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Abstract A mathematical procedure called hyperspherical adiabatic ap- 
proach (HAA), is presented to handle the solution of a coupled system of 
differential equations (finite or not) of Schrodinger type normally generated 
from N-body physical systems. We investigate the use of HAA in relatively 
simple but representative cases, in order to emphasize its broad range of 
applicability. The article derives a useful upper bound/lower bound the- 
orem for the HAA. This proof clarifies a hitherto empirical estimate of 
the ground state energy based on different versions of the HAA: the ex- 
treme adiabatic approximation (EAA), uncoupled adiabatic approximation 
(UAA) and coupled adiabatic approximation (CAA). We finally discuss the 
familiar Born-Oppenheimer approximation where a similar inequality ap- 
pears. 

1. Introduction 

The Schrodinger equation for a N-body system involving (N - 1) relative 

mass-weighted (Jacobi) coordinates can be written as an infinite set of coupled 

differential equations (CDE) in terms of a hyperradial variable, r. This system of 

equations has the forml 

where v,,, (r)  = (9) < Y, V iy,, >, r = - (3) E (E < O for a bound state) and 

Y,(R) are hyperangular basis functions (a characterizing all the necessary quan- 

tum numbers), in the ( 3 N  - 4) dimensional angular hyperspace (R). For example, 
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(9,) can be chosen as the hyperspherical harmonicsl. The numerator of the cen- 

trifugal force term of Eq.(l)  is related to the eigenvalue of the Casimir operatorl 

of the system multiplied by a minus sign. For most few-body problems, the set 

of CDE for {p,) is a formidable one, even after reasonable truncation. Hence, it 

is greatly advantageous t,o further reduce the set. A mathematical scheme, called 

hyperspherical adiabatic approach (HAA), has been proposed and applied success- 

fully to the three and four nucleon problems2~3. In this communication, we try to 

justify the HAA. The method furnishes a consistent mathematical procedure to 

reach higher accuracy in the numerical results. To achieve it, one initially starts 

with the extreme adiabatic approximation (EAA) where only one ordinary differ- 

ential equation is necessary. The next step for higher accuracy is the uncoupled 

adiabatic approximation (UAA), also based on the solution of one single differen- 

tia1 equation. To achieve even higher accuracy, one needs to solve a few coupled 

differential equations, whose number is somehow related to the desired accuracy. 

Certainly this number is still much smaller than that of the original CDE repre- 

sented by Eq.(l) .  This approximate version of the HAA is called coupled adiabatic 

approximation (CAA) . 

A preliminary version of the HAA was presented earlier2, but only for the 

three-body problem. For completeness, an extension for N-body systems4 is re- 

viewed here. An important point discussed in this work is the general proof of 

basic inequalitaties, 

~ E A A  < 6 5 VAA < WAA, C4 

where the binding energies, for a fixed a,  are those in the EAA, the CAA and 

UAA, respectively. The 6 means the exact result for the given Hamiltonian. The 

UAA provides an upper bound and EAA provides a lower bound to the ground 

state energy. This work thus clarifies a hitherto em~ir ica l  estimate of the ground 

state energy based on different versions of the HAA (EAA, UAA and CAA). 

A preliminary proof of these inequalities was given by ~ a l l o t - ~ i ~ e l e - ~ e v i n g e r ~ .  

However, they made use of the approximate concept of the optimal subset making 

that proof not so general and unnecessarily complicated. 

310 



N-body systerns in the hyperspherical adiabatic approach 

This paper complements ref.(4), with the inclusion of a general proof of the 

basic inequalities. It also discusses the deuteron, as a good academic illustration of 

the use of HAA. Two-body physical systems with non-central interactions normally 

generate a coupled system of differential equations of the form given by Eq.(l). 

The use of the HAA in such cases is also possible and advantageous. For instante, 

with the simple deuteron case this can be easily shown. With this example we also 

discuss how the mathematical nature of the interaction can affect the "goodness" 

of the various approximations. That can be used as an insight for the trinucleon 

problqm also discussed in this article. Finally, the inclusion of a model system to 

simulate severa1 physical systems is another important point in this paper. For this 

purpose, we idealized a simple three-body bound system composed of a distinct 

and two equal mass particles, interacting only via local pairwise S-wave potentials 

(Gaussian types) with their depth and range varying. Ground state energies are 

calculated using the HAA in the nuclear and molecular mass limits. The nuclear 

situation is simulated when the ratio m of equal to distinct particle mass is of the 

order of unity. The molecular case is simulated for m » 1, when the potential 

between the equal mass particles is switched off. The ratio m was varied between 

the limits m - 1 and m » 1 and the depths and ranges of the potentials were 

varied to simulate intermediate situations. In the physics literature there exist 

other types of adiabatic approximations, such as the classical Born-Oppenheimer 

approximation   BOA)^. We comment on the relation between HAA and BOA. 

In section 2, the HAA is presented. In section 3, a proof of the basic inequalities 

is given. In section 4, numerical results are given for selected physical systems and 

in section 5, conclusions are outlined. 

2. The Hyperspherical Adiabatic Approach 

In order to obtain Eq.(l) we start with a wavefunction 9(r,R) = 

, - ( 3 ~ - ~ ) / ' $ ( r ,  R)  for the N-body Schriidinger equation 
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after elimination of the centre of mass. The operator .L2 is given byl 

where K'(R) is the Casimir operator of the system114. Expanding +( r ,n )  in a 

complete orthonormal set (9, (TI)), 

and multiplying Eq.(3) from the left by Y;, (n) and integrating over dR, we obtain 

Es . ( l ) .  

In the HAA procediire, an associated matrix eigenvalue equation (for a fixed 

r )  is constructed as follows: 

We can also expand Qx(r ,Q)  in a complete orthonormal set {Y,(R)), 

and we obtain a simpler equation, 

which is solved to obtain the eigenvalues, u ~ ( r ) ,  and the eigenvectors, ~ a x ( r ) ,  as 

parametric functions of r. Expanding now ~ , ( r )  in the complete orthonormal set 

{ x ~ A ( T ) } ,  

(ca(r) = C ÇX (r)xax (71, (l.$ 
A 

and substituting into Eq.(í) ,  we finally obtain 
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L 

The nonadiabatic couplings PAX) and 

PX,A'(r) =< xx 1x11 

Q x , v ( ~ )  =< xx IXI:' 
The potential curves, uA( r ) ,  similar 

QAxt are given by 

to the molecular curves, contain essential 

information about the structure of the N-body system. When the derivatives of 

xax1 with respect to r are small, we expect to generate nearly decoupled equations. 

It results that  the coupling terms, Cxx' ( r ) ,  are ~ m a . l l ~ ? ~ .  If truncation is performed 

in the system of equations (Eq . ( l l ) ) ,  we get the coupled adiabatic approximation 

(CAA). Neglecting the coupling terms, in Eq. ( i i ) ,  we have the UAA, 

The neglect of x ~ ~ , ~ ~  in Eq.(14) leads to the EAA. We are able to  define4 a 
a 

meaningful positive dimensionless parameter, 

where r,,, is the value of r a t  which ux( r )  has a minimum, that ,  together with the 

geometrical nature of the eigenpotential (uA  ( r ) )  plots, indicates the "goodnessn of 

UAA. We found that only physical systems with no rapidly varying potentials, 

which generate smooth and well separated eigenpotentials, and in addition the 

condition 6 < 1, make the UAA a good approximation scheme. 
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3. The  Basic Inequalities 

We can prove that the basic inequalities, 

hold for the ground state energies, for a given a, in the EAA, the CAA and the 

UAA, respectively. The inequalities for c, CCAA and C<IAA follow immediately 

from the variational principle. By variational principle we mean here variational 

treatment of an integral expression such as < cplH - Eiy, >, where H is the 

Hamiltonin of the system. It remains to prove that EEAA :' c. For that purpose, let 

us assume that the exact solution of Eq.(3), $,(r, a), is known and for convenience 

is expanded in the complete set {Y,(R)), 

or equivalently, according to Eq.(lO), 

where x labels the exact solution. 

By substitution into Eq.(l), we obtain 

where u,(r) is the eigenpotential in which X -+ x .  Let us label X = O the ground 

state. Clearly uo(r) < u,(r) $ince xao(r) is associated with the lowest eigenpoten- 

tia1 uo(r). Therefore, the equation for the EAA, namely 

when compared with Eq.(18), implies the inequality EEAA 5 E .  T ~ u s ,  the EAA 

provides a lower limit to the binding energy of the ground state. Hence, the basic 

inequalities are proved. The TJAA provides an upper boud to the ground state 

energy, while EAA provides a lower bound. A proof of these inequalities was 
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first discussed by Ballot, Fabre de la Ripelle and ~ e v i n ~ e r ~ .  For that  purpose, 

the authors used the approximate concept of the optimal subset, which made the 

proof unnecessarily complex and not so general. 

4. Results 

We applied the HAA and its different approximate versions (EAA, UAA and 

CAA) to simple well-chosen few-body systems, in order to extract insights into 

the criteria of validity of this approach. We start with a simple case in nuclear 

physics: the deuteron. For completeness, we also give results for triton, as a 

realistic calculation ii nuclear physics. Following it, we idealized a model system 

to simulate various cases in physics. 

Nuclear Scale 

In the nuclear scale, we start with the deuteron as the simplest and pedagog- 

ical case of a two-nucleon bound system. It is known that  hyperspherical (angu- 

lar) states can be reduced to the usual Ye,(7) (angular) states for the two-body 

probleml. I t  is well known that  due to the tensor form of the ineraction for the 

deuteron case we obtain a coupled system of two differential equations, similar to 

Eq.(l). Although being quite a simple example, it provides a nice illustration of 

the use of the HAA and its approximate versions (EAA, UAA, CAA). On top of it 

singular interactions (hard-core type) are considered to illustrate the "goodness" 

of the HAA. It also serves as an insight for the non-trivial three-body problem 

with hard-core type interactions. Four realistic nucleon-nucleon potentials, viz 

Reid soft-core ( R s c ) ~ ,  Reid alternate soft-core ( R S C A ) ~ ,  Reid hard core ( R H c ) ~  

and Hamada-Johnston ( H J ) ~  have been considered. 

In Table 1, the comparison between the results obtained by the UAA, EAA 

and the exact one is given. We can see that  the UAA seems to be very good for 

a11 the soft-core potentials. However for the hard-core nucleon-nucleon potentials 

(HJ and RHC), the UAA results are appreciably different from the exact ones. 

In Figs. 1 and 2 we plot the lowest eigenpotential, uo(r) ,  and the next higher 

eigenpotential, u1 ( r ) ,  (see Eq.(14)). It is seen that  ui(r)  lies well above uo(r) for 
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the region of interest. In spite of this, the UAA appears not to  work well for the 

hard-core potentials. 

Fig. 1 - Plots of the ground and first excited states of u ~ ( r )  

for deuteron. The Hamada-Johnston and Reid hard-core 

were used for the nucleon-nucleon potential. 

This can be understood from the fact that the derivatives of the potential are 

extremely large in the neighbourhood of the hard-core radius, whereas the r -+ O 

part is outside the domain of the hard-core problem. 

Table 2 illustrates a calculation for triton. We have used the Eikemeier- 

Hackenbroich (label S4) and the Afnan-Tang (label S3) potentialsg. These PO- 

tentials have a rather sharp change in a short range. They generate smooth and 

well separated eigenpotential curves4 and 6 - 0.1. The results show a good con- 
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Table 1 - Comparison of UAA and EAA with "exact" calculation for severa1 
potentials (defined in the text) for deuteron. Energies are given in MeV. The 
values of the parameter 6 are given for the corresponding potentials. 

Potential UAA EAA Exact 6 

H J 1.9722 2.8175 1.2690 0.53 
RHC 1.9271 2.6211 2.2246 1.61 
RSC 2.0930 2.4809 2.2246 0.17 
RSCA 2.1068 2.4712 2.2246 0.26 

rífm) 
Fig. 2 - Plots of the ground and first excited states of ux(r) for deuteron. The 

Reid soft-core and Reid soft-core alternate were used for the nucleon-nucleon 

potentials. 

vergence trend. The binding energies obtained by the use of UAA differ from the 

"exactn results (CAA) by 0.8% and 2.8% respectively. 

Severa1 other applications using the HAA have been considered to realistic 

calculations in few-body nuclear physicslO. The results compare well with exact 

methods. The validity criteria of UAA given above are basically satisfied for few- 

body nuclear systerns. 
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Table 2 - Comparison of UAA and EAA with "exactn calculation (CAA) for S3 
and S4 potentials and various numbers (N) or CDE for 3 ~ .  

Potential N UAA 
Energy (MeV) 

EAA CAA 

The Model Three Particle System 

TO emphasize the broad range of applicability of HAA it is enough to  ide- 

alize a three-body (bound) model system composed of two equal mass particles 

(mi = mz) and a third one of mass rns, interacting via pairwise (varying-range- 

depth) S-wave potentials. For most physical systems, the use of pairwise S-state 

is enough for the calculation of the ground state. For instance, in nuclear physics 

it is well known that IVeZo(rij)l » IVe+o(~ij)l, which means that the = O channel 

contributes with more than 90% for the binding energy, as well as for the proba- 

bility of the total wave function. For long range forces, the Coulomb interaction 

predominates. In this case, the interaction is C-independent. For simplicity, we 
4 -. 

consider systems with the total angular momentum (i = e,  $- ty) equal to  zero 
4 

and neglect spin complications. The angular momentum operator, e,,  refers to the 

particle pair (12), and ly to particle 3 and the center of mass of the pair (12). NO- 

tice that L = O implies & = ly = C. Because of the above arguments we consider 

only the = O state in our calculations. The choice of the two-body potential has 
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the form 

V(rij) = -Vo exp(-r$/p2), ( z , j )  = 1,2,3,  (zO) 

where V. is its depth and P the range of the interaction. We calculate the binding 

energies corresponding to UAA and EAA. From the basic inequalities, the "exact" 

values should lie between UAA and EAA. These results depend on the choice of 

the two parameters of the potential as well on the mass ratio, m = rnllrns. 

We give below the matrix elements for the specific interaction (Eq.(20)) and 

important equations in order to use HAA. The quantum numbers needed here are 

a z {K, L, M , l , , e , )  = {K,0,0 ,0 ,0) ,  K = 0,1, ..., 00, where K is the quanturn 

number associated with the Casimir operatorl. As the hyperspherical harmonics, 

Y,(R), are well knownl, we can calculate the matrix elements U,,I ( r )  which appear 

in Eq.(9). The result is 

d6 sin2 ó' cos2 ó' ~ k ~ ~ ' ~ ~ ~  (COS 20) ~ 2 ~ ' ' ' ~  (COS 2 6 ) ~  

x { e q - ( r  sin 0 / ~ ) ~ ]  + exp[-(cos 0/a - sin 0 1 2 ) ~  ( r / ~ ) ~ ]  

+ exp[- (cos @/a + sin 0/2)2 ( r / ~ ) ~ ] )  [(r//3)' (sin 20/2a)Ib1, (21) 

where P~~~~~~~ are Jacobi polynomialsl and a = 2 / ~ ~ .  By knowing UKX<(r), 

we can calculate x x x  ( r )  (see Eq.(8)) and finally solve Eq.(l l)  t o  obtain the eigen- 

energies, in the different approximations, EAA and UAA. 

In order to simulate both the nuclear and molecular situations, we varied m by 

two orders of magnitude and considered two distinct possibilities. In the first case, 

a typically nuclear one - a11 three pair potentials are taken to be of form (20); in the 

second - a typically molecular one - the pair interaction between the equal mass 

particles 1 and 2 is set equal to zero. In order to test the usefulness of the above 

approximation schemes under widely differing conditions, in addition to varying 

m, we also varied the potential depth V. and range /3. The mass of the third 

particle is taken to be equal to that  of a nucleon, so that  h2/rn3 = 4 1 . 4 7 ~ e ~ .  f m2. 
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Previously, it was found that, in the nuclear situation for short range potentials 

with m N 1, both EAA and UAA were good approximations to the exact ground 

state energies, so that EAA and UAA define a narrow band with the exact result 

lying in b e t ~ e e n ~ - ~ .  The present study shows that EAA and UAA continue to 

define a narrow band even in widely varying situations (0.2 5 m 5 100) with 

diverse values of potential depths and ranges. In a11 the cases, both EAA and 

UAA were found to be good approximations to the exact ground state energy. 

In Table 3, we exhibit the results of the present calculation for j3 = 1.6, 2.4 

and 4.0 fm when there is a potential between a11 three pairs. In Table 4 we exhibit 

the same results when there is no potential between the (equal-mass) pair (12). 

In a11 cases the EAA and UAA are excellent approximations to the exact energy 

for 2 5 m 5 100; for 0.2 5 m < 1, both EAA and UAA continue as excellent 

approximations. The inequalilies (15) are never obviously violated. 

We plot in Fig.3 the potential defined by Eq.(20), for different values of P and 

V. In Fig.4 we plot co(r) versus r for ,O = 1.6 f m  and different values of m. Since 

the nature of the interaction given by Eq.(20) is mathematically well-behaved, it 

will of course generate smooth and well separated eigenpotential curves. It turns 

out that the parameter 6 < 1.0, making the UAA a good approximation scheme. 

5. Conclusions 

In this work we present results for binding energies only; and we know"'12 

that in the three-body problem the ground state binding energy is correlated with 

a11 low energy observables and, hence, is a reliable measure to assess the validity 

of the present approximations. In the quantum mechanical two-body problem, 

because of the existence of the effective range expansion, a11 low-energy bound 

state observables and scattering observables remain correlated with the binding 

energy. If a reasonable moda1 calculation provides the correct binding energy 

and scattering length for the two-body system, it provides an excellent account of 

other low-energy observables. In the case of a three-body system, the ground state 

binding energy even constrains the scattering length for the three-body system. 

Consequently, for three bodies interacting via short-range pair potentials a correct 
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Table 3 - Results for the ground state energies for the model system in the UAA 
and EAA, respectively, when there is a potential between a11 three pairs. 

ground state binding energy constrains, in a model calculation, almost a11 ~OW- 

energy observables to yield the correct values. This is true, in general, in three 

as well as two dimensions". Hence, though we present results only for binding 

energies, we have good reason to believe that  the present approximation schemes 

will be valid for other low-energy observables. 

In three-body systems in nuclear physics, only S-wave pair potentials are fre- 

quently used, as in the present study, not only to successfully model the three- 

nucleon system2~10 but also cornplex systems such as 12c, 9 ~ e ,  etc., treated as 
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Table 4 - Same as Table 3, but there is no interaction between the pair (12). 

c l ~ s t e r s ' ~ .  In many situations in nuclear physics, Gaussian and linear combina- 

tions of Gaussian potentials are employed between nucleons2 and clusters13. Such 

models give a good account of both the ground state energy and other low-energy 

observables. We are aware that in the molecular case a consideration of Gaus- 

sian pair potentials only is not realistic. However, we believe that, as in nuclear 

physics, linear combinations of Gaussian potentials should simulate qualitatively 

the molecular potential which should reproduce the basic vibration-rotation struc- 

ture of molecular spectra. Also, as we studied the problem under diverse situations 

including wide variations of the mass ratio and potential and, as the approxima- 

tions were accurate in almost a11 cases, we beiieve that our conclusions will hold in 

more realistic situations. We believe that the present pioneering study will shed 

important light on the validity of the adiabatic approximation schemes in general. 
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Fig. 3 - Plot of the two-body gaussian potential defined by Eq.(20). 

An extension of the present study to more realistic situations will be welcomed 

in future studies. For nuclear systems, there are many publications394110 which 

confirm the use of HAA successfully. For realistic atomic and molecular systems 

this can be observed as well. References (4,6) (see also references there in) confrm 

it. 

From an analysis of the results of our study we can safely conclude the fol- 

lowing: 1) The HAA, in its different versions (EAA, UAA and CAA), is a good 

approximation scheme to handle the solution of non-relativistic N-body bound 

systems from the molecular to the nuclear scale. Other r e f e r e n c e ~ ~ - ~ ~ ~ ~ ~ ~  also con- 

firm this statement, including atomic systems. It is true that  in this article we 

have only used the HAA for N=2,3-body systems. However, since the mathe- 

matical structure of HAA presented in this paper is general for any N value, we 

can safely agree with the above statements. 2) The EAA and UAA are also good 

approximations to the exact result for the model three-particle system discussed 

here to simulate cases in the nuclear and molecular scales. A broad variation of 
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Fig. 4 - Typical plot of < 0 ( r )  versris r for differerit values of m and = 1.6 fm. 

the parameters was considered (0.2 < m < 100, varying V. and /?, and switching 

off the potential in pair 12). The EAA and UAA define a narrow band in the 

corresponding eigen-energies. 3) In this article, we also clarified a hitherto empir- 

ical estimate of the ground state energy, bascd on different version of the HAA 

(EAA, UAA and CAA). For that purpose, we included a general proof of the basic 

inequalities. As mentioned before, a preliminary proof was given by Ballot et al. 

in ref. (3 ) ,  but using the approximate concept of the optimal subset making that  

proof not so general and unnecessarily complex. 

Formally there exists a certain resernblance between HAA and the Born- 

Oppenheimer approxirnation (f3OA). 

An inequality similar to Ey.( l5)  was proved for the extreme  BOA'^, 

Although EAA and BOA are similar in spirit and based on adiabatic approxima- 

tons, they are fundamentally distinct. The EAA is derived in a hyperspherical 
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space incorporating O(3N-3) symmetry, while BOA is conceived in an indepen- 

dent particle coordinate, with O(3) x...x O ( 3 )  symmetry. As a result, they lead 

to different equations, giving in general EEAA # ÉBOA. A correlation between 

these two methods is established elsewhere15. The richness of HAA is its simpler 

mathematical structure and the possibility to achieve in a simple and systematic 

way, higher order accuracy, such as that obtained from UAA and CAA. It is also 

important to mention that, in order to obtain EAA and UAA, we need only to 

solve a simple ordinary differential equation, while for BOA we have to solve a 

coupled system of partia1 differential equations5, without necessarily furnishing 

better results. 

We should stress the generality of the basic inequalities which are independent 

of the nature of the interaction. The inequalities proved here hold for ground state 

energies. However the HAA can also be successfully used for excited states. Ref. 

(16) also diçcusses the above points in a general and elegant way. 
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Resumo 

Um procedimento matemático, chamado método adiabático hiperesférico 
(HAA), é apresentado para lidar com a solução de um sistema acoplado de 
equações diferenciais (finito ou não) do tipo Schrodinger, normalmente, gerado 
de sistemas físicos de N-corpos. Investigamos a utilização do HAA a casos rel- 
ativamente simples, mas representativos, de modo a enfatizar sua larga aplica- 
bilidade. O manuscrito deriva um teorema de "upper bound/lower boundn para 
o HAA. Esta demonstração esclarece uma estimativa, até aqui empírica, da  en- 
ergia do estado fundamental, baseada em difeiente versões do HAA: a aproxi- 
m q ã o  adiabática extrema, a aproximação adiabática desacoplada e a aproxi- 
mação adiabática acoplada. Finalmente, discutimos a familiar aproximqão de 
Born-Oppenheimer, onde uma, estimativa similar ocorre. 


