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A b s t r a c t  Discrete Alfvén wave (DAW) modes in diffuse, current-carrying 
plasma are studied numerically, with a cylindrical model and toroidal cor- 
rection. In this model, with WKB approximation, we have shown that there 
are three eigenmodes: the discrete Alfvén, the magnetosonic and the helical 
mode. We show an approximate expression for the discrete mode in terms 
of known wave parameters and of the toroidal effect. The discrete Alfvén 
frequencies, for a fixed azimuthal mode number m and an axial mode nurn- 
ber k (= n / R ,  where n is the toroidal mode number and R is the major 
radius), are calculated as function of the plasma current using the complete 
equation, with no WKB approximation. The result is compared with that 
obtained from the WKB approximation. We present the results for T C A  
and NET tokamaks. 

I. In t roduc t ion  

The spectrum of the ideal magnetohydrodynamics for cylindrical plasma sys- 

tems with diffuse profile has two continua, known as the SLOW WAVE and 

ALFVÉN WAVE continua, due to  the singularities of the eigenvalue equation. 
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There are also two non-Sturmian regions, due to the zeroes of the coefficient of 

the highest order term, intercalated by two continua (Goedbloed 1975). Discrete 

eigenvalues exist in between these four regions, in particular, the discrete Alfvén 

modes are those found below the Alfvén continuum. 

Experimental and theoretical results (De Chambrier et al. 1981), Ross et al. 

1982, and Appert et al. 1982) have shown the existence of stable discrete Alfvén 

eigenmodes with frequencies below the lower edge of the Alfvén continuum for a 

given toroidal mode number n and a poloidal mode number m, i. e., w i A w  < 
min[wA(r)]. We define w i  = (m + n q ) 2 v i / ( q ~ ) 2 ,  where q is the safety factor, 

R is the major radius, and v~ is the Alfvén speed. These modes are like stable 

kink modes and appear only under certain well-defined conditions. These discrete 

modes are also called "global Alfvén eigenmodesn (Appert et al. 1982). 

When a finite toroidicity is included, DAW modes with different poloidal mode 

numbers will become coupled. However, in this paper we study the discrete Alfvén 

waves still in cylindrical geometry, but with the inclusion of the toroidal effects. 

In Section 2 we present .the equations of the ideal magnetohydrodynamics 

with toroidal effects. In Section 3, we show the analytical results of the dispersion 

relation for the case of the large aspect ration expansion. Numerical solutions 

with TCA and NET tokamak parameters are shown in Section 4 and conclusion 

in Section 5. 

2. Basic equations 

The Euler equation with first-order toroidal corrections in a circular tokamak 

was derived by Copenhaver (1976) using the theory of the MHD spectrum in 

toroidal geometry developed by Goedbloed (1975). A simplified form of this equa- 

tion has been used to study the unstable interna1 kink mode by Galvão, Sakanaka, 

and Shigueoka (1978). Copenhaver's equation for the radial component of the 

plasma displacement vector is given by 
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where 

where primes indicate derivatives with respect to r. The quantities 7, p and p are 

the adiabatic constant, plasma pressure and mass density, respectively. B8 is the 

poloidal and B, is the toroidal magnetic field. Here $ ( r )  is the displãcement of the 

axis of the magnetic surface (considered as of circular cross section with radius 

r) with respect to the geometric center of the plasma column. The axis of the 

magnetic surface is given, in terms of the toroidal coordinates, by R(r )  = Ro+<(r). 

The outermost magnetic surface coincides with the wall and has the axis located 

a t  the geometric center, ~ ( a )  = R. at z = O. The quantities I and A are defined 

as 

The Eq.(l) is strictly valid only for the weak toroidal mode coupling. Its 

use is restricted to the neighborhood of the magnetic axis because the boundary 

conditions for the m = 0, 1, and 2 modes are & ( O )  = 0, ( ~ ( 0 )  = i ,  & ( O )  = O 

, thus reducing mode coupling in this region. This uncoupled equation recovers 

the diffuse linear pinch equation, given by Hain and Lust 1958, in the large aspect 

ratia limit (with n / R  maintained constant) when the toroidal correction terms 

disap~ear .  The equation N = O defines the two continua, the shear Alfvén and 
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the slow wave. The shear Alfvén wave frequency given by 

is dependent on the radial variation of Alfvén speed, v ~ ,  on the position of the 

magnetic surface from the symmetric axis and on the safety factor q(r). This value 

is minimum at  or near the plasma center and maximum at  the plasma edge, r = a. 

The eigenfrequency w~ (the subscript N denotes normalization) and the cor- 

responding eigenvector & ( r ) ,  for a given k = n / R  and m, can be obtained by 

solving equation (1) with the following boundary conditions: r &  = O a t  r = O and 

r = a. 

The profiles for p, B,, and Bs obey the equilibrium equation 

and 

One difference here, from the usual circular toroidal coordinate system, is that 

d < / d r  = - d 6 / d r  , where 6  wits first defined by Shafranov in 1964. That Eq.(4) 

is reasonable follows directly, since 5 + 6 = const for a given equilibrium. In the 

large aspect ratio limit (n -+ m , q  -+ 0,nq fixed) all toroidal correction terms 

disappear and we recover the well known Hain Lüst equation (1958). 

3. Analytical study of the discrete eigenmodes 

In this part of the paper, we study the discrete Alfvén modes by " WKB" anal- 

ysis. Therefore, rather than introducing the most complete eigenvalue equation, 

here we adopt a simple model; yet, the essence of physics can be brought out. We 

will show that, within the frarnework of the MHD theory, when a bounded plasma 

is assumed, there will be discrete modes besides the helical and magnetosonic 

modes, with the angular frequency w a little below the shear Alfvén frequency. 

The spectrum of these modes depends on the plasma current, as a first order 

quantity. 

300 
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We consider that the current density is relatively small so that ( B B / B , ) ~  - 
E << 1, that is, the twist is small, and that the plasma pressure is negligible ( 

1 
very small ,B ). Thus, B, Z Bd = constant. We also assume that R / a  - 6-2 and 

q - 1. Using the approximation 6 = ik, in equation (I), known as the "WKB" 

approximation, and expanding the dispersion relation up to the order one in c, we 

derived the following dispersion relation: 

where 

and primes indicate the derivative with respect to r;  kll  is the component of the 

wave vector parallel to the magnetic field and V A  is the Alfvén velocity. When we 

take the cylindrical approximation we have t i  -+ 1, ti  --t 0, and t2 --+ O. This 

dispersion relation is more complete than that reported by Appert et al. (1982). 

The r-dependence is eliminated by replacing r by an effective radius reff.  This 

effective radius is estimated to be of order of O.la to 0.2a, deduced from the results 

of a more complete calculation done with the scheme presented in Section 4. 
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There are three eigenmodes, the first, whSW, representing the magnetosonic, 

the second, wLAW, the discrete Alfvén wave, and the last, wHLW, the helical wave. 

Taking the current profile as J,?(r) = Jo( l  - r2/a2)ai and using Ampère's law we 

obtain b(r). NOW, taking k = n/R, we can express the discrete Alfvén frequency 

ín terms of the known quantities at  r = 0 : 

where cij represents the currerit profile shape. 

We see from equation (6) that the eigenfrequency is shifted downward from the 

shear Alfvén frequency by a quantity of the order of c. Considering that the last 

two terms of this equation are of higher order, we can sa.y that the frequency shift 

is proportional to n, a,, v i ,  and 11%. Its dependence with m and qo is confirmed 

by numerical calculation of a more complete model in next section . The value of 

k, is unknown; however, a good guess is that it should be of the order of l / reff  

4. Numerical Results 

In this section we present the numerical technique to solve Eqs.(l)-(4). These 

equations are solved using the shooting method. Two profiles can be chasen arbi- 

trarily. We choose for pressue p(r) = p 0 ~  ezP(ap~r2  + ap4r4), where po,y, a p 2  and 

a p 4  are constant. The Bo profile is obtained by solving the Ampère's law with a 

given J, profile. We take for current density J,(r) = JON (1 - ( ~ / a ~ ) ~ j l ) ~ j ~  where 

ai1 and aj2 are free parameters and the constant JoN must satisfy the condition 

that the safety factor at  the axis q(0) is greater than 1. We choose a parabolic 

density profile, p(r) = p o ~  {I - 0 . 9 5 ( r / a ~ ) ~ ) .  As a consequence of the inhomo- 

geneous density, we have a continuous spectrum of the Alfvén wave, in addition 

to discrete espectra. The shooting method is used to obtain the eigenvalue w~ 

which satisfies the boundary condition at  r = O and a. We choose the following 

parameters: BZN = 1, PON = 1, a p 2  = -4/a&, ap4 = -6/a$, aN = 1. 
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In figure 1 we plot the distance AW' = wLAW - w i 0 ,  where w i o  = k { v i o ,  as 

a function of constant ar, , for different parameters in the stable region. In this 

figure it the dependence analysed in the last paragraph of the previous section is 

evident. We can see that the discrete Alfvén wave only appears for a, larger than 

2. This means that the current profile should be very peaked to have a discrete 

Alfvén mode. For aj smaller than 2 this mode enters the Alfvén continuum, that 

is, we do not have the discrete mode anymore. 

Fig. 1 - Distance between the discrete Alfvén frequency and the lower edge 

of the Alfvén continuum, Aw2 = uDAW - wjO versus a,. The followirq input 

parameters are used for the curves: 

(1)  RO = 5 ,  m = 1, n = 2, qo = 1, BZo = 2; 

(2) RO = 5 ,  m = 2, n = 2, qo = 1, BZo = 1; 

(3)  RO = 5 ,  m = 1, n = 2, qo = 1, Bzo = 1; 

( 4 )  Ro = 5 ,  m = 1, n = 1, q0 = 1, Bzo = 1; 

( 5 )  Ro = 5 ,  m = 1, n = 2, qo = 2, B,, = i(*); 

( 6 )  Ro = 10, m = 1, n = 2, qo = 1,  BZo = 1(- - -) 
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In figure 2 and 3 it is shown that equation (1) recovers the Hain and Lust 

equation for large aspect ratio with fixed k value. In figure 2 the normalized eigen- 

frequency, W N ,  is plotted against h. As I& increases the frequency approaches, 

asymptotically, the cylindrical case. In figure 3 it is shown that the displacement 

of the magnetic axis approaches zero as R. increases. 

Fig. 2 - Normalized eigenfrequency, w w ,  versus R0 for k constant (k = n/Ro = 

0.5, Jo = 0.5, B = 0.01, aj = 4. The ww for the cylindrical plasma column is 

0.717. 

We have applied this analysis for two tokamaks: TCA and NET. 

We have taken parameters for TCA: = 0.61m, a = 0.18m, Bd = 

1.6T, n,o = 1 .010 '~m-~  , and for NET: & = 5.18m, a = 2.l'im, Ba, = 5.OT, n = 

1.810'~rn-~ . The equation w = [ P o ~ / ( p o P o ) ' 1 2 ] [ ~ z 0 / ~ Z N ] [ ~ N / ~ o  J ~ N  recovers the 

frequency in s-'. The dependence of the eigenfrequencies on current, in terms of 

the normalized current density, is shown in figure 4, for both TCA and NET. The 

distance which separates the discrete Alfvén frequency to the lower edge of the 
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Fig. 3 - Displacement of the magnetic axis 50 = ( ( r  = O), from the geometric 

center of the cylinder, versus Ro, for k = 0.5, Jo = 0.5, P = 0.01, a, = 4. 

Alfvén continuum, Aw = w,i, - WN, is plotted as a function of the normalized 

current density, in figure 5. The eigenfrequencies for TCA and NET are found to 

be 2.3 MHz and 0.8 MHz, respectively, as shown in Table I and 11. This shows a 

good agreement with experimental values given by De Chambrier (1983) for TCA 

and those predicted for NET given by Borg et al. (1989). 

Table I - Comparison between the cylindrical and toroidal eigenfrequencies for 
TCA; n = 3,qo = l ,qw = 5. 

The main effect comes from the fact that  the effective major radius &! = h+$, 
where, 5' is the displacement of the axis of the magnetic surface, affects the value 
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Jo 
Fig. 4 - Normalized eigenfrequency, w ~ ,  for NET and TCA tokamaks, as func- 

tion of the normalised current density (- qõl ). The foIlowing parametem were 

Table I1 - Comparison between the cylindrical and toroidal eigenfrequencies for 
N E T ;  n = 3,qo = l , qw  = 3.  

of k given by n/ R. 

5 .  Conclusions 

We have shown that the discrete Alfvén wave exists in tokamaks when the 

current profile is very peaked, a, 2 2, where J, - (1 - r2 /a2)a j .  An approx- 

imate formula is derived to calculate the discrete Alfvén frequency for the case 
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Fig. 5 - Distance for the discrete eigenfrequency to the lower edge of the Alfvén 

continuum, Aw,  for NET and TCA as function of the normalized current den- 

sity. 

of small twist and very low p value. We have applied this analysis to TCA and 

NET tokamaks. The eigenfrequencies thus obtained show a good agreement with 

experimental results. We have shown that the WKB dispersion relation has three 

branches, the discrete or shear Alfvén, the magnetosonic and the helical wave. 

The helical wave is a new mode which has not appeared before in cylindrical 

modes. The most important result of this analysis is equation (6) which shows the 

dependence of the DAW mode with wave parameters and toroidal effect. 
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Resumo 

Os modos discretos da onda de Alfvén ( DAW ) em um plasma difuso e portador 
de corrente são estudados numericamente num modelo cilíndrico e com correções 
toroidais. Utilizando aproximqáo 'WKB', mostramos que há três automodos: 
discreto de Alfvén, magnetosônico e hélico. Uma expressão aproximada é deduzida 
para o modo discreto em termos dos parametros da onda conhecida e do efeito 
toroidal. As frequências discretas de Alfvén para os modos azimutal m e axial k ( 
= n/R,  onde n é o número de modo toroidal e R é o raio maior do toróide ) são 
calculadas em função da corrente de plasma usando a equação completa, isto é, 
sem o uso da aproximação 'WKB'. O resultado é comparado com o que é obtido a 
partir da aproximação 'WKB'. Também são calculados usando os parâmetros dos 
tokamaks TCA e NET. 


