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Abstract The infinite-range pstate clock spin glass is studied within 
Parisi's replica-symrnetry-breaking scheme. A simplified stability analysis 
of these solutions is performed by taking into account longitudinal fluctu- 
ations only. It is shown that for the case p=3, the simple step-function 
solution is stable, whereas for a11 p # 3 the conventional Parisi solutions 
lead to a marginal stability. It is argued that such a picture should remain 
true in a more general analysis. 

1. Introduction 

The mean-field theory for the Ising spin glassl is well established nowadays 

through the understanding af the infinite-range-interaction model proposed by 

Sherrington and Kirkpatrick ( s K ) ~ - ~ .  The one-parameter theory as introduced 

by S K ~ ,  presented a negative entropy at zero temperature, and was shown to be 

unstable in the spin-glass phase3. The Parisi replica-symmetry-breaking scheme4>' 

is, at the moment, accepted as the correct solution for this problem: a contin- 

u o u ~  and monotonically increasing function defined in the interval [0,1] is used 

to describe the low-tem~erature phase, i.e., one has an infinite number of order 

parameters. At zero temperature, the free energy presents a highly non-trivial 

structure with many valleys separated by barriers which diverge in the thermo- 

dynamic limit7. Surprisingly, any three states chosen at random are restricted to 

an ultrametric condition8: by taking their respective distances in phase space, one 

can only construct triangles which are always equilateral or isosceles, in which 

case, the different size must be the smaller one6. 
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Although a big controversy remains as to whether such features are present in 

real systemsg, recent applications of this mean-field theory in the areas of neural 

networks and optimization problems give a lot of encouragement in pursuing the 

study of infinite-range spin-glass models; one is readily tempted to generalize the 

SK model in order to include spin variables other than the Ising ones. 

The generalization to the infinite-range m-vector spin glasses, in what concerns 

replica-symmetry breaking, gives results which are very similar to the SK model, 

i.e., the Parisi functions are continuous and monotonically increasinglO. A11 models 
4 

studied so far, in which the spin variables are symmetric under reflection (-Si E 

{S i ) ) ,  showed such conoentional behaviour in their order-parameter functions. 

However, the same procedure when applied to systems in which the spins do 

not present symmetry under reflection, like quadrupolarll and Potts glasses12-14, 

turned out to provide rather surprising behaviour. Discontinuities in the Parisi 

functions as well as first-order phase transitions were observed. 

In order to investigate whether such unconventional effects are peculiar to Potts 

and quadrupolar glasses only, or if they also happen on other systems, Nobre and 

Sherrington15 studied the infinite-range pstate clock spin-glass model. In this 

problem, the spins present (do not present) reflection symmetry for every even 

(odd) value of p. It was shown that the case p = 3 is very special; only for this value 

of p one finds the peculiar behaviour already observed for Potts and quadrupolar 

glasses. The absence of refiection symmetry was qualitatively irrelevant for a11 

other odd-state clock glasses, which presented the usuaI continuous monotonically 

increasing order function. One expects the conventional Parisi solutions to pass the 

stability tests for a11 p # 3, at least marginally as in the case of the SK mo de^'^^^^, 
whereas the step-function as proposed for p = 3 14, deserves further investigation. 

In this paper we examine the stability of the Parisi solutions for the pstate 

clock spin glass, restricting our analysis to the longitudinal sector as done by 

'i'houless et a1.l6for the SK model. In section 2 we define the model and apply 

the replica method to it. In section 3 we consider the first stage towards Parisi's 

~eplica-symmetry-breaking scheme by means of a step-function. We show that 

such a solution is unstable for a11 p # 3, but surprisingly, for p = 3, it leads, 
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within this simplified analysis, to a full stability for temperatures just below the 

spin-glass critica1 temperature. In section 4 we consider the full Parisi scheme 

which leads to conventional solutions for a11 p >_ 4; in particular, for p = 4, two 

possible, but similar solutions, in what concern replica-syrnmetry breaking, are 

discussed. Whenever the conventional Parisi function is applicable, one obtains a 

marginal stability only, like in the SK case16r17. Finally, in section 5 we present 

our conclusions. 

2. The model and the replica formalism 

Let us consider the pstate  clock spin glass as defined by the hamiltonian 

where the Si are unit vectors restricted to p orientations in a plane, with comp* 

nents given by 

Siz = cos 6, , Siy = sin Bi, (2 .2~)  

2ã 
9; = -k, (k,'=O,l, ..., (p- I ) ) .  (2.2b) 

P 

Similarly to the SK mode12, one has infinite-range interactions, i.e., the summation 

in (2.1) is over a11 pairs (ij), and the { J i j )  are quenched random couplings following 

a gaussian probability distribution, 

As is well known for the quenched case, one should average the free energy over 

the disorder; this is usually done by means of the replica trickls, 

where Zn is defined, for integer n, as the partition function of n independent and 

equivalent replicas of the original system defined in the hamiltonian (2.1), and [ Ia" 
stands for an average over the disorder. The analytic continuation from integer n 

to n = O is one of the main difficulties found in infinite-range spin-glass problems; 
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for the SK model this was only solved satisfactorily by Parisi's replica-symmetry- 

breaking .scheme4. 

It is important to remember, at this point, that one is interested in the ther- 

modynamic limit, N -+ oo, and it is very convenient in this case to use the steepest 

descent method in order to evaluate [ZnlaV. Strictly speaking, the n + O limit 

must be taken before the N + oo and although no rigorous proof exists, it is 

usually assumed that these two limits can be freely interchanged. For some years, 

it was suspected that this interchange of limits was responsible for the failure of 

the SK solution a t  low temperatureslg, but it is now believed that this does not 

really cause trouble. Then, interchanging the limits, [Zn], can be evaluated by 

steepest descent2, and the free energy per spin, f = [ F ] , / N ,  will be given, in the 

thermodynamic limit, by 

1 
f = lim -rnin[g(Ra, {Q;!))]. 

n-0 n 

In the equation above, the functional g(Ra, {Q;!)) is given by 

where 

AS is well known for infinite-ranged models, the problem is reduced to a single-site 

one; therefore, we discarded the site index for simplicity; p, v denote cartesian 

components (x, y), whereas cr and ,O are replica labels; a!, /3 = 1, ..., n. The summa- 

tions C(,p) stand for sums over distinct pairs'of replicas, a! # /3. The quadrupolar 

parameter, R", which is a measure of anisotropy in the replicated spin space, as 

well as the spin-glass ones, Q$, are determined by extremizing the functional 

g(Ra, {Q$}). They are given respectively by 
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~$=<s;s,P> ; a # / j  (2.7b) 

where the < > brackets denote thermal averagings with respect to the effective 

hamiltonian Heff. For p = 2, the above model reduces to the SK spin glass whose 

solution is well understood nowadays, and Ra is a trivial constant. For the re- 

mainder of this paper we shall restrict ourselves to p > 2. 

The next step now is to find the correct solutions of equations (2.7) in the limit 

n --+ O. It is obvious that Hen is invariant under permutations of replica indices, as 

long n is a positive integer; however, what is not obvious is that this symmetry 

is preserved when one takes n + O. This leads to the point of finding a particular 

parametrization for Ra and Q$ which gives sensible physics after n -t O. 

If no externa1 fields are present, one expects in general that, on the average, 

the system will be isotropic in spin space, and the solutions of (2.7) simpli& a lot 

by assuming the isotropic conditions, 

which means that a11 directions in spin space are equivalent*. Within this space 

of solutions, the free-energy functional in equations (2.6) may be written as 

where 
1 

~ " 8  = - < 5';s: +SFS! > .  (2.10) 
2 

Since a11 replicas are equivalent, what appears naturally as a first solution to 

be tried, is the Replica-Symmetric (RS) one2, 

QaP = Q for a11 a # /j. (2.11) 

* In section 4 we wil discuss a highly anisotropic solution bhich is also possible for the case 
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Such a solution leads to a phase transition from a paramagnetic (T > Tg, Q = 0) 

to a spin-glass state (T < Tg, Q # O) at a critica1 temperature15, 

As usual for spin glasses, one gets that f is a maximum with respect to Q 

in both states such that for T < Tg, the spin-glass solution (Q # 0) presents a 

higher free energy than the Q = O solution, contrary to what normally happens 

in other systems. The explanation for this, comes from the fact that the number 

of parameters QaD, n ( n  - 1)/2, becomes negative in the limit n -+ O. This is 

responsible for changing the minirnum in equation (2.5) into a maximum condition. 

Unfortunately, the solution (2.11) is unstable below Tg, but the Parisi solution, 

which is believed to be the correct one, presents an even higher free energy than 

the RS solution. The minimum condition in (2.5) only makes sense when seen as 

a local stability condition, that is, minimum with respect to each one of the Qap 

parameters. This is done by requiring the stability matrix C, with elements3, 

to be positive definite, i.e. a11 its eigenvalues should be positive for stabiiity. 

The Parisi ansatz4 consists in a hierarchical process in which the diagonal 

blocks of the matrix - Q defined by the elements (2.10), are broken into subblocks; 

the procedure is repeated for the diagonal subblocks and so on. At each step a 

different parameter is introduced; that gives in the limit n -+ O, a function Q(x) 

defined in the interval [ o ,~ ] ,  i.e., an infinite number of order parameters. The free 

energy becomes a functional f[Q], and in order to find the shape of Q(x), one 

needs to solve the extrema1 equation, 

Since the order parameter is itself a function, the above equation presents a de- 

pendente on its argument; one can now take the derivative of (2.14) with respect 
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Equation (2.15) has two types of solutions, 

Solutions of type 2 are the replica-symmetric ones which are known to be unstable; 

breaking the replica symmetry implies searching for type-i solutions. For such a 

solution to be accepted, a maximum of the free-energy functional will be required, 

which may be expressed in general, as 

must be negative definite. That means the eigenvalue equation, 

should present no positive eigenvalues for stability. 

In what follows, we shall discuss the application of Parisi's replica-symmetry- 

breaking scheme to the pstate  clock spin glass, restricting ourselves to tempera- 

tures T < Tg and small r,  

The relavant power-series expansions for small r are shown explicitly in the Ap- 

pendix. We start in the simplest levei, proposing a step-function defined in the 

interval [0,1] as a solution. We show that this is stable for p = 3, but unstable for 

a11 other values of p. Next, we carry the full Parisi's scheme, showing that for a11 

p # 3 a marginal stability is obtained for the conventional solution. 

3. T h e  step-function solution 

In this section we discuss the step function as proposed initially for the Potts 

spin glass14, as a possible solution of (2.14), 
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where 

Except for the discontinuity at the breaking point, this is a type-2 solution in 

equations (2.16); it represents the first step towards Parisi's replica-symmetry- 

breaking scheme. 

Near the spin-glass phase transition, one can substitute (3.1) into (A.l) to get 

the free energy as 

The equilibrium conditions, 

gives respectively, 

By solving equations (3.5), comes 

which gives a continuous phase transition at Tg for a11 p,  i.e., Qm goes continuously 

to zero as T 4 Tg. 
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The next question one should address concerns the stability of the present 

solution. In order to do this, let us substitute (3.1) into the stability functional 

CIQ] as defined in the previous section; in doing this, one gets, 

@ ( Q m , i )  = 2 2  + 2&QmB(t .- i )  - 2B3Qm{( i  - i )  + ie( t  - 2)) + Ã4&O(t -'E) 

+ ' c ~ Q L ( ~  - i )  - ~ D ~ Q ~ { ( I  - i )  + 6B(t - i ) )  
3  6 

+ ~ 4 ~ 2 ( ( 1  - i)2 + i ( 2  - i)B(t - i ) )  + 0 ( r 3 ) ,  ( 3 . 7 ~ )  

n ( Q m , q  = - 2 B 3 ~ , 9 ( t  - t ) e ( s  - 2 )  + O(?). (3.76) 

The quantity @(Qm,V) can be decomposed in two parts, i.e., for t  > 'E and t < 'E, 

respectively. Making use of equations (3.5),  these may be expressed as 

where the + (-) sign refers to t  > t ( t  < E). The stability functional becomes, 

To find the eigenvalues associated to (3.9) one needs to solve equation (2.19). In 

doing this, one gets the following eigenvalues and their corresponding eigenfunc- 

tions, 

where K + ,  6- are constants and f+(t)  ( f -  ( t ) )  vanishes for t  < f ( t  > i ) ,  non-zero 

otherwise, restricted to 

It is clear that the above eigenfunctions do form a complete set, since they are 

orthogonal to each other and any arbitrary function f ( t ) ,  O 5 t 5 1, may be 

expressed as a linear combination, 

f ( t )  = f - ( t )  + f + ( t )  + n-B(i - t )  + n+d(t - i ) .  (3.11) 
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Hence, one has the eigenvalues, 

It is interesting to note that for any p # 3, equation (3.6a) gives t = O(T) and 

then, 

A i  = AÃ~Q", 0(r3)  ; p # 3, (3.13) 
6 

which is positive, signaling the instability of the step-function solution. However, 

for p = 3, one has 3 = 1/2+ O(T), and using the coefficients given in the Appendix 

(cf. equations (A.2)), 

providing stability. Notice that there are no zero eigenvalues. This is to be con- 

trasted with the marginal stability obtained from conventional Parisi solutions for 

the cases p # 3, as we discuss in the next section. One sees that the case p = 3 is 

very special in the sense that the first step in Parisi's replica-symmetry-breaking 

scheme, i.e., solution (3.1) (see Fig. l(a)), is enough for stability. 

4. The full replica-symmetry-breaking solutions 

For p = 3, if one continues with the usual replica-symmetry-breaking process, 

searching for a conventional order-parameter function, as the one known for the SK 

model, one will find a negative siope for the region over which (2.16a) is ~ a l i d ' ~ ~ ' ~ .  

According to the physical interpretation of the Parisi s0lution~1~~, this leads to a 

-negative probability, being clearly incorrect. The correct solution for this problem 

is therefore, the step-function as discussed in the previous section. 

For p 2 4, the full replica-symmetry-breaking scheme is applicable as we dis- 

cuss below; the absence of reflection symmetry in the spin variable for odd values 

of p is irrelevant and one finds the conventional solution in such cases. For p = 4, 

however, besides the isotropic solution (2.8), a highly anisotropic one20, but qual- 

itatively similar in what concerns replica-symmetry-breaking, is also possible, as 

considered next. 
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Fig. 1 - The Parisi functiom for the pstate clock spin glasses just below the 
the freering temperature T,: (a) case p = 3; (b) cases p # 3. The height of the 
plateau (Q,), the breaking point (3) and the slope (Q1(z)) (cases p # 3 oniy) 
are specified in Table 1 for each value of p. 

4.a. p 2 4: the  isotropic solution 

The free-energy functional within the isotropic subspace of solutions (cf. equa- 

tions (2.9)), may be expanded perturbatively near the spin-glass transition and the 

Parisi parametrization irnplemented; the resulting free-energy f [Q] can be seen 

in the Appendix (equation (A.l)). The shape of the order-parameter function can 

be obtained by successive differentiations of the extrema1 equation (2.14)'~. That 

gives the function shown in Figure l(b) and quantified in Table 1. 

The stability of such salutions may be considered by solving the eigenvalue 

equation (2 .19) '~*~~ ,  where the stability functional C[Q] is given by (2.18), @[Q] 
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in the Appendix (cf. equation (A.4)), and 

n[Q] = -2Bs{~(s)B(t - s) + Q(t)d(s - t)) i- 0(r2) ,  

with d(u) being the usual Heaviside step function defined in (3.2). 

Therefore, solutions of type 1 in (2.16) give 

which is clearly a non-positive quantity for the function Q(x), as shown in Figure 

l(b). In order to find the longitudinal eigenvalues of C[Q], one substitutes (4.2) 

into (2.19), 

and differentiating the equation above one gets, 

That gives for the plateau in Figure l(b)  (Q1(t) = O), either X = O or f (t) a 

constant; therefore, making fluctuations which disturb this flat part, one gets a 

zero eigenvalue. For the case where f (t) = constant for t 2 E, one gets by evaluating 

In the region where Q1(t) is a positive constant, one can differentiate (4.4) to 

obtain, 

f "(t) + w2 f (t) = O , i.e., f (t) = sin(wt). (4.6) 

Substituting the result (4.6) into (4.5) one obtains, 

which can be solved to give the eigenvalues, 
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Table 1 - Characteristics of the Parisi functions for the pstate clock spin gIasses 
as shown in Figure 1; Q1(z), Q, and z are given to leading order in r (r = 
(Tg - T)/Tg; Tg = J/Z). 

pstate clock Q'(x) Q, 5 Type of Stability 
spin glass Solution 

p = 2  i r 27 Conventional Marginal 2 
Fig. l(b) 

p = 3  - T Step-Function Stable 
Fig. l(a) 

p = 4  1 T 27 Conventional Marginal 4 
- 
2 

(Isotropic) Fig. l(b) 

p = 4  1 T r Conventional Marginal 
(Collinear) Fig. l(b) 

P 2 5 1 - r 3 
3 2 P Conventional Marginal 

Fig. l(b) 
- 

being a11 negative as required for stability. However, due to fluctuations around 

its plateau, which lead to a zero eigenvalue, one gets that the conventional Parisi 

solution as shown in Figure l(b), is only marginally stable for a11 p 2 4. 

4.b. p = 4: the  anisotropic solution 

In the preceding sections we treated the pstate clock spin glass, in the absence 

of externa1 fields, within the isotropic subspace of solutions (equations (2.8)), as- 

sumirig a11 directions in spin space to be equivalent. However, by considering the 

4-state clock glass in terms of two independent Ising models, Nobre, Sherrington 

and young2' have argued that besides (2.8), a spontaneously-anisotropic, i.e., a 

collinear solution, is also possible. That state may be induced by applying a small 

symmetry-breaking field which is taken to zero after the limit N -+ 00. Such a 

solution may be represented in replica space as, 
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depending on whether the small symmetry-breaking field is chosen to be initially 

applied in the x- or y-direction, respectively. By choosing a collinear solution in 

the x-direction, one gets after substituting (4.9) into (2.6), 

where 

As before, the free-energy functional in (4.10) may be expanded perturba- 

tively for temperatures just below Tg; one can readily see a simultaneous ordering 

of the quadrupolar parameters RQ, together with the spin-glass ones, Q ~ ~ ,  sug- 

gesting a spontaneous anisotropy. As is well known, parameters depending on a 

single-replica index can be taken in the replica symmetry approximation, and SO, 

the parameter Ra does not cause any trouble in what concerns replica-symmetry 

breaking. The Parisi scheme can be implemented for the spin-glass parameters 

QQP as usual, to give the free-energy functional f IR, Q] as shown in the Appendix 

(equation (A.5)). The extrema1 equations, 

may be solved so as to eliminate the parameter R; that gives an equilibrium 

equation which depends only on Q(t), as seen in (A.7). As before, the same 

procedure may be followed in order to get a function as shown in Figure l(b) and 

described quantitatively in Table 1. Also, a stability analysis may be carried out 

to give, besides a zero eigenvalue, 

leading to a marginal stability like in the case of the isotropic solution. 
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This marginality for the conventional Parisi solutions (p 2 4), comes as a 

direct consequence of fluctuations around the ffat part for z > z (see Figure l(b)). 

The zero eigenvalue, responsible for that, should also be present in a more general 

analysis, similarly to what happens for the SK model17. 

5. Conclusion 

We have studied the pstate clock spin glass in Parisi's replica-symmetry- 

breaking formalism. A stability analysis of such solutions was carried restricted 

to the longitudinal sector, as the one done by Thouless et a1.16 for the SK model. 

It was shown that the simple step-function solution is stable for the case p = 3, 

whereas for a11 other values of p the conventional Parisi solutions lead only to a 

marginal stabiiity. We believe this picture, revealed by such a simple analysis, 

remains true even in a more general situation, in which one takes into account 

transversal fluctuations, as done by de Dorninicis and ~ o n d o r ' ~  for the SK model. 

For p > 4, the zero eigenvalue should also appear as a consequence of a disturbance 

of the flat portion of the conventional Parisi solution, similarly to the Ising case, 

and the marginality should persist. For p = 3 the full stability is ensured by means 

of a pstate Potts spin-glass general a n a ~ ~ s i s ~ ~  which states the stepfunction to 

be stable just below the freezing temperature, for any value of p in the range 

2.82 < p < 4 (through the well-known isomorphism between the bstate Potts and 

clock models) . 
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Appendix: Series expansions for t h e  free-energy functionals 

In this Appendix we show explicitly the development in power series of the free- 

energy functionals within Parisi's replica-symmetry-breaking scheme, restricting 

our analysis of the ordered phase to r small (7 = (Tg - T)/Tg; Tg = J /2 ) .  
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First, we deal with the isotropic solution (2.8) for a11 p. The anisotropic solution 

for p = 4 will, then, be considered later. Near the phase transition (QQP small) the 

free-energy functional within the isotropic conditions (eq.(2.9)), can be written as 

a power series15. The Parisi parametrization can, then, be implemented; in doing 

that, one gets the free-energy functional, 

p f [Q] = -go + f Ã2 < Q2 > < Q3 > 
3 

- $&L1 dx[xQ3(x) + 3Q(x) LZdyQ2(y)] + &A4 < Q4 > 

- -C4 I - {  < Q4 > -2 < Q~ > 2  - l1 dz / o ' d r [ ~ ~ ( x )  - Q'(Y)I~} 
12 

where 

and 
1 

< Qm >= 1 dzQm(x). @ e 3 )  

In equation (2.15) the functional a[&] is given by, 
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Now, we turn to the anisotropic solution (equations (4.9)) for p = 4. AS 

before, we expand the free-energy functional for small .r (both RQ and Q~~ are 

small). It is a well-known fact that a11 parameters depending on a single replica 

index do not bring trouble in the replica symmetry approximation; therefore, we 

shall take RQ = R (a11 a), whereas for the spin-glass parameters, Q~@, the Parisi 

replica-symmetry-breaking scheme will be applied. One gets, 

4f [R, Q] = -80 - A2R2 + B2 < Q2 > -D3 L' dz [xQ3(z) + 3Q(4 dyQ2(y)] 
o 

where 

At the extrema, the replica-symmetric parameter R can be eliminated to give 
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Resumo 

O modelo de vidro de spins do tipo "clockn (relógio) como p estados e interaçóes 
de alcance infinito é estudado no esquema de quebra da simetria entre réplicas 
de Parisi. Uma análise de estabilidade simplificada destas soluções é realizada, 
levandwe em conta somente flutuações longitudinais. Mostra-se que para o caso 
p = 3, a solução simples do tipo função degrau é estável, enquanto que para todo 
p # 3 as soluções convencionais de Parisi levam a uma estabilidade marginal. 
Argumenta-se que este quadro deve permanecer como verdadeiro em uma análise 
mais geral. 


