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Abstract We show, in a very simple way, the quantum equivalence of 
massless antisymmetric second rank tensor field theories with massless 
scalar and gauge field theories, in four and five dimensions, respectively. 
The technique can be straightforwardly extended to higher rank antisym- 
metric tensor fields. 

Antisymmetric tensor field theories have recently become the subject of intense 

research, since they emerge in the low energy limit of string theories. They ap- 

pear coupled to gravity or supergravity fields with higher curvature terms in four 

and ten dimensions' and a complete understanding of these couplings is needed 

in order to have anomaly cancelations. They also have been used to have a better 

understanding of the quantization of reducible field theories, either from the La- 

grangian or Hamiltonian point of view2, motivated by string field theory which is 

also a reducible theory3. 

The quantum equivalence of antisymmetric tensor field theories in four di- 

mensions has been discussed by severa1 a ~ t h o r s * ~ ~ ~ ~ ~ ~ ~ ~ .  Either by coupling to a 

background gravity field6>7, or using a Lagrangian BRST approach with a careful 
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choice of ghosts for ghosts8 the quantum equivalence has been established. Here 

we want to present a simple and straightforward proof in any dimension using the 

Hamiltonian BRST formalism for reducible theories
g
, which brings in a11 ghosts 

for ghosts with the right counting of ghosts and ghost numbers. The application of 

the formalism is straightforward and we will not discuss its details. An exposition 

of this formalism can be found e.g. in ref.lO. 

As is well known a second rank antisymmetric tensor field is equivalent to a 

scalar field in four dimensions. In general, if we denote the antisymmetric tensor 

field by B,,, and its field strenght by FPVP then the first order action 

implies for the B,,, field equation that WFPVp = O. This equation can be solved 

in D dimensions by Fp1,,2,,3 = E,, PD d p 4  A p 5 4 D .  SO for D = 4 A is a scalar field, 

for D = 5 A, is a vector field and for D 2 5 Ap54D is another antisymmetric 

tensor. If we now use the field equation for F*,,, then, for D = 4 the scalar field 

A satisfies the Klein-Gordon equation and, for D = 5 the vector field A,, obeys 

the Maxwell equations. 

We now want to show that these classical equivalences remain valid at the 

quantum level, using the Hamiltonian BRST formalism for reducible systems
g 

since it seems the most suitable technique to handle such systems. We start with 

the second order form of the action (1) to find out the canonical momenta of Bpv 

and the canonical Hamiltonian 

The requirement that the primary constraint (2a) does not evolve in time furnishes 

the secondary constraint 
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and no more constraints are obtained in this way. The constraints noi and 4, 
are first class constraints and have an abelian Poisson bracket algebra. However 

the theory is reducible since we can find a linear combination of the constraints 

which vanishes without tlie use of the constraint equations. Consider the linear 

combination 

It vanishes identically if we choose Zi(x, s r )  = $6(z - 2'). We now have to check 

whether there is a linear combination of 

which also vanishes. We find that this is not possible and the theory is said to be 

reducible at the first stage9J0. 

We now enlarge the phase space of the theory. We associate a Lagrange mul- 

tiplier to each constraint a s  well as its associated canonical momentum: Ao;, Po; 

to noi and Ai, Pi to #i. Now the constraints are TIoi, Po,, 4, and Pi and we asso- 

ciate to each of them a pair of fermionic canonical conjugated ghosts, respectively 

Voi>Poi Poi ,rioi; vi, @i,  and @i, @i. To the function 2' we associate a fermionic 

Lagrange multiplier ( and its canonical momentum Iit and two pairs of bosonic 

ghosts c, 8 and b, 2. We also need extra ghosts9~10, a pair which is fermionic A', TI' 

and a pair which is bosonic E', nk,. They are also canonically conjugated. 

We can then built the BRST charge 

and we choose the gauge fixing fermion Q as 

where E is a parameter which will be set to zero later on. Then the effective action 

is given by 

Sejf = Sk +Se + %!, (9) 
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where 

1 1 1 
' C  = J d D z [ -  2(nij)2 + - ( a ; ~ ; ~ ) '  4 - - ( a , ~ , ~ ) ' ] ,  8 (li) 

and 

1 noi~oi -+ n'jd,~, + -pyx, E - B~ 

We now perform a change of variables Poi -i ePO,, qo; 4 ejía, whose Jacobian is 

equal to one, and take the limit é -i O. Then, the effective action (9) becomes 

1 1 2 
S , , ~ = / ~ D ~ [ ~ I O ' ( B ~ ~ - A ~ ' ) - - ( ~ - - B ~ ~ + ~  2 13 2 t3 ( i 3 1  A , )  

The partition function is, then, given by 

where the measure D,, involves a11 the fields and ghosts. 

The functional integrals over no,, nij, Po,, Pi, qo,, p%, p,, b, II,, ri' and €' are 

easily performed and we obtain 
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where Dpl involves only the remaining fields and ghosts. We can now perform the 

integrals over Ai, p;, b, Xoi, ~ o i ,  and pai to obtain 

Now using the delta functionals in the integrand of (16) we can rewrite some terms 

in the action in a covariant form 

and redefiníng v,  (C, v i )  and vp (ri$, v i )  we can rewrite eq. (16) in a covariant 

way as 

1 1 
exp i / d D r ( -  - B J ' ~ C ~ ~ B , ,  + q'dzt), + cd2c + -A'a2~') 

8 4 (18) 

Next we notice that due to the delta functional G(dVBpu - a,Xf) we have a2A' = O 

and so the last term of the action can be dropped out. We then exponentiate ali 

delta functionals 

1 
exp i / dDx [ - s~'a2 B, + qpa2v, + z a 2 ~  

and perform the functional integrals over q,, v,, TI and ii to obtain 
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Now, integrating over c , c  and A' we get 

Z = DB,,Da,(det d2)D-16(d,a,) I 
1 1 

exp i / d ~ z  ( - - BP~~Q, ,  + B,, - a[,aVi) 
8 

(21) 

and, finally performing the integral over B,, we find a partition function depending 

only on one functional integral over a, 

This is our master functional integral from which we can prove the equivalence 

of the antisymmetric tensor field theory to other field theories. If we exponentiate 

the delta functional in eq. (22) and integrate over aP we obtain 

For this to be the partition function of a scalar field, no det a2 should appear in 

the integrand of (23). This leads to the condition D - 1 - v = 0, from which 

we find D = 1 and 4. Since we must have D 2 3 only in four dimensions the 

second rank antisymmetric tensor is equivalent to a scalar field at  the quantum 

level. 

Let us now perform the following change of variables in (22), i.e., aP --+ 

2-D/2(a2)1/2aP. Then taking into account the Jacobian of the transformation we 

can rewrite eq. (22) as 

DO+O 1 
Dap(det a2)(D-1)- 4 2 = -6(dpaP) 2 exp i dDx(-&a2aP). (24) 

To obtain the final form of the action we took a realization for (t32)1/2 in terms 

of Dirac gamma matrices such that (d2)1/2a@(d2)1/2aP = Tr(&P aaP)  and per- 

formed an integration by parts. In order that (24) be the partition function for a 

gauge field in the Lorentz gauge we demand that only a factor of det a2 remains 

in it. This means that D - 1 - 9 + - i = 1 and we find D = 2 and 5. So 

the theory is equivalent to a gauge field theory only in five dimensions. 
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In conclusion we have shown that using the Hamiltonian BRST technique 

for reducible theories and by a convenient choice of integrations and change of 

variables it is possible to recast the partition function of the original theory into 

the partition function for other field theories at some definite dimensions. This 

implies then that the two quantum%eld theories are equivalent. 

This technique can be straightforwardly extended to higher rank antisymmet- 

ric tensor theories. In this case the theory will be reducible at  higher and higher 

levels so that itwill be needed t,he inclusion of more and more ghosts. But again an 

appropriate choice of integrations and change of variables can be used to rewrite 

the original partition function in determined dimensions showing that at  these 

dimensions the theories are equivalent. 
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Resumo 

Demonstrar~ios, de maneira bastante simples, a equivalência quântica de t e  
rias de campos tensoriais antissimétricos de segunda ordem com teorias de campos 
escalares de massa nula e teorias de gauge em quatro e cinco dimensões, respec- 
tivamente. Esta técnica pode se estendida diretamente a campos tensoriais antis- 
simétricos de ordem mais alta. 


