] G, @
a4=g(§>2[1+gxg*+(;+.;;;><XQ*)2+<%+1g13>(e)], &
by = 3("7“’)2[1 et (B B+ (B 2 ey], 69

151 u“)z u 39 8 24 (8
= | — == * = _ = * * . 65
b 4e(X 14 5xe + (25 757) eV (55 - 251r)("9)] (65)
By inspecting Egs. (48)-(51)and (60)-(65), we note that thelinearized Burnett

equations for a rarefied gas® are recovered, if we put g* equal to zero in these

equations. In this limit, the volume viscosity vanishes as well as the coefficients
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oy and aa. The two latter coefficientslead to effectsthat do not appear in the
case d ararefied gas. Indeed, by taking the trace of Eq. (58), one obtainsfor the
total pressure p* = p%,/3 the following expression
v, 9% 2T
p=p- "a to dz,0z, tey dz,0z,
On the other hand, Egs. (60) and (61) show that the coefficients ;3 and ap are
positive. Hencethe pressure increasesfor a gas at rest (v, =0) and with a uniform

(66)

density providing the Laplacian d the temperature is positive. The same occurs
if the temperature is uniform and the Laplacian o the density is positive. The
term corresponding to the second gradient of temperature will be called thermal
(or temperature) pressure, and the other density pressure.

6. The propagation of plane harmonic waves

In this section we shall analyze the problem concerning the propagation of
longitudinal plane harmonic waves of small amplitudes. We begin with the substi-
tution o Egs. (58) and (59) into the balance equations (7)-(9) and get a system
d linearized fidd equations for p, v, and T, which reads

gg + °Z::: =0, (67)
2., . 2y,
w4 (B) 22+ (5 o~ (104 59 3ot~ 20505
-(%ag—"‘l)&%&;* (2a4+a2)—a—:c£—;—?a-z-; =0, (68)
rovaT o %Zf _ ’\aijgxi + (‘50 - 5) 5;%;; =0. (69)

Theindex zero corresponds to a reference state d constant g and T and vanishing
v,.

We look for plane wave solutions of the system of partial differential equations
(67)-(69)which have the form

0 =0o+8 expli(wt —k°z)], T =To+T expli(wt—kz)], vz =P expli(wt—k‘z)].
(70)
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Without loss of generality we treat only the one-dimensional case and take the
x-axis as the direction o propagation. In Eq. (70) w > O isthe circular frequency
d the forced wave, k® = k" + iki(k” > O is the complex wave number and 6T
and 9 are complex amplitudes. The amplitudes are considered to be small such
that their products can be neglected.

The dispersion relation is a relationship between the circular frequency w and
the complex wave number k¢ of a plane harmonic wave. It is obtained by insertion
of Egs. (70) into the linearized fieldequations( 67) - ( 69)and taking the determinant
o thesystem of linear homogeneous equationsfor the amplitudes of the waveequal

to zero.
(54) -5 (%) s —z(DEf%Za] “(5) 1o

_M)L_ 1 Dr 1] ( ot 2[ (1+—i)]—1=0,(71)

D? Re? "~y Dy Re Dy Re
where
5k 2 30 3
vy = (_—'To) [1 + 2x00; + —(X023)2 + ——2(‘*2932] , (72)
5 5 dg;
*
=14 21 + 2X090 (;;090) (73)
3 1+ 2x00% + 3?9932
_ P (2 0 ) P (2 0 o) _(4 0 o)
Dy = Dy — 280~ 8%, Do=(-al-a%),(74
A ech 3044 +a B TOQng 351 B2 c 30‘3 1):(74)
A 1 /4 vi?
Dy = > s Dy = —<—No + 7)0), Re = Do (75)
20Cy 00 \3 Dyw

In the above equations v} is the adiabatic speed of sound, 7 the specific heat ratio,
Dy the longitudinal kinematic viscosity, Dr the thermal diffusivity and Re the
Reynolds number. The coefficients D4, Dg and D¢ do not have proper names.
From the dispersion relation (71) one can get the phase speed v = w/k" and
the attenuation coefficient a = —-k' of the wave. Here we shall give the solution
of the dispersion relation which corresponds to the low frequency limit. Hence by
expanding k/w in powersd 1/Re and retaining terms up to order two, it follows

1 (3vy—7)(v-1),, 5(rv—1) 8 , Da+Dp—Doy 4
v—vo{H— = [ 87 DE+ ™ DTDV+§DV———2———]w }
(76)
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o= (502 m
If we put D4 = Dg = D¢ = 0 in the above equations, we recover the results of
the Navier-Stokesand Fourier theory.

As was remarked in Ref. 9 the speed o forced waves given by Eq. (76)
together with the speed o free sound waves and with the speed that follows from
light scattering experiments (Eqs. (36) and (55) of Ref. 9) lead to three different

ways of measuring the dispersion of sound waves in fluids.

7. Final remarks
We have determined the linearized Burnett equations for a gas of hard spherical
particles from Enskog's dense gas theory.

The expressions for the pressure tensor p;; and for the heat flux ¢} given by
Egs. (58) and (59) have the same form as those o a phenomenological theory
based on an extended thermodynamic theory of dense gases.!® On the other hand,
the transport coefficientsgiven by Egs. (60)-(65) could differ from those of the
so-called modified Enskog theory.!! This was pointed out in Ref. 11, and it was
confirmed in Ref. 12 that the two theories lead to different expressions for the
transport coefficientsof mixtures.

The determination of the linearized Burnett equations from the modified En-
skog equation and the comparison of the transport coefficientsof the two theories
will the subject o aforthcoming paper.

Acknowledgment

Ore of the authors (G.M. K.) gratefully acknowledgesthesupport by the Conselho
Nacional de Desenvolvimento Cientifico e Tecnolégico (CNPq).

Note added in proof

Recently it was proved!® that the transport coefficientsfor the linearized Burnett
equations that follow from the Enskog equation are the same as those that follow
from the so-called modified Enskog theory.
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Resumo

A partir da teoria de Enskog para gases densos e dos métodos de Chapman-
Enskog e Grad, determina-se a terceira aproximacao paraafuncao de distribuic¢éo
de um gas monoatémico moderadamente denso constituido de particul as esféricas
rigidas. As equagOes linearizadas de Burnett, obtidas através da terceira apro-
ximag&o para a funcgdo de distribuicdo, indicam que o tensor tensdo contém dois
termos que ndo aparecem no caso de um gas rarefeito. Estes estdo relacionados
aos L aplacianos de temperatura e densidade e séo denominados de pressdo térmica
e pressdo de densidade. A velocidade de fase e o coeficiente de atenuagdo para
ondas harménicas planas com pequenas amplitudes sdo determinadas no limite de
baixas fregiiéncias.
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