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Abstract We prove that analytic stochastic regularization breaks gauge 
invariance. This is done by an explicit one loop calculation of the two, three 
and four point vertex functions of the gluon field in scalar chromodynamics, 
which turns out not to be gauge invariant. We analyse the counterterm 
structure, Langevin equations and the construction of composite operators 
in the general framework of stochastic quantization. 

1. Introduction 

Due to many technical aspects, non abelian gauge theories are very difficult to 

deal with. Nonperturbatively, there are the Gribov ambiguities which prevent a 

clear gauge specificationl. On the other hand, computer simulations using Monte 

Carlo methods have unveiled a lot about the structure of the models on a lattice2. 

In spite of this success, crucial problems still persist whenever fermions are in- 

cluded. Even at the perturbative leve1 the situation is not much better since, in 

many instances, it is not easy to find a gauge preserving regularization scheme3. 

Case examples are the supersymmetric gauge theories where most of the popular 

schemes fail. 

With such a pletora of troubles we found very fortunate the Parisi and Wu 

proposal of stochastic quantization a s  a way to circunvemt some of the above 
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problems4. To begin with, gauge specification is not necessary or, better saying, 

it is automatically incorporated, thus evading the Gribov ambiguities. Moreover, 

concerning gauge theories on a lattice, the introduction of a fifth variable (the 

Langevin time) permits a unique updating of the whole lattice data in each step, 

saving a huge amount of computer time. 

After Parisi and Wu, some authors have proposal new regularization ap- 

proaches based on the Langevin equation with a non-white n o i ~ e ~ ' ~ ' ~ .  Since, ap- 

parently, such procedures do not affect the physical space-time coordinates, it was 

expected that the new regularization schemes would preserve most of the symme- 

tries. Indeed, a number of results pointed in that direction, indicating that gauge 

invariance holds in the regularized theory. For example, in the abelian case it was 

shown that, as it happens in dimensional regularization, vertex functions with at 

least one gauge field carrying zero momenta vanish8. This implies that the highest 

divergence in the corresponding diagrams always cancel. As a consequence there 

is no induced mass counterterm. This result has been substantiated by an ex- 

plicit calculation of the one loop polarization tensor in scalar QED, which turned 

out to be transversal. A similar reasoning can be applied to the two dimensional 

Yang-Mills model, in which the regularized polarization tensor is also transversal6. 

The absence of mass counterterms does not preclude the induction of gauge 

breaking terms, containing derivatives of the gauge field. In fact, it is one of the 

purposes of this work to present a detailed calculation of the polarization tensor 

of scalar QED, using the so-called stochastic analytic regularization. Besides the 

usual transversal terms we found a divergent part of the form APd2Ap. Although 

innocuous in this abelian situation, such terms is potentially dangereous in the 

non-abelian case. We have confirmed this suspicion, calculating the divergence 

of graphs with three and four non-abelian externa1 fields. Our calculations alço 

shows how one could overcome this problem and gives some insight on the higher 

order corrections. 

A possible failure of current conservation in the framework of stochastic reg- 

ularization has already been noticed5. Nevertheless, its consequences it were not 

clear for the gauge symmetry, since this symmetry is apparently preserved in the 
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Langevin equation. In this paper, we discuss the appearence of infinite terms 

and the possible implications for gauge theories. In section 2, we review the gen- 

eral rules of analytic stochastic regularization and analyse the polarization tensor 

for two-dimensional QED. This is done to expose the mechanism by which it is 

transversal, contrarily to what happens with ordinary analytic regularization of 

field theorg In section 3, we study gauge invariance of four-dimensional non- 

abelian scalar QCD, in the externa1 field approximations. The standard renormal- 

ization methods are dissected is the light of stochastic quantization, in section 4. 

In particular, there we discuss the construction of composite operators and the for- 

mal derivation of renormalization group equations. Finally, section 5 presents our 

conclusions and an overview of our work. For the reader's convenience, we have 

included two appendices, one to compare our calculations with those of dimen- 

sionally regularized field theory and the other containing some technical details 

ommited in the text. 

2. Stochastic quantizat ion a n d  regularization 

a. Feynman rules 

The basic element in stochastic quantization is the Langevin equation 

where t is a fifth time variable and x represents a four-dimensional space-time 

coordinate. S is the classical action and a random field with gaussian probability, 

defining a Marcovian process. The two-point correlation function of the 77 field is 

given by 

< q , ( ~ , t ) ~ j ( ~ , t ' )  >= 2bij6(x - y)b(t - t') (2.2) 

and higher point Green functions are obtained with the help of Wick's decompo- 

sition TJsing (2.1) and (2.2) averages can be computed through 
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The above Marcovian process can be related to the field theory specified by the 

action S as follows: the Green functions of the quantum field are given by the 

stationary limit of the equal (fifth) time averages of the random field (p, namely 

For perturbative purposes, it is convenient to split the action in two terms; a 

gaussian, quadratic in the fields, and an interaction term 

so that the Langevin equations can be rewritten as 

where 

D.. = 6 ,  .(-a2 + m2), for a scalar field a3 13 (2.7~) 

and 

D,, = -a26,, + a,& for a gauge field. (2.7b) 

As noted elsewhere, due to the time derivative on the left-hand side of (2.6), 

the propagator 

Gij = [at + DIZ" (2.8) 

exists even for a gauge theory. Indeed, we have 

for a scalar propagator and 

for a propagator of a gauge field (the tildes denote Fourier transformation). 

In (2.10), the presence of a longitudinal part is to be noted. It has been 

remarked that such a term does not contribute to the Green functions of gauge 

invariant objects4. However, as we shall see later, that term becomes particularly 

dangereous if a non invariant regularization scheme is employed. 
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Equation (2.6) can be solved iteratively, giving 

where the asterisk is to remind that the products must be taken in the convolution 

sense. Using (2.11) and (2.2) the N-point Green functions of the (o field can be 

computed. In a given order of perturbation the following results obtain
g 
: 

1. Draw a11 topologically distinct diagrams. 

2. Use a cross, +, to represent the contraction of two v's. Thus, a line 

connecting a pair of vertices can be either a crossed or an uncrossed line. The 

crossed lines are distributed in the graphs so that 

2.1 Every loop has, at least, one crossed line. 

2.2 Two external vertices can not be connected by a continuous path of lines 

without crosses. 

2.3 Any crossed line can be connected with an external line by a path without 

crosses. 

The number of crossed lines in a graph is 

number of f = number of ioops + nurnber of externa1 lines - 1 (2.12) 

Observe also that the vertices at the ends of an uncrossed line are naturally 

ordered according the values of their fifth times. On the other hand, if a11 lines 

linking a pair of vertices are crossed lines, then the amplitude for the graph de- 

composes into a sum corresponding to the two possible (fifth) time ordering of the 

vertices. 

3. To the lines are associated the propagators 

Uncrossed line t G(x, t)(as given by (2.910)) 

Crossed line -+ D(x  - x'; t, t') = dr dyG(x - y;  t - r)G(xl  - y; t' - 7) (2.13) 1 ' 1  
A look at the amplitudes constructed with the above rules shows that they, in 

general, diverge. It is true that graphs with more interna1 crossed lines have a 

better ultraviolet behaviour, but it is always possible to find graphs as divergent 
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as those in the usual formulation of field theory. Following refs. (5,6) we introduce 

a non-white noise 

< g(x,t)g(xl,t ') >= 6(x - x') f,(t - t') (2.14) 

where 

iim f,(t) = 26(t). 
6-0 

To be concrete, we choose a particular form for f, 

The meaning of the above process is the introduction of a non-Marcovian element 

ín the process described by (2.2). 

The Green functions regulated by the use of (2.14-16) are meromorphic func- 

tions of 6, with poles on the real axis. As in the case of analytic regularization 

of field theory, we could adopt different c's for each q contra~tion'~. Although 

arbitrary, this has some advantages over the use of a unique E .  

Using (2.14-16), the crossed propagator must be replaced by 

which for a scalar field gives 

In the special case defined by (2.16), we obtain 

j,(w) = E I ~ ( C ) [ W [ - ' S ~ ~  (2.19) 

such that 

Note the similarity of the first term on the right-hand side of this equation 

with the usual analytically regularized Feynman propagator. Since, as mentioned 
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before, the divergences of the regularized amplitudes appear as simple poles, the 

second term will only contribute to their finite parts. For the same reason the 

amplitudes containing the term vanish as the regulator is removed. 

b. A sample calculation 

To illustrate the use of the regularization method introduced before, we will cal- 

culate the lowest order contributions to the polarization tensor of two-dimensional 

scalar QED. The photon polarization tensor, ll,, is a convenient object to focus 

our attention, as it must be transversal if gauge symmetry holds. This is also 

a good test on the advantages of the new regularization method because, as the 

reader probably knows, the usual analytic regularization method of field theory 

induces a mass counterterms, breaking gauge invariance. 

The model is described by the Lagrangian density 

where F', = d,A, - d, A, and D, = 13, + ieA + p is the covariant derivative. The 

Langevin equations governing the evolution of the fields A,, cp and p* are8*" 

with the random fields v,, t) and r]* satisfying 

Solving iteratively these equations, we found, in lowest order of perturbation, 

the graphs shown in fig. I. Note that there is one graph contributing to fig. I.a, 

four graphs contributing to fig. 1.b - they correspond to different graphs with the 
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same topology having two crossed lines, one externa1 and the other internal - and 

two graphs for the fig. 1.c. To get a better idea of the details of the calculation, 

we divide it in two parts. In the first part, we calculate the amplitudes for the 

graphs, neglecting the contributions of the second term in (2.20) to the crossed 

propagatom. Also, for simplicity, in computing correlation functions, we suppose 

that the fifth times of the fields are equal and very large. We, then, integrate over 

the fifth times of the internal vertices and keep only the dominant terms @e., only 

those surviving in the infinite fifth time limit). In appendix A, for the reader's 

convenience, we have included more details of the calculation. For the graph 1.a 

we get 

---Ow-- 
Fig. I - One-loop graph contributing to the photon self-energy in scalar electro- 
dynamics. 

As explained in the appendix, the factor 2 on the right hand side of this 

equation comes from the two possible orderings of the internal times (r1 > r2 or 

ri < rz). Integrating in r1 and 72, we get 

(2k + P),(2k + P ) V  I (2.25) 
[k2 + m2] [(k + p)2 i- k2 + p2 + 2m2] 

This expression is very difficult (even for 6 = O) to evaluate. Although in two 

discussions we could still obtain a closed form for it, we find it more instructive 
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to employ a different procedure which has the advantage of being generalizable 

to four dirnensions. The basic observation is that n,, is analytic in m fir m 

big enough (eq~ivalentl~, for small p). Then, rip, can be expanded in powers of 

m-' (or, equivalently, in powers of, the externa1 momenta) and the transversality 

property of H,, will be correct only if it is satisfied in each order of the expansion. 

In the forthcoming calculation, we will analyse the terms of the above mentioned 

expansion, up to the first one to be finite when the regularization is removed. 

With this approximation we have 

For the graph of fig.(I.b), the calculation is also ~trai~htforward, but a little 

bit more extense. Frorn appendix A, we get 

Finally, the graph of fig. (1.c) gives 

where the extra factor of two comes from the two graphs of fig. (1.~). 

Adding the contributions (2.26-28), we note that the divergent pieces exactly 

cancel, leaving the result 

which is, evidently, non transversal. This expression should be compared with 

.Lhe one employing the usual analytical regularization of field theory. In that case, 

r;he regularised integrand is obtained by replacing the free propagator (p2 + m2) 

l ~ y  (p2 + m2)A. With this substitution, we get a polarization tensor differing from 

('2.29) just by a term which vanishes after a judicious choice of the participating 

lambdas. Thus, up to this point, there is no great advantage in using stochastic 

analytic regularization, instead of the more usual one. However, we still have to 

compute the corrections coming from the neglected terms in (2.20). These terms 
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are very important because, a s  we shall see right now, they will make the final 

result gauge invariant. Firstly, notice that there is no correction coming from the 

graph of Fig. I.a, since it is finite without the regularization. The contribution of 

the remaining graphs are not difficult to evaluate (see appendi A) and we get the 

following additional terms 

6'" from Fig. 1.b 
n(p2l2 

-6'" from Fig. 1.c 
2 4 p 2 l 2  

Adding a11 these contributians, we get a miraculous cancellation of the non- 

transversal parts, leaving the net result 

The cancellation of the non-transversal terms is a consequence of a general 

theorem proven in ref. 7, asserting the non existence of mass corrections to the 

photon field. However, that theorem does not preclude the induction of non gauge- 

invariant terms, containing derivatives of the A' field. 

3. Breaking of gauge invariance in the non abelian case 

The calculations of previous section indicate that analytic stochastic regular- 

ization can Se a very efficient to01 for the study of properties of gauge theories, 

at least the abelian ones. Unfortunately, this result, as we will show now, does 

not extend to the non abelian situation. Our discussion will be based in the non 

abelian version of (2.21) 

where now 

F'u = aPAv - auAh + ie[A,, Av] ( 3 . 1 ~ )  

D, = + ieAp , A, = A;Xa (3.16) 

and the Xa are the generators of the algebra of the gauge groups. 
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The Langevin equations are given by (2.22) with the replacements (3.la,b). 

They can be formally iterated, producing terms that can be represented by stochas- 

tic disgrams, as before. If dimensional regularization is employed, one finds that 

they distribute themselves into classes of gauge-invariant amplitudes. In particu- 

lar, the set consisting of the diagrarns of figures I til1 TV is gauge-invariant and, in 

the large-t. limit, generates a counterterm 

Zl FL,, FT'lY 

where Fi,, = aPA, - &A, + ieZ2[A,, A,]. 

However, had we used the analytic stochastic regularization method, 

duced counterterm would be 

ZiFi,Fr 'lV + Z 3 ~ , a 2 ~ "  

which is not gauge-invariant. To verify (3.3), we consider explicitly the 

bution of each relevant diagram. This calculation is rather simplified by 

that, since we are interested in divergent pieces, the O(€) terrns in (2.20) 

(3.2) 

the in- 

(3.3) 

contri- 

noting 

can be 

freely disregarded. To be systematic, we divide the calculation into three parts, 

according to the number of external gluon lines: 

1. Graphs with two external gluon lines. As in the two-dimensional exam- 

ple, there are three diagrams, shown in fig. I. Differently from two dimensions 

the diagram 1.a is now logarithmically divergent. ~ c t u a i l ~ ,  this diagram is the 

responsible for the breaking of gauge-invariance, as it will become clear shortly. 

Analogously to (2.26), we have 

(2k + ~) , (2k  + P), 
[(k + p)2 + m2)]lfa[(k + p)2 + k2 + p2 + 2m2] 1 = 

We would like to cal1 the reader's attention to the exponent 2~ in the denom- 

inator of the last line of the above expression. The factor 2 comes in because 
" 
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there are two crossed lines in the graph. This implies that (3.4) is only half of 

the corresponding result for the dimensionally regulated amplitude. The disas- 

trous consequences of this is that (3.4) will not 'match* the contributions from 

the other graphs. 

The computation of the graphs of Fig. 1.b and 1.c is also very simple and gives 

(up to finite terms). 

2. Now come the graphs with three external gluon lines. These diagrams de- 

compose into two sets of topologically similars graphs. In the first set, fig. II.a, 

there are 18 (linearly) divergent diagrams. However, the divergent part of these 

diagrams cancel in groups of two. This is to be expected, since each graph gener- 

ates a counterterm of the type Tr(i3@Ap)AVAU, which violates charge conjugation. 

The other set of topologically similar diagrams with 3 external gIuon lines contains 

18 diagrams. To illustrate the calculation, we write the amplitude for the graph 

of fig. 1I.b 

where the external field propagators have been eliminated. Expanding at p, = 0, 

we find the result 

e3p; Tr (A" AV AP) -- 1 
I(pf6"' - ~$5" + (PI - ~ 3 ) " 6 ~ ~ 1  

P! + P; + P: (3.8) 

This result can be used to get the amplitudes for the other graph, just changing 

the momenta and Lorentz indices adequately. Adding a11 these contributions, we 

get a final result for graphs with three external gluon lines. 
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Fig. I1 - One-loop contribution to the gluon three-~oint vertex function. Graphs 
with two internal lines do not induce counterterms because of charge conjugation. 

3. Graphs with four external gluon lines. These diagrams can be grouped into 

three sets of topologically similar graphs. The first set is constituted by graphs 

with two internal lines. There are 48 such diagrams. They can further be divided 

into six subsets of 8 diagrams each. In each subset, the indices and momenta of 

the external lines are fixed. A typical graph, fig. III.a, let us say, has an analytic 

expression like (for the rest of this section the propagators of the external fields 

have been eliminated) 

- - 2e4pS T~[(A,A")~] + finite terms 
( W 2 4 p ;  + P: + P3 + ~ 4 )  

Note that a quadrilinear vertex gives a factor of 2 or 1, depending on whether 

there are one or two crossed gluon lines ending at its end. Adding these 48 dia- 

grams, we obtain 

The next group of diagrams consists of triangle graphs, having three internal 

lines. There are 144 diagrams of this type and, as in the previous case, they can 
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Fig. I11 - Typical graphs contribution to the gluon four-point vertex function. 

be grouped into 12 groups of twelve diagrams, so that in each subset the labels of 

the external lines are fixed. A typical diagram, fig. III.b, has the expression 

- - e4 ( ~ 1 ) ~  T ~ ( A , A ~ ) ~  - + finite terms . 
(P: + P$ p3 + p:)2(4n)2~ 

The amplitudes for the other diagrams can be obtained similarly. The final result 

for the sum of the 144 diagrams is 

-6e4 T ~ [ ( A ~ A ~ ) ~ ]  
(3.13) 

4n2 € 

Let us, finally, consider the box diagrams shown in fig. 1II.c. There are 96 

diagrarns which can be separated into six groups of 16 diagrams, with pf fíxing the 

labels of the external legs. As an example, we write the expression for the graph 
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The other diagrams can be computed similarly. However, we must not forget that 

some diagrams have additional combinatoric factors due to, possibly, different 

time orderings for the vertices of the diagrams. With these caveats, the remaining 

diagrams are calculated, giving 

Collect'ing, now, the results (3.4,5,6,9, 11, 13, 15) we obtain the counterterm 

for the graphs considered in the form (3.3), with 

From the above computation, it is clear why our result is not gauge-invariant. This 

is so because diagram 1.b has two interna1 crossed lines to be regulated and this 

produces an overall factor of 1/2. The solution to this ~roblem is very simple and 

consists in using e/2 for each line of the graph 1.b. In higher orders, an analogous 

prescription can lead to the correct result. Nevertheless our computation puts 

serious doubts on the consistency of the stochastic analytic regulator employed as 

a nonperturbative regularization scheme. 

In the usual (i.e. non stochastic) formulation of gauge theories, we have to 

add a gauge fixing term (and possibly Faddeev-Popov ghost) to the Lagrangian 

density. In a Lorentz gauge, this term is given by & ( â p ~ p ) '  and, in general, 

the Green functions are a dependent. Observables (including the S matrix), on 

the other hand, must be a independent. If a non-gauge regularization scheme is 

~rmployed, then the a-independence can be achieved only at the expense of adding 

gauge-dependent couterterms to the original Lagrangian. In the abelian situation, 

lhe putative a-dependence of the Green functions comes from graphs pictorially 
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represented in fig. IV. The contributions of this type of diagrams vanish on shell 

only if the gauge field is coupled to a conserved current* 

In the framework of stochastic quantization, the above problem can be particu- 

larly dangereous, since the longitudinal part of the A, field has a piece proportional 

to the fifht time. Therefore, it is mandatory that the gauge field be coupled to a 

conserved current . 

Fig. IV - The non vanishing of this graph 
makea the Green functions gauge dependent. 
The special vertex V corresponds to the inser- 
tion of the operator ( a p ~ p ) 2 .  

4. Renormalization 

In this section, we shall discuss some peculiarities of the renormalization in 

the formalism of stochastic quantization. In particular, we will show that the 

counterterms necessary to render the field theory finite can also be interpreted as 

counterterms in the stochastic theory, i.e., at finite fifth time. In spite of that, 

there may be differences (finite renormalizations), since the degree of divergente 

depends not only on the topology, but also on the number of interna1 crossed lines. 

For simplicity, but without loss of generality, we choose the model and scalar 

electrodynamics to base our considerations. 

First of all, we notice that for finite non-zero times there will be a strong con- 

vergence factor, provided by the exponential in the stochastic propagators. As a 

specific example, consider the case of the photon self-energy in scalar electrody- 

namics 
d4k exp{-.r[(k + p)2  + k2 + 2m2]) exp{-(t - r)p2) I-- k2 + m2 p2 $ ( 4 4  

* For a rigorous discussion of gauge-invariance in QED, see ref. 12 
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which is finite, insofar as T is non vanishing. If we now integrate over the fictitious 

time, then a divergence shows up. Indeed, we have 

and the first term gives origin to a (logarithmic) divergent integral. To exhibit this 

divergence in a more natural way, it is convenient, also, to Fourier transform with 

respect to the fifth time. Our notational convention is that the Fourier transform, 

? ( W ) ,  of f ( t )  is given by 

and we observe that w has dimension two in m a s  units. 

With the above definition, the Fourier transform of the propagators are 

Crossed : D(p,w) = 
1 1 

p2 + rn2 + i ,  p2 + m2 - iw 

As an illustration, in the following we will be specific to the four-dimensional 

@4 theory. Using (4 .43)  .and noting, also, that each loop contributes with 6 to the 

power counting, we get the degree of superficial divergence of a graph 

where 

m = # o f loops 

n = # o f  internal lines 

X = # o f internal crossed lines 

Using, now, the relations 

X = m + N , , , - 1  

m = n - V + 1  
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with N, Nu,,, and V denoting the numbers of external lines, uncrossed external 

lines and vertices, we obtain 

where N, is the number of external crossed lines. We see that graphs with Nua, > 2 

are superficially convergent. Let us now examine each case of possible divergence: 

1. Nu,, = 2, Nc = O. These are graphs contributing to the t w o  point  function 

and having no external crossed lines (see fig. V). It is easily verified that such 

divergences can be absorbed in a multiplicative renormalization of the random 

field. 

Fig. V - Logarithmic divergent contnbution to the renor- 
malization of the random field v.  

2. Nunc = 1, Nc = 3. This is the usual logarithmic divergence of graphs with 

four external lines (see example in fig. VI). It corresponds to the usual four point 

vertex renormalization. 

Fig. VI - Lowest order graph contnbution to the charge 
renormalization in the framework of stochastic quantka- 
tion. 

3. Nu,, = 1, Nc = 1. This is the usual quadratic divergence of self-energy 

graphs (see fig. VII). It can be eliminated through a mass and wave function 

renormalization. 
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Fig. VI1 - This graph contains part of the usual mass and 
wave function renormalization. 

In the stationary limit of field theory, a11 the externa1 fifth-times are made 

equal. This corresponds to joining a11 externa1 lines of each contributing graph 

in a new vertex, Vm, and then integrating over the w variables of the additional 

loops. One can verify that no divergences arise in this process. Actually, a simple 

calculation, similar to the one above, gives 

where W denotes the number of lines meeting at V,. Since W > 1, then, neces- 

sarily, 6 ( 7 )  < O .  These conclusions agree with those of ref. (13), where a similar 

power counting was done directly in the space of the fifth-time coordinate. 

From the above discussion, we conclude that the renormalization problem is 

essentially the same as in the usual formulation of the theory. The divergent parts 

can be removed by reparametrizing the original model. This can be implemented 

by adopting a convenient subtraction scheme. Without commiting ourselves to 

any particular scheme, we want to add some remarks on the properties of the 

resulting theory. The first issue eoncerns the derivation of the field equations. 

If, for instance, we consider the bilinear ~ [ 9 ( - 3 ~  + m2)9], where the symbol 

N indicates a normal product prescription, then, a basic step in the derivation 

is the amputation of the line associated to the operator (-a2 + m2)@. This is 

a trivial task since, in momentum space, (-a2 + m2) is just the inverse of the 

propagator and one can always arrange things so that it also happens in the 

regulated theory. So, it is possible to define bilinear normal products formally 

obeying the classical Euler-Lagrange equations. However, this result does not 

imply the absence of anomalies in Ward identities, since the Green function of the 

current operator have an independent definition and, in principie, their divergences 

are unrelated to the above rnentioned normal products. Indeed, Green functions of 
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the object @*ap@, regulated with the use of equation (2.16), do not satisfy current 

conservations because the regiilarized propagator is not the inverse of (-a
2 + m2). 

This observation is in complete accordance with the results of section 2. 

Another remark concerns the behaviour of the Green functions under renor- 

malization group transformations at finite fifth-time. Since, as we have seen before, 

the elimination of ali divergentes can be accomplished by the usual wave, mass 

and charge renormalization (the field renormalization is, as we saw before, part 

of the wave function renormalization), then, one should expect that the Green 

functions G(xl, x2, .., xN) of the stochastic field would obey the renormalization 

group equation 

with the same p and 7 as in the íimiting field theory. Equation (4.9) can be proved 

as follows: we introduce differential vertex operators14 (DVO), corresponding to 

the different field monomials of the lagrangian of the model. Thus, in a4 theory 

we consider (to be more careful, we could dimensionally regularize our amplitudes) 

which are defined by the same Feynman rules specifying the Green functions. 

Thus, AI means the insertion of a mass vertex in the graphs contributing to the 

Green functions. It is also convenient to introduce a DVO, A4, which counts the 

number of crossed lines in a graph. It is given by 

As will be clear shortly, the latter is not independent of those in (4.9). Using 

these DVO's the action becomes formally 
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where a, b, c and d are counterterms. We adopt intermediate renormalization so 

that the propagator has a pole at p2 = -rn2 but its residue and the other renormal- 

ization conditions are dependent on the value of a new parameter C12, a different 

normalization point. 

The derivatives d/ag and alP2 have simple expressions in terms of the DVO's 

(4.10) 

There is also a counting identity, which is nothing but the integrated equation 

of motion 

Beside the above identities, typical of the usual formulation of field theory, we 

have another equation which is a consequence of A4 being an operation counting 

the number of crossed lines. Explicitly, from (4.6a-c), 

Using now (4.13-15), we can easily establish the renormalization group equa- 

tion (4.9). We replace (4.13-15) into (4.9) and equate to zero the coefficient of 

each DVO. Two of these equations (namely those associated to the coefficients of 

Ai and A2) can be used to fix /3 and 7. The remaining one is, then, shown to be 

identically satisfied by virtue of our on-shell mass renormalization. 

5. Conclusions 

In this paper we have discussed the use of analytic stochastic regularization 

in field theory. For abelian gauge theories there is some clear advantage in the 

use of such a method. Indeed, in lower dimensions [< 4) the polarization tensor 

turns out to be transversal and gauge-invariance is not broken. In four dimensions, 

because of quadratic divergences, there is the induction of a non gauge-invariant 
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counterterm of the form A , d 2 A ~ .  Technicaliy, this happens because the number of 

interna1 crossed lines (which are the ones affected by the regularization) varies from 

graph to graph. This causes unbalances in the usual weights of each individual 

graph, so that non-invariant pieces do not cancel anymore. These observations 

are, of course, related to the fact that the gauge field is not coupled to a conserved 

current, as would be mandatory in a gauge preserving scheme. Nevertheless, this 

induction of a non gauge-invariant counterterm is not really dangerous in the 

abelian case, since it can be traded for a renormalization of the gauge-fiuing term. 

The situation is more complicated in the non-abelian case. It is not possi- 

ble to absorve the counterterm APd2Ap into a change of the gauge-king term. 

The problem is that the renormalization of the gluon polarization tensor is now 

dependent on the renormalization of the three and four point proper vertex func- 

tions of the gluon field. At the perturbative level, we could remedy this disease 

by attributing different epsilons to each crossed propagatorlO. This is not in the 

original spirit of the method, but can produce gauge-invariant amplitudes, if the 

epsilons are chosen adequately. Non-perturbatively however, there is not, up to 

the present, any prescription which guarantees gauge-invariant results. 

To define composite operators, care must be taken, since there are at least 

two "natural", but inequivalent, ways to introduce normal products. The first 

possibility, which we have adopted in the derivation of the renormalization group 

equations, is to treat the formal product in the same way as an ordinary Lagrangian 

vertex. Another possibility, inequivalent to this one, is obtained by taking the 

product of fields at different points and, then, letting the points coincide. The 

difference between these two objects can be traced back to the flow of the fifth 

time. In the first case the fifth time flows into the special vertex &e., its time 

variable is higher than those of any vertex nearb~) ,  whereas in the latter case the 

flow goes continuously through it. 

Appendix A 

In this appendix we will show details of the calculation of the graph 1.b in two 

dimensions. The calculation of the other graphs in both two and four dimensions is 
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completely analogous and should not present any additional difficulties. Using the 

r1 field two-point function (2.14,16), it is easy to see that the crossed propagator 

is given by (2.21). As the divergentes of the Feynman integrals appear as simple 

poles, the term of order of é in (3.21) will contribute only in those integrals which 

becomes divergent as t tends to zero. 

Since our primary interest is in the stationary limit of quantum field theory, 

then the externa1 fifth times in fig. 1.b are equal and very large. Moreover, because 

of the rules of stochastic quantization, the interna1 times satisfy 

Therefore, we have 

00 
(1 - 'ln IQI) e-iz21(k+p)2+m21(~l-~2) 

( A 4  

Integrating in 71 and 72 and incoiporating also the contributions of the other three 

diagrams gives 
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(2k + P)p(2k + P ) ,  / & ( ( k  + pIZ + m2]1+i(p2 + k Z + rn2 + ixz((k + p2) + m2)] 
(A.3) 

We now rescale the loop momentum, k  -+ m k ,  and expand the integrand in 

powers of p/m. Keeping again only the contributions surviving in the é --+ O, we 

note that the two terms in (A.3) give identical results. We get 

For the B term, the only divergence comes from p = O, in which case the 

integral over x can be performed 

Using also 

d2k 4k,k, - 6," 
- f finite terms 

2 ~ ( ~ ~ ) 2 €  

we are left with 

Observe that the contributions of the term of order of E are necessarily finite. 

In four dimensions there is no such cancellation and the computation is simpler 

since it is not necessary to laok at the finite contributions. 

A very important point in the whole calculation is the possibility of more than 

one contribution arising from the same graph, due to different time ordering for the 

interna1 vertices. In general, time flows from outside to inside a graph. However, 

if there is no uncrossed line linking a pair of adjacent vertices, then a11 possible 

orderings must be taken into account. 
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Appendix B 

Using dimensional regularization, we will reproduce here the results for the 

induced counterterms associated to graphs with two, three and four external gluon 

fields in scalar chromodynamics. These results are (D = 4 - i). 
1. Graphs with two external (amputated) gluon lines. The graphs are similar 

to those shown in fig. I (but, of course, a11 propagators are the usual ones of field 

theory). They give 

2. Graphs with three external gluon lines. Only the triangle graphs, similar 

to those of fig. Kb,  contribute. The divergente part is 

3. Graphs with four external lines. The calculation is straightforward and the 

final result is 

which coincides with the one obtained by the use of analytic stochastic regulariza- 

tion. 

We see that the breaking of gauge-invariance in the analytic stochastic regu- 

larization method is entirely due to the graphs with two external gluon lines. 
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Resumo 

Provamos que regularização analítica estocástica quebra invariância de gauge. 
A prova é obtida através de um cálculo explícito, em um loop, das funções de 
dois três e quatro pontos do campo do gluon na cromodinâmica escalar, que se 
mostra não ser invariante de gauge. Analisamos a estrutura de contratermos, as 
equações de Langevin e a construção de operadores compostos no contexto geral 
de quantização estocástica. 


