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Abstract  A gauge theory exhibiting two supersymmetries is formulated 
and discussed. To describe it, an additional Grassmannian spinorial co
ordinate is added to the N = 112 superspace. Reading off the resulting 
superfield model in terms of component fields, the presence of two vector 
potential fields transforming under a single U(l) gauge group is explicitly 
identified. 

1. Introduction 

For physics, the next decade corresponds to a time in which particles will be 

created from the new machines as an artifact. Then, this perspective, probably 

based on the engineering of ~articles, is challenging the horizon of the theoretical 

methods. Therefore, we are now living a period in which speculations s h o ~ l d  

be welcome to enkich the theoretical possibilities f ~ r  accomodating these severa1 

particles that could appear. 

Thus the most immediate requirements is about the development of methods 

in quantum field theory for generating ,quanta. There are three main methods: 

gauge theoriesl, string theories2 and the S-matrix3. While the first creates a 

limited number of quanta from a gauge parameter ar(x), strings are based on the 

fact that those states can be regarded as modes of a relativistic one-dimensional 
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system, and the last one is able to locate poles from the analytical properties of 

the S-matrix. Nevertheless, a11 these techniques are not being enough to answer 

the present questions. Supersymmetry can also be included as another method4. 

Under such a context, the necessity of creating quanta, a method, still under 

investigation, is based on the possibility of associating more than one potential 

field to the same group parameter a(%), 

There are two types of arguments in order to prove whether (1.1) represents 

a method for generating N-distinct quanta. Their characteristics differ as to their 

relation to the Lagrangian expression. A first kind of arguments is developed by 

not requiring the Lagrangian explicit form, while in the second approach, (1.1) 

is advocated in a less subtle way. This means that, from a given Lagrangian, 

L, it tests the independence of the N-quanta, through explicit calculations. For 

instance, by evaluating the degrees of freedom and the masses associated to each 

of these fields. 

This work intends to substantiate the first kind of argument. This means 

to complement a geometrical origin for (1.1) already stablished from the Kaluza- 

Klein approach5 with reasons from supersymmetry. Intuitively, for proving (1.1), 

a gauge theory is welcomed that carries an abundance of degrees of freedom. 

Therefore supersymmetry becomes a rich laboratory to investigate about these 

degrees of freedom transforming as (1.1). Then, the strategy was to study first 

the N = 112 - D = 2 and N = 1, D = 3 supersymmetric models6. These 

cases were enough to identify the presence of a second potential field transforming 

under the same simple single group. However, in both cases, it was necessary to 

impose conditions for relaxing some constraints on the following gauge symmetry 

identities: 

[VA, V) = T ~ B V C  + FAB (1.2) 
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[VA, (Vi93 VC)) + [VB, [VC, VA)) -i- [VC, V ~ ) )  = O (1.3) 

where VA are the gauge covariant derivatives. 

Thus, a further case for being advocated is to prove that such a second potential 

field can emerge directly, i.e., without relaxing (1.2)-(1.3). Searching for this 

possibility, this work is motivated to study a situation where there is an abundance 

of degrees of freedom, as a model with a second supersymmetry7 naturally allows. 

This work is organized as follows. In Section 2, a description of the (2,O)- 

supersymmetry is presented in terms of just one Grassmannian coordinate. HOW- 

ever, in order to formulate this second supersymmetry in combination with a gauge 

theory, Section 3 extends the superspace. Sections 4-5 develop a U(1)-gauge the- 

ory based upon a (2,O) supersymmetry. Then, from this conjunction, the existente 

of a second potential field transforming as (1.1) naturally emerges. An Appendix 

follows where the decomposition of (2,0)-superfields in terms of (1,O)-multiplets is 

written down. 

2. An N = 1/2 formulation of the  (2,O)-supersymmetry 

The basic feature for implementing a second supersyrnmetry in the N = 1/2 

superspace is to derive generators Q1 and Q2 obeying the following algebra 

Considering that for N = 1/2, 

{Q, D) = O and D~ = --ia- (2.2) 

the most immediate possibility is to choose as generators 

Q' = Q and Q~ = D (2.3) 

where Q and D are respectively the generator and covariant derivative operator 

tor (1,O) supersymmetry. 

Thus, in order to build up an action with n bosonic and fermionic superfields 

( i  = 1, ..., n), 
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and invariant under .the following supersymmetric transformations, 

bIai  = i é QQ" 

and 

where f'j  and g i j  are constant matrices, we have to impose constraints. 

Closure conditions as, 

with the invariant condition, 

bI16 = O 

and with the reality condition 'implie that, 

f 2 =  -1 

jt = - f , f real 

g 2 =  -11 

gt = -g , g real 

and also the following restriction for the mass-matrix, 

Now, in order to comprehend some implications of such N = 112 - SUSY 

(2,0), we are going to study the physical masses. For this, we have to calculate 
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the poles of a two point Green's functions. Writing in components @ = (4, $1 and 

9 = {p,  F), one gets for the scalar part 

where 

= (F) , O = (g:) , F = ( Y )  (2.11) 
Fn 

are read off from the inverse matrix 

where R = -2a+a-. 

(2.12) shows that the masses of the scalars fields are the eigenvalues of the 

matrix mmT and that the auxiliary fields are not independent, 

Another possibility for showing a non-physical meaning for the auxiliary fields is 

by eliminating them through the equation of motion. It gives, 

where (2.14) verifies that the pole structure remains unchanged. 

For the fermionic part, 

where 

Thus, (2.12), (2.14) and (2.15) confirm that the masses for the bosonic and 

fermionic fields, with or without auxiliary fields, are the same. Analysing the 
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off-shell degrees of freedom, one can readily see that there are 2n fermionic and 

2n bosonic, whereas on-shell there are only n in both sectors. As an example, to 

explore the meaning of such a second supersymmetry, we are going to take a case 

with two bosonic and fermionic superfields. From (2.9) constraints, one gets 

Substituting (2.16) and (2.17) in (2.10), it gives two possible m a s  matrices 

and 

where both prescriptions results in 

Consequently, (2.20) shows that the fields 4l, $I, $2 and P', p2 contain the 

same physical mass. Thus, this second supersymmetry is well implemented. HOW- 

ever, the m a s  spectrum reveals a difference between these two supersymrnetries. 

In the first case a11 masses are possible, while the second supersymmetry restricts 

the spectrum just to real masses as in (2.20). This means that its presence avoids 

tachyons. 

For the interaction contribution, two terms can be proposed with a dimension- 

less coupling constant 

and 
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The conditions over A i j k  and Gijk for implementing supersymmetry (2,O) are 

and 

However, for the purpose of this work, to substantiate the presence of more 

than one potential field transforming as (1.1), (2.4)-(2.21)-(2.22) are not enough. 

It will be necessary to study a gauge theory involving such a supersymmetry. 

Nevertheless, for the degreeç of freedom of a su.sy. (2,O) to be a source to explain 

such a pluriformity of potential fields that a gauge group develop~, ít would be 

more efficient to work with an extended superspace. 

3. An extended superspace 

In order to formulate a gauge theory containing a second supersymmetry it 

is advisable to extend the superspace fsrmulation. The action invariance is not 

satisfied by (2.4), when complex matter and gauge superfields are introduced. 

Thus, we have to deal with a superspace element given by the supercoordinate 

Z A  2 (z', Z-; d1,d2), where d1 and d2 are two independent L-handed Majorana- 

Weyl spinors. Considering the superspace transformations as in ref. 7, 
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one gets the supercharges Qi and 92, 

where (3.2) and (3.3) satisfy (2.1). 

Informations can also be obtalned through the complex spinors 0,  e* 

For instance, the covariant derivatives 

expresses that 

2 -  D * 2 _  D - (  ) -0 

(D, D*) = -&a- 

The next step is to define superfields in order to accomodate the (2,O) degrees 

of freedom. The complex scalar superfield is defined as 

where the vectorial degree of freedom can be eliminated through the constraint 
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Similarly, defining the complex left-handed spinorial superfield 5r as 

and 

D Q = O  

one gets 
i 

~ ( 2 ~ 0 )  = p + B*F + ee* (ia-@) (3.12) 

For revealing the existence of more than one supersymmetry, (3.9) and (3.12) can 

be rewritten as 

@(2,0)  = @ ( l , O )  - i e 2 ~ 1 @ ( 1 , 0 )  

where 

See Appendix 

The corresponding free action is 

From now, on we shall drop the subscripts (2 ,o)  and (1,O) of the superfields ap- 

pearing in the integrand. (3.14) is realized in components as 

4. A Gauge Theory with (2,O) Supersymmetry 

Consider superfields transforming under the following phase rotation 



where A(x;  6 ,  O * )  is a complex scalar superfield and q l ,  qz are the respective U(1) 

charges. Here, for the constraints (3.8)  and (3.11) to be preserved, the superfield 

gauge parameter must also be restricted to 

D A ( x ;  6 ,  O * )  = O 

We obtain the real gauge superfields G+@) and 

The minimal coupling 

with 

* -qlõv@) Sscaiar = / d2xdeldf12 ( @ * e - q l y ( ~ + @ )  - (V+@)  c 
4 

i d 2 x d O l d ~ 2 @ * ~ - q ~ *  Sfermionic = -- 2 

aIso requires the presence of a third gauge superfieid V which transforms as 

V ' ( ~ , O )  = ~ ( 2 ~ 0 )  - (4.8) 

where ~ ( ~ 9 ~ )  is real and Lorentz scalar. 

Writing in components, these three superfields are read off as 
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Thus, one gets the following spectrum: l"+(x,fl,d*) contains the A+(x) comp* 

nent of a vector, two left-handed spinors p(x) and p*(x) and one scalar B(x); 

similarly G+(x,B,B*) has a vector W+(x), spi~tors u(z) and a*(%) and a scalar 

S(x); V(x,8,8*) establishes one scalar C(x), two right-handed spinors X(z) and 

A* (2) and the component M- (x) of a vector. 

Re-expressing the superfields r+, G+ and V in terms of a 4, dZ-expansion and 

redefining the 8,8* component fields according to 

we substitute (4.9), (4.10) and (4.11) in (4.6) and (4.8) and obtain the following 

gauge transformations, 
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Observing the transformations for A+(x) and M-(s), one can assume = g and 

then, identify M- (x) as A- (x) in such a way that 

1 
A: (s) = A* (s) - -&Re ( ~ ( x )  (4.15) 

9 

This means that the potential . A p ( r )  has components: A+(s) E I$'') and A-(x) E 

v (210). 

However, the relevant conclusion is that the combination between the second 

supersymmetry with the U(1)-symmetry leads, naturally, to the existence of a 

second gauge potential W+(x) E G?"). It transforms as (1.1). This property is 

not necessarily eliminated through a Wess-Zumino gauge. Another observation to 

point out is about the presence of a Lorentz scalar fields S that contains a gauge 

transformation. 

A second observation about this extra potential field W+ can be obtained by 

rewriting the scalar part (4.7a). 

(4.16) shows that the superfield G?") decouples from the charged-matter while 

I'?") and V@$') are coupled through the charged-matter. 

The appearance of the second potential, W+(x), is also better enforced if a 

reduction of (2,O) superfields in terms of the (1,O) superspace is accomplished. 

Indeed, in so doing, it is readly seen that the (2,O) superfield G+ breaks down into 
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(1,O) gauge and matter superfields, as explicitly shown in Appendix A. Hence, W+ 

emerges as a genuine gauge vector field with matter super-partners. Also, we shall 

see below, such a decomposition will prove very efficient in getting effective (2,O) 

gauge theories written in terms of (1,O) gauge and matter superfields. 

Thus, integrating over B2 the scalar part (4.16) gives 

Now SUSY(1,O) is manifested due to the fact that the action (4.17) written in the 

superspace (1,O) is in terms of (1,O) superfields. Then, observe that the existence 

of a SUSY(2,O) is not explicit anymore. It was converted into superfields (1,O) on 

the superspace (1,O). Therefore, in order to characterize a (2,O) SUSY, it becomes 

necessary to impose relations that connect the (1,O) superfields I'+'0), 

V('?'), and The latter are a11 defined in Appendix A. 

From the second supersymmetry, given by 

one gets 

6eRe,ti,e@(1~0) = - ~ E ~ D ~ @ ( ~ * O ) ,  (4.19) 

where (4.19) shows how the second supersymmetry acts upon the scalar superfield 

(1,O): the generator is the covariant derivative of the first SUSY and it takes the 

superfield into a translation. 

Similarly one concludes that 

and that 



A different aspect from the second supersymmetry appears in (4.20)-(4.21). It 

envolves supersymmetric rotations. This means that it transforms fermions into 

bosons. 

Similarly the spinorial part (4.7b) is rewritten in the (1,O) superspace as 

Substituting (4.19)-(4.23) and (4.26) in (4.17) and (4.24), we have 

and 

(4.27) and (4.28) verify that the inclusion of (2,0) degrees of freedom is consistent. 

Thus, the (1,o) superspace also contains a second supersymmetry, differently 

from the approach of section 2. Tlie difference is that here such a second supersym- 

metry appears effectively, i.e., in a non-manifested way. Writing in components 
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the presence of both supersymmetries for matter terms, it yields, 

and 

Taking g = 0, (4.29) and (4.30) verify (3.15). 

Thus, from the above verifications for matter fields, one gets confident to study 

the implications of such a second supersymmetry. 

5. A Version for a (2,O) QED 

Gauge covariant derivatives are defined so as to undergo the transformations 
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Then, by virtue of the constraint (4.3) on A, a ~ossible representation for the 

gauge-covariant spinorial derivatives is: 

which yields the following field-strengths 

once the superspace torsion components are kept the same as in (3.6). Evaluating 

(5.4) and (5.5), one gets: 

whose component-field expansion reads: 

F+ = iqgfi(p + ia) + 6*iqg[2B - 2ia-A+ + 2iS + 2d-W+] (5.7) 

Similarly, 

3+ = i q g ~ '  (I$?') + i ~ y  + ia+v@*O)), (5.8) 

whose 6-expansion is given by 

Nevertheless, in order to verify that from the introduction of the second super- 

symmetry, realized by (3.1) and (3.21, a second massless quantum, W+, naturally 

emerges, a consistency requirement should be imposed: to reproduce the Maxwell 

equations as a boundary conditions. With this in mind, a non-interacting W+- 

quantum appears from the following superaction: 
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or 

s=-- l / d 2 Z [ ( ~ * . i ; . ; ) ( o . i + )  + (DD*F;)F+]I (5.11) 
8(9!d2 

From the expansions (5.8) and (5.9) and eq. (5.11), it can be automatically checked 

that the usual Maxwell action Fp,FpV is generated along with its supersymmetric 

partners. 

Just to end up this section, we would like to mention that a more constrained 

(2,O) gauge theory, with a different realization for the gauge-covariant superspace 

derivatives, has been systematically formulated in the work by Brooks, Gates and 

Muhamrnad8. 

6. Conclusion 

This work has been motivated by the observation that the local gauge principle 

offers enough room for the generation of distinct intermediate quanta. To substan- 

tiate this context, whereby the gauge principle allows for more than a single gauge 

potential, one has chosen to work with ( 2 , O )  supersymmetry. It has the advantage 

of including two generators in a simple formulation. Thus, besides transforming 

fermions and bosons amongst themselves, the presence of a second supersymmetry 

offers another retransformation. This means that the number of involved fields is 

expected to increase and so, the possibility of finding out a second potential field 

transforming as (1.1) can be realized. 

To implement a gauge theory with this second supersymmetry, it is necessary 

to consider the superspace with a second Grassmannian spinor coordinate. HOW- 

ever, as a first attempt, we have appiied relationships (2.5) and (2.6) to generate 

a gauge theory. Then, a possible gauge potential su~erfield, H, would appear as 

transforming in a same multiplet with the usual r, 

where M is a real 2 x 2 matrix. Nevertheless, (6.1) was unsuccessful to organize 

and accomodate the degrees of freedom of a supersymmetric gauge theory. This 

situation favoured the introduction of a second Grassmann coordinate, e 2  7. Then, 

a gauge theory was organized and, as consequence, the second potential field W+ (z) 
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transforming through (4.13), naturaly showed up. It appears a s  a component of 

the following (2,O)-superfield: 

e+) e * d ( x )  66' 
G+ (z, 8,  e* )  = w+ (x) + - - - 

fi fi 
+ -S(z). 

2 

However, its meaning is better systematized through a Clebsch-Gordon decom- 

position of the (2,O) supersymmetry. This means that superfields as the ones in 

(A.3) add to the usual a (1,o) matter multiplet. Finally, one gets the follow- 

ing properties for W+(x): it is massless, propagates through (5.11), and does not 

couple to matter. 

Thus, three different proofs have already been collected from supersymmetry 

to identify the presence of a second potential field embedded in the context of 

gauge invariance. They can be traced back to two possible origins that differ 

by the relaxation of constraints usually imposed on the field-strength superfields. 

The first aspect was obtained through the cases N = a - D = 2, N = 1 - D = 3 

and, also, N = 1 - D = 2 follows the same pattern6. Then, by means of certain 

constraints, a second potential field'has emerged. In the first case such a field 

is able, at the non-abelian level, to interact without breaking supersymmetry. 

Making, if one wishes, a convenient soft-breaking supersymmetry in the second 

case, one gets a scalar electrodynamics for this second potential field. Increasing 

the scale of possibilities introduced by supersymmetry, this work has tried to 

bypass such a stage of constraints. So, through a gauge theory with a second 

supersymmetry, the existence of such a second potential field can be explicitly 

identified. To illustrate the second origin, no constraints were necessary to be 

relaxed. Concluding, (2,O) supersymmetry is rich enough to establish the thesis 

of a second potential without touching the constraints of that superspace. On the 

other hand, combining this second supersymmetry and relaxing the constraints 

probably will generate a third potential field. 

Just to conclude, we would like to point out that (1.1) can also be supported 

by arguments based on the fibre bundle approach to gauge theories
g
. This is 

presently under investigation and it shall be reported elsewhere. 
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Appendix A 

A (2,O) Clebsch-Gordon Decomposition 

A table parametrizing the superfields (2,O) in terms of the superfields (1,0) is 

catalogued below . 
For the matter fields, 

For the potential fields, 
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where the expansion in components for the superfields (1,O) is given as 

By means of Majorana-Weyl spinors ei and 02, the covariant derivatives are: 
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Resumo 

Uma teoria de gauge exibindo duas supersimetrias é formulada e discutida. 
Para descrevê-la, uma coordenada Grassmanniana adicional, de natureza espino- 
rial, é acrescentada ao superespaço N = 1/2. O modelo em supercampos resul- 
tante, quando colocado em termos dos campos componentes, revela a existência 
de dois campos vetoriais transformando-se sob um único grupo de gauge U(1). 


