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Abstract We show, in a very simple way, the quantum equivalence of
masdess antisymmetric second rank tensor field theories with masdess
scalar and gauge field theories, in four and five dimensions, respectively.
The technique can be straightforwardly extended to higher rank antisym-
metric tensor fields.

Antisymmetric tensor field theories have recently becomethesubject o intense
research, since they emerge in the low energy limit of string theories. They ap-
pear coupled to gravity or supergravity fields with higher curvature termsin four
and ten dimensions and a complete understanding o these couplings is needed
in order to have anomaly cancelations. They aso have been used to have a better
understanding o the quantization of reducible fidd theories, either from the La
grangian or Hamiltonian point of view?, motivated by string field theory which is
also a reducible theory3.

The quantum equivalence of antisymmetric tensor field theories in four di-
mensions has been discussed by several a ~ t h o r s * Either by €oupling.to a
background gravity field6>7%r using a Lagrangian BRST approach with a careful
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choice o ghosts for ghosts® the quantum equivalence has been established. Here
we want to present a simple and straightforward proof in any dimension using the
Hamiltonian BRST formalism for reducible theories’, which brings in all ghosts
for ghostswith theright counting d ghosts and ghost numbers. The application of
the formalismis straightforward and we will not discuss its details. An exposition
of thisformalism can be found e.g. in ref.!°.

As iswell known a second rank antisymmetric tensor field is equivalent to a
scalar fied in four dimensions. In general, if we denote the antisymmetric tensor
field by By, and its fied strenght by F,,, then the first order action

1
12

impliesfor the By, field equation that 8#F,,, = 0. This equation can be solved

in D dimensions by Fy,pyus = €puy..ppd*4 A¥5-#D_ Sofor D = 4 A is ascalar field,
for D =5 A#* is a vector fidd and for D > 5 A#5--#D is another antisymmetric

. _
S = dPz (EF"””F,,.,,, - F"”f’alpB,p]) (1)

tensor. If we now use the field equation for F,,,, then, for D = 4 the scalar field
A satisfiesthe Klein-Gordon equation and, for D = 5 the vector fidld A* obeys
the Maxwell equations.

We now want to show that these classical equivalences remain valid at the
quantum level, using the Hamiltonian BRST formalism for reducible systemsg
since it seems the most suitable technique to handle such systems. We start with

the second order form d the action (1) to find out the canonical momenta of By,

oL
II0,~ = -a—éa =0 (20,)
oL 1.
Hij = _3_55 = —Z‘B” - a[lBoJ] (2b)
and the canonical Hamiltonian
H. = l(n..)z —~ BY 3L, — 1(6-B~)2 4 1(3.3. )2 (3)
c—2 17 17 3 i 8 s D5k

Therequirement that the primary constraint (2a) does not evolvein timefurnishes

the secondary constraint

¢i = {Mo;, Ho} = 871, =0 (4)
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and no more constraints are obtained in this way. The constraints IIy; and ¢;
are first class constraints and have an abelian Poisson bracket algebra. However
the theory is reducible since we can find a linear combination of the constraints
which vanishes without the use of the constraint equations. Consider the linear
combination

/ P15 7z, ') (). (5)

It vanishesidentically if wechoose Z%(z, z') = ré(z — 2'). We now have to check
whether there is alinear combination d z*

/ dP ' Zi(z, 2) Zi(2', 2") (6)

which also vanishes. We find that this is not possibleand the theory issaid to be
reducibleat the first stage®X°.

We now enlarge the phase space of the theory. We associate a Lagrange mul-
tiplier to each constraint as well as its associated canonical momentum: Ag;, FPos
to Ilg; and A;, P; to ¢;. Now the constraints are Ty, Py, ¢; and P; and we asso-
ciate to each of them a pair of fermionic canonical conjugated ghosts, respectively
no0isPoi, Voifloi; M, @i, and gy, ;. To the function Z* we associate a fermionic
Lagrange multiplier ¢ and its canonical momentum TI, and two pairs of bosonic
ghostsc, & and b, &. We aso need extra ghosts®1°, a pair which isfermionicA, TI
and a pair which is bosonic ¢/, TT’,,. They are also canonically conjugated.

We can then built the BRST charge

Q= / dP (¥ Tho; + 'y + ¢ pi + PO%poi + Plpi + b+ TE)  (7)
and we choose the gauge fixing fermion ¥ as
v = / dD"lx[%ﬁOi(/\; — By) — '3 Bij + 8% Aoi
— §N; 4 20, + BE + TLd°A — rf’a,-x] , ®)

whereke is a parameter which will be set to zero later on. Then the effective action
isgiven by

Sesr = S+ S + Sy, (9)
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where
Sp = / dPz (Mo, B + g BY + Poid™ + PAA* + 710ip™ + poin™'+
+ i’ + i + b+ Be + Teé + TN + 1L, 8), (10)
I 0 B PR
S = /d z[" 5{I5)" + 4(8:B;)? - %(&'Bjk)zla (11)
and

_ D . D " L 1 :
Sy = ./d z{Q, ¥} = — / d z[n“ doi + T30, + EP%(); — By
~ PY(&7Bji + 9:\) + Zﬁoz(fm = noi) + 7* (87 8jn; — 8 3in; — 8i¢')
+ 8% poi — B (s + 9;€) — 0B + bb + Med'y; + WA, + ng,a‘p,] (12)
We now perform a change of variables Py; —i €Py;, fio; — €7ios, whose Jacobian is
equal to one, and take the limit ¢ —s 0. Then, the effectiveaction (9) becomes
" N i. )2
Sess = / dDZ[H"'(Boe - 2% - g(ﬂti - 3B+ aliAz)
1. . . L. .
+ 2(Bij = 2005))* — P%(\i — Boi) + P*(As + & Bjs + ;X))
= 7% = i) + 7' (6; ~ 90;mi + 1 9um;) + 5% ivos — pos) + B (i + w3 + BiE)
+2(b+ 8°3ic) + b(e — b) + (€ — 8%y) + IV (X ~ &' Ay)
. . 1 1
~I0'p; + ¢ (I +8'm) + Z(aiB,-J-V — —S—(aiBj,c)z} (13)
The partition function is, then, given by
Z = / Dpexp 1S5, (14)

where the measure D, involvesall the fields and ghosts.
Thefunctional integrals over Mo, 5, Pos, Pi, fiois B0ss Pis b, e, IT' and &' are
easily performed and we obtain

Z= / D! 8(Bog — 20:)6(N — Bog)5(As + 87 Bji + ;)6 (s — 10s)
6(10i — w0i)é (% + pi + 8;€)8(é — b)6(& ~ B'n;)6(N — & 1)6(1T}y + 8'%;)
exp © / dDz[-;-(B,-,- +3A ) + 0 (pi — 379m: + 87 9in;)+
+e(b+ 00ie) - Wi + 1(0:By)* — 1 (3:B)?), (15)
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where Dy' involvesonly the remaining fieldsand ghosts. We can now perform the
integrals over A;, w4, b, Ao, moi, and pg; to obtain

Z= / DBo; DB;; Dn; Di;DeDeDEDX DI,
8(Boi + & Bji + 9;N)6(€ — 3'ny)6(X — 8' Boy) 6 (T} + 8')
exp i f d%[%(ia,-j ~ 8 Boy))? + 719, + 0% + My (€ + 9°0:¢)
+ 41(3:'3;']')2 - %(aiBjk)z] (16)

Now usingthe deltafunctionalsin the integrand of (16) wecan rewrite some terms

in the action in a covariant form

1,. 1 1 1 1
5(Bii — 9Boj))* + $(9:Byj)* — 5 (8:Bjn)” — {NO*X = 29,B,,0"B”  (17)

and redefiningn, = (¢,n;) and 7, = (I, ;) we can rewriteeg. (16) in acovariant
way as
Z= / DBy, DDy, DeDED X 6(8%5,)8(8%7,)6(8" Buy — 8u)')
exp i / dDz( - éB”"azaw + 9%, T edlct %,\'azx') (18)

Next we notice that dueto the delta functional §(8” By, — 8,X') we have 82X = 0
and so the last term o the action can be dropped out. We then exponentiate all

delta functionals
Z= / DB#VDn“DﬁchDEDA’DHDﬁDap
exp i / dD:c[ - %B’“’azB,w + 74d%y, T 2d%
+T10Pn,, + 0P 7, + a#(8” By, — 0] (19)
and perform the functional integrals over i, ny, I and 11 to obtain
Z= / DBy, DeDeD) Da(det 8%)P
exp ¢ / dP z( - %B“” 3*Byy + ¢d%c + a*3" By, — a“a,‘/\'). (20)
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Now, integrating over ¢,é and A’ we get
Z= | DB,y Day(det 8%)P16(8,0,)
. 1 1
exp 1 /dDI( - éB‘“’azB,“, + EBMV - 6[”(1,,]) (21)

and, finally performing the integral over B, wefind a partitionfunction depending
only on one functional integral over a,

(D_l)_ﬂ%ilé

Z= /Dau(det 3%) (0" ay)exp @ /dDza"a“ (22)

Thisisour master functional integral from which we can prove the equivalence
o the antisymmetric tensor field theory to other field theories. If we exponentiate

the delta functional in eq. (22) and integrate over a, we obtain
D‘D—l!
Z= / Dé(det 8%)P~1)="F exp ¢ / d%%eﬁa%. (23)
For this to be the partition function o a scalar field, no det 8% should appear in
the integrand of (23). This leads to the condition D — 1 - 22=1) — o, from which
we find D = 1 and 4. Since we must have D > 3 only in four dimensions the
second rank antisymmetric tensor is equivalent to a scalar field at the quantum
level.
Let us now perform the following change of variables in (22), i.e., oy —
2-D/2(9%)1/2q,,. Then taking into account the Jacobian of the transformation we

can rewrite eq. (22) as
_-2B-1 . D
:/ Doy(det 62)(0 1) T TE = %5(3#,1“) exp i /dDz(—a”a%,‘). (24)

To obtain the final form o the action we took a realization for (8%)!/? in terms
o Dirac gamma matrices such that (92)'/2a#(8%)!/2e,, = Tr(go* Joy) and per-
formed an integration by parts. In order that (24) be the partition function for a
gauge field in the Lorentz gauge we demand that only afactor of det 8* remains
in it. Thismeansthat D — 1 - 2B=1+ D2 _ 1 = and wefind D = 2 and 5. So

the theory is equivalent to a gauge field theory only in five dimensions.
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In conclusion we have shown that using the Hamiltonian BRST technique
for reducible theories and by a convenient choice o integrations and change of
variables it is possible to recast the partition function of the original theory into
the partition function for other field theories at some definite dimensions. This
impliesthen that the two quantum field theories are equivalent.

This technique can be straightforwardly extended to higher rank antisymmet-
ric tensor theories. In this case the theory will be reducible at higher and higher
levelsso that itwill be needed the inclusion of more and moreghosts. But again an
appropriate choice of integrations and change o variables can be used to rewrite
the origina partition function in determined dimensions showing that at these
dimensions the theories are equivalent.
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Resumo

Demonstramos, de maneira bastante smples, a equivaléncia quantica de teo-
rias de campos tensoriais anti ssimétricos de segunda ordem com teorias de campos
escalares de massa nula e teorias de gauge em quatro e cinco dimensdes, respec-
tivamente. Esta técnica pode se estendida diretamente a campos tensoriais antis-
simétricos de ordem mais alta.
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